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Abstract: We present a practical adaptive sliding-mode control approach, namely, the strong and
stable adaptive sliding-mode control (SS-ASMC), in this paper. There is a significant effort towards
addressing the technical challenges associated with the switching gains with two adaptive laws, which
are called parent and child adaptive laws. A parent adaptive law helps achieve strong switching gains
through fast adaptation rate when sliding variable moves away from the sliding manifold. A child
adaptive law updates the parameter of the parent adaptive law, which helps to achieve the switching
gains with fast and stable adaptation rate in the vicinity of the sliding manifold. Such switching
gains with two adaptive laws provide remarkably precise tracking performance while enhancing
the robustness. Besides, to yield desirable closed-loop poles and simplicity of control approach
structure, the proposed SS-ASMC approach employs a combination of time-delayed estimation and
pole-placement method, which makes it unnecessary to have a rather complete system dynamics.
It is shown by the bounded-input-bounded-output stability through the Lyapunov approach, and
thus the tracking errors are also proved to be uniformly ultimately bounded. The effectiveness of
the proposed SS-ASMC approach is illustrated in simulations with robot manipulators, which is
compared with that of the existing control approaches.

Keywords: adaptive sliding-mode control; adaptive law; adaptation rate; time-delayed estimation;
robot manipulator

1. Introduction

Robot manipulators work for practicing engineers carrying out repetitive and complex tasks.
Especially, they help human works requiring high precision in a variety of industrial tasks. To perform
these time-consuming, e.g., repetitive and complex tasks, and precise tasks, increasing attention is
being given to the tracking control of robot manipulators. However, given that the robot manipulators
suffer from nonlinearity, uncertainties, and disturbances in their dynamics, there exists difficulty in
establishing suitable tracking performance. For this reason, there has been tremendous progress in the
development of various control strategies for the robot manipulators over the past few years.

Computed torque control approaches [1,2] have been introduced for improving the tracking
performance, and employ a nominal system model for estimating a dynamics behavior of the system.
They can compensate the nonlinear dynamics by using the system model and therefore are known as
the effective motion control strategies in the robot manipulators. However, implementation of these
control approaches is highly complicated and computationally demanding because of the calculation
of the nonlinear system model, while not attaining the optimal control parameters. For this reason,
there may exist poor tracking performance in the robot manipulators. Therefore, there is still room for
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system instability. Linear quadratic regulator (LQR) control approaches [3,4] have been studied to be
designed in the optimal parameters. These control approaches have a simple structure and therefore
offer ease-of-use in the robot manipulators. However, the LQR control approaches may deteriorate
the tracking performance because they may degrade the robustness when the undesirable side effects,
e.g., internal disturbances and unstructured/structured uncertainties, occur in the robot manipulators.
H∞ control approaches [5,6] have been developed to overcome the above-mentioned problems. They
have provided a result in increasing the robustness against the internal disturbances. However, given
that H∞ control approaches depend on feasible sets of solutions, i.e., optimal parameters, to the
strict groups of linear matrix inequality and Riccati equation, they construct a class of complex
control structure. Besides, all control approaches described above should be required in establishing
an exact mathematical system model for the robot manipulators. Unfortunately, it is impossible to
obtain the exact system model in real robot manipulators. Furthermore, they require the linearization
method so that the requirement of prior system information is indisputable, and they are only
governed by all of the linear subsystems at each operating point. To summarize, as a practical
problem under the occurrence of unpredictable system uncertainties, they may still face a problem in
achieving the enhanced robustness against undesired side effects, including parameter variations and
external disturbances.

Conventional sliding-mode control (SMC) approaches have been designed to remedy the
above-mentioned problems. They have mainly obtained much attention for their enhanced robustness
even in the presence of a significant class of uncertainties and disturbances. However, the conventional
SMC approaches require switching gains with large positive constants, yielding the chattering
in the sliding surface which may excite high-frequency oscillation [7,8]. They produce a result
in limiting the life cycle of the robot manipulators due to wear of actuators. This is why the
conventional SMC approaches are not used well in real robot manipulators [9]. To avoid these problems,
the boundary-layer SMC approaches [10,11] have been employed as a way to replace the signum
function which is typically discontinuous function in the property of the conventional SMC. In other
words, given that these control approaches are addressed by the continuous function, i.e., saturation
function, they can avoid a major concern in the practical implementation of the conventional SMC.
However, the boundary-layer SMC approaches still have the limitation that they require information
about the upper bound on the uncertain terms. The SMC approaches with low-pass filter [12,13] have
been developed as another countermeasure against the chattering. Their switching gains depend on
the system state that can be obtained while employing the low-pass filter. Therefore, these control
approaches do not invite any complexity in the control design for avoiding the chattering. However,
it may be hard to achieve the desired tracking performance because the overestimated switching
gains are consistently required for suppressing the upper bound in the presence of significantly
large disturbances.

Conventional adaptive sliding-mode control (ASMC) approaches [14–16] have been designed to
alleviate the above-mentioned problems while using time-varying switching gains with the adaptive
laws. An ASMC approach [14] has been based on the Lyapunov theory, which is further addressed
by input coefficient matrices and unknown system. Although its switching gains are monotonically
increased to suppress the maximum uncertainty bound, they are never decreased due to its control
structure. For this reason, it may cause the chattering on the sliding surface, which may result in the
system instability. To solve this problem, an ASMC approach [15] has been introduced by using an
adaptive law that can adjust the switching gains appropriately according to the magnitude of the
sliding variable. However, this control approach has been limited to the control in the single-input
single-output system. Its property is not able to eliminate the dynamic coupling effects in the joints of
the robot manipulators. Since then, an ASMC approach [16] has overcome such a monotonic nature
of the switching gains in the multi-input multi-output system. However, if this control approach
requires the large switching gains for achieving fast convergence rate, it may cause the high-frequency
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dynamics because of the switching gains in the slow adaptation rate. As such, there is a need for
effective ASMC approaches with powerful switching gains.

An ASMC approach [17] has been first developed to be operated in the powerful switching
gains, which aims at achieving fast adaptation rate at any time as the switching gains increase or
decrease. Although it offers favorable tracking performance, the switching gains may be sensitive to
the parameter setting for adjusting the adaptation rate near the sliding manifold. After that, another
ASMC approach [18] with auxiliary parameters has been employed to alleviate the sensitivity in
relation to the parameter setting. Unfortunately, it requires a time-consuming task because of a huge
amount of tuning parameters. It may cause a result that the control performance is influenced by the
local switching gains, not the global switching gains. An ASMC approach [19] has been introduced
to avoid these problems in the literature, which is based on the existing ASMC approach [17] for
integrating the advantages derived from the fast adaptation rate. Then, its adaptive law is composed
of a combination sliding variable and exponential function so that the control input fluctuation does
not occur near the sliding manifold. Given that the number of parameters can be also reduced when
compared to an ASMC approach [18], it offers the potential for application to real systems. However,
the adaptation rate of the switching gains is not directly influenced to the magnitude of the sliding
variable while staying in the vicinity of the sliding manifold, and therefore this control approach may
provide unstable switching gains temporarily because of the improper and insufficient adaptation
rate. As such, even though various control approaches have been performed for the ASMC approach,
there are still some limitations with regard to the adaptation rate of the switching gain. In other words,
given that the existing ASMC approaches only provide a fast or a stable adaptation rate, it may not be
easy for practicing engineers to achieve the favorable tracking performance without the undesirable
side effects. Therefore, it is necessary to develop a more simple and practical control approach that can
provide the switching gains with fast and stable adaptation rate.

In this paper, we propose a practical ASMC approach, namely, the strong and stable adaptive
sliding-mode control (SS-ASMC) approach, that offers strong and stable switching gains in the large
and small magnitudes of the sliding variable, respectively. There is a significant effort towards
addressing the technical challenges associated with the new time-varying switching gains having two
adaptive laws which is called parent and child adaptive laws. A parent adaptive law is designed to be
proportional to the magnitude of the sliding variable. Therefore, the proposed SS-ASMC approach can
provide strong switching gains through fast adaptation rate when causing inappropriately large sliding
variables by the large negative effects, e.g., abrupt disturbances. Then, the switching gains employ the
time-varying update parameters with the child adaptive law that are designed to stay on its low bound
while away from the sliding manifold. These adaptive laws of the proposed ASMC guarantee that
within a finite time, all of the sliding variables enter an arbitrarily small vicinity of the sliding manifold
and then stay around it. On the contrary, as mentioned previously, given that the parent adaptive law is
designed to be proportional to the magnitude of the sliding variable, it may provide a slow adaptation
rate in the vicinity of the sliding manifold. To achieve a fast and stable adaptation rate, the time-varying
update parameters with the child adaptive law are activated, which has an effect of adjusting the
parameters to the switching gains of the proposed SS-ASMC approach. This is a reason why the
switching gains can be quickly adjusted without making them unstable. Therefore, even though the
switching gains become somewhat large to achieve precise tracking performance while guaranteeing
the robustness, they are not sufficiently affected by the chattering because the adaptation rate is fast
and stable owing to the child adaptive law. Further, all control approaches based on sliding-mode
control are in need of an equivalent control approach and thus require the complex and exact system
dynamics. However, the proposed SS-ASMC approach employs a time-delayed estimation (TDE) to
solve the negative demands generating in an equivalent control approach, which can compensate
uncertainties, nonlinear dynamics, and unknown disturbances in the robot manipulators. Moreover,
the pole-placement (PPT) is also employed to obtain the error dynamics with the dominant pole,
which helps to converge to the equilibrium point. For these reasons, the proposed SS-ASMC approach
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can be taken without the knowledge of the system information in the robot manipulators, which
makes it unnecessary to have a rather complete system dynamics. From these benefits, the proposed
method works well for simulations accompanying undesirable side effects such as the parameter
variations and the abrupt disturbances. It is shown that the proposed SS-ASMC approach guarantees
the bounded-input bounded-output stability through Lyapunov function, meaning the tracking errors
are uniformly ultimately bounded. The effectiveness of the new time-varying switching gains in the
proposed SS-ASMC approach is illustrated in simulations with robot manipulators. It turns out the
proposed one has strong and stable tracking performance without the chattering, and then compared
with the existing control approaches.

The remainder of this paper is organized as follows. In Section 2, we briefly introduce what the
proposed SS-ASMC approach is. In Section 3, we carried out simulations with the 2-link planar robot
manipulator. In Section 4, we conclude with a brief summary of this paper.

2. Proposed SS-ASMC Approach

2.1. The Dynamics of Robot Manipulator

The n-axes robot manipulator model [20–22] can be described as follows,

M(qt)q̈t + C(qt, q̇t)q̇t + g(qt) + f(qt, q̇t) = τt + τd,t (1)

where qt = (q1,t, q2,t, · · · , qn,t) ∈ <n, q̇t = (q̇1,t, q̇2,t, · · · , q̇n,t) ∈ <n, and q̈t = (q̈1,t, q̈2,t, · · · , q̈n,t) ∈ <n

are the joint angle, the joint angular velocity, and the joint angular acceleration, respectively. M(qt) ∈
<n×n is the symmetric positive definite that is called the moment of inertia. C(qt, q̇t) ∈ <n×n is the
Coriolis matrix. g(qt) is the gravity matrix. f(qt, q̇t) ∈ <n is the friction matrix.

Multiplying M−1(qt) by both sides in Equation (1), we have

q̈t = −M−1(qt)
[
C(qt, qt)q̇t + g(qt) + f(qt, q̇t)− τt − τd,t

]
(2)

From Equation (2), the equation in a compact and simple form yields

q̈t =−M−1(qt)
[
C(qt, qt)q̇t + g(qt) + f(qt, q̇t)− τd,t

]
+
[
M−1(qt)− M̄−1]τt + M̄−1τt

=Lt + M̄−1τt (3)

where

Lt =−M−1(qt)
[
C(qt, qt)q̇t + g(qt) + f(qt, q̇t)− τd,t

]
+
[
M−1(qt)− M̄−1]τt (4)

where M̄ = diag(M̄1, M̄2, · · · , M̄n) ∈ <n×n is the diagonal constant matrix to be determined later on,
which is called “TDC gain”, and how to choose the TDC gain M̄ will be introduced in Appendix A.
According to the well-known assumption, it is assumed that the following property [23–25] holds

κm ≤ ‖M(qt)‖2 ≤ κ̄M (5)

for the positive constants κm and κ̄M.

2.2. Control Design

The control objective of this paper is to make the joint angle qt follow the command joint angle
qd,t = (qd1,t, qd2,t, · · · , qdn,t) ∈ <n precisely. It implies that the tracking error et = (e1, e2, · · · , en) ∈ <n,
which is defined as qd,t − qt, is eliminated to be achieved accurately in the tracking motion of the robot



Appl. Sci. 2020, 10, 2909 5 of 16

manipulator. To obtain the desired performance in tracking the trajectory for each joint of the robot
manipulator, we shall employ

st = ėt + K̄set (6)

where st = (s1, s2, · · · , sn) ∈ <n is the sliding variable. K̄s = diag(K̄s,1, K̄s,2, · · · , K̄s,n) ∈ <n×n are the
diagonal positive design parameter that is called “sliding gain”. It is noted that the sliding gain K̄s

is directly related to the rate at which the tracking error et converges to zero, assuming the sliding
variable st is zero.

From Equation (6), we construct the following control approach as

τt =− M̄
[
L̂t + q̈d,t + K̄sėt + K̄gst

]
=− M̄

[
L̂t + q̈d,t +

(
K̄s + K̄g

)
ėt + K̄sK̄get

]
(7)

where K̄g = diag(K̄g,1, K̄g,2, · · · , K̄g,n) ∈ <n×n is the diagonal positive design parameter.
The estimation value L̂t ∈ <n can be obtained from one-sample delayed measurement of Lt ∈ <n,
which is called time-delayed estimation (TDE), and then we have

L̂t ∼= Lt−L = q̈t−L − M̄−1τt (8)

where L is the sampling time. In other words, the smaller the sampling time L is, the higher the accuracy
of estimation value in L̂t is. As known in some papers [26–28], the sampling time L yields the positive
effects above 100 Hz, and therefore will also be set above 100 Hz in the proposed control approach.

Substituting Equation (8) into Equation (7), we can obtain the control approach with the
pole-placement term (PPT) as

τt =−M̄q̈t−L + τt−L︸ ︷︷ ︸
TDE

+ M̄
[
q̈d,t +

(
K̄s + K̄g

)
ėt + K̄sK̄get

]︸ ︷︷ ︸
PPT

. (9)

Substituting Equation (9) into Equation (3), the error dynamics can be represented as follows,

ët +
(
K̄s + K̄g

)
ėt + K̄sK̄get + Et = 0 (10)

where Et = (E1,t, E2,t, · · · , En,t) ∈ <n is called “TDE error”. If we can make the TDE error Et = 0,
the tracking error et = 0 goes to zero monotonically. Then, the sliding gain K̄s and the design parameter
K̄g can be defined as the desired poles that help to adjust the convergence rate.

If the sampling time L is sufficiently small, the estimation value L̂t can be as close to Lt as
possible. Unfortunately, it is impossible to achieve the estimation value L̂t that is the same as Lt

because the real systems exist in the discrete-time domain, inherent state noises, hard nonlinearity, and
abrupt disturbances [29]. It means that the TDE errors must be present in the real systems. To achieve
the system stability while guaranteeing the upper bound of these errors, the TDC gain M̄ should be
satisfied as follows,

‖I−M−1(qt)M̄‖2 < 1 (11)

for all t > 0, then the TDE errors Et are always upper-bounded [27,30], i.e., Ei ≤ Ē∗i for all i = 1, 2, · · · , n,
where Ē∗i is the maximum value of the TDE error Ei. It means that the magnitude of the TDC gain M̄
should be restricted, and thus Equation (9) may cause degraded tracking performance.

To suppress the TDE errors Et, we propose a practical adaptive sliding-mode control (SS-ASMC)
approach that is added in Equation (7) as follows,

τt =− M̄q̈t−L + τt−L + M̄
[
q̈d,t +

(
K̄s + K̄g

)
ėt + K̄sK̄get

]
+ M̄K̂s

tsgn(st) (12)
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where K̂s
t = diag(K̂s

1,t, K̂s
2,t, · · · , K̂s

n,t) ∈ <n×n is the diagonal positive gain to be determined for
guaranteeing the system stability, called “switching gain” in this paper. The switching gain employs
two adaptive laws, i.e., the parent (Equation (13)) and child (Equation (14)) adaptive laws, that are

˙̂Ks
i,t =

{
δ̄iη̂i,t|si,t|χt if K̂s

i,t > 0 and si,t 6= 0

δ̄iη̂i,t|si,t| if K̂s
i,t = 0 or si,t = 0

(13)

where

˙̂ηi,t =


−γ̄i|si,t| if

∣∣ ˙̂Ks
i,t

∣∣ < µ̄ and η̂i,t = η̄∗i
−γ̄i|si,t|aχt if

∣∣ ˙̂Ks
i,t

∣∣ < µ̄ and η∗
i
< η̂i,t < η̄∗i

γ̄i|si,t| if
∣∣ ˙̂Ks

i,t

∣∣ < µ̄ and η̂i,t = η∗
i

0 if
∣∣ ˙̂Ks

i,t

∣∣ = µ̄

(14)

where χt = sgn(‖st‖∞ − ε̄). ˙̂Ks
i,t is the parent adaptive law of the switching gain K̂s

i,t. η̂i,t is called
“update parameter” whose the derivative is defined as ˙̂ηi,t, and then it has a upper value η̄∗i and a lower
value η∗

i
for all i = 1, 2, · · · , n. ε̄ can determine that the switching gain K̂s

t increases or decreases. δ̄i and
γ̄i can adjust the adaptation rate of the switching gain K̂s

t and the update parameter η̂i,t, respectively. µ̄

is set to be restricted in the adaptation rate of the switching gain K̂s
t because the excessive adaptation

rate may cause the control input fluctuation making the system instability. a is also set to the positive
value for the sake of changes in the update parameter η̂i,t. The signum function sgn(si,t) is defined by

sgn(si,t) =

{
1 if si,t ≥ 0

−1 if si,t < 0.
(15)

As shown in Equations (13) and (14), both the parent adaptive law ˙̂Ks
i,t and the child adaptive

law ˙̂ηi,t do not require the information on the uncertain terms, which can be adjusted in accordance
with the magnitude of the sliding variable. The parent adaptive law ˙̂Ks

i,t is set to be proportional to
the magnitude of the sliding variable. If the sliding variables st are far from the sliding manifold, i.e.,
‖st‖∞ ≥ ε̄, the adaptive law ˙̂Ks

i,t is sufficiently large for all i = 1, 2, · · · , n, and therefore the switching
gain K̂s

t will be increased quickly through fast adaptation rate. It provides a result that the sliding
variables st go to the sliding manifold more quickly owing to the large switching gain. As another
point, it means that the sliding variables st enter the vicinity of the sliding manifold. However, the
large switching gain may cause the undesirable side effect, e.g., chattering, when the sliding variable
st stays the vicinity of the sliding manifold. To alleviate this negative effect, the boundedness ε̄ is set
to decrease the switching gain K̂s

t when ‖st‖∞ < ε̄. However, the adaptation rate of the switching
gains K̂s

t may be slow because it is directly proportional to the magnitude of the sliding variables. In
other words, when the sliding variables st stay in the boundedness ε̄, inappropriately large switching
gain may still cause the chattering that generates serious problems such as wear in the motor of the
robot manipulator. To handle all aspects of this matter, the proposed control approach proposes a
new update parameter η̂i,t whose derivative, i.e., ˙̂ηi,t, can be generated when the sliding variable st

stays in the vicinity of the sliding manifold. Therefore, the update parameter η̂i,t is asymptotically
increased for decreasing the switching gain K̂s

t quickly. Then, given that the update parameter η̂i,t
can be increased to be upper-bounded, it generates a finite value which helps to avoid the excessive
adaptation rate of the switching gain K̂s

t . As a result, the proposed SS-ASMC approach provides the
strong and stable switching gains without the undesirable side effects, including chattering, owing to
the parent adaptive law ˙̂Ks

i,t and the child adaptive law ˙̂ηi,t.
The proposed SS-ASMC approach can be depicted with a block diagram as shown in Figure 1,

which provides that the sliding variable st enters the vicinity of the sliding manifold within a finite
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time tε̄ > 0, as shown in Theorem 1. Then, the switching gains K̂s
i,t can be upper-bounded by the

unknown positive values as in Lemma 1.

Switching Gain
Parent Adaptive Law  

Child Adaptive Law  

Figure 1. A block diagram of the proposed strong and stable adaptive sliding-mode control (SS-ASMC)
approach.

Theorem 1. For a robot manipulator controlled by the proposed SS-ASMC approach (Equation (12)), the sliding
variable st enters the vicinity of the sliding manifold within a finite time tε̄ > 0, which is guaranteed to be
uniformly ultimately bounded for t > tε̄ as

‖st‖2 ≤
√

n

∑
i=1

ε̄2 +
n

∑
i=1

1
δ̄i

(
K̃∗i,M

)2
+

n

∑
i=1

1
γ̄i

(
η̄∗i
)2

where K̃∗i,M is the maximum value of K̃i,t = Ē∗i − K̂s
i,t. The proof is given in Appendix B.

Lemma 1. The switching gains K̂s
i,t are upper-bounded by the unknown positive values K̄s,∗

i as follows,

K̂s
i,t ≤ K̄s,∗

i

for all i = 1, 2, · · · , n and t > 0. The proof is given in Appendix C.

3. Simulation

3.1. Simulation Setup

To illustrate the proposed SS-ASMC approach, a 2-link planar robot manipulator model (Figure 2)
is adopted in these simulations, which is given in the Appendix D. The parameters of the proposed
SS-ASMC approach are chosen as M̄1 = 4× 10−3, M̄2 = 2× 10−3, K̄s,1 = 1, K̄s,2 = 1, K̄g,1 = 6× 102,
K̄g,2 = 8 × 102, δ̄1 = 7, δ̄2 = 22, ε̄ = 9 × 10−1, γ̄1 = 5 × 104, γ̄2 = 1 × 104, a1 = 2.5, a2 = 1.5,
η̄∗1 = η̄∗2 = 1× 105, η∗

1
= η∗

2
= 1× 103, and µ̄ = 1× 104.
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Figure 2. A 2-link planar robot manipulator.

3.2. Simulation Description

The purpose of these simulations is to make the angle of joints qt in the robot manipulator catch
up with the command joint angle qd,t, as shown in Figure 3. It is noted that there simulations are three
points as follows.

(1) It is well-known that the Coulomb friction accounts for nearly one-third of the maximum motor
torque in the robot manipulator [31]. Moreover, the Coulomb friction leads to large TDE errors
when the rotational direction of motor is changed at the moment [17]. Then, the effectiveness of the
proposed SS-ASMC approach is evaluated on how to improve the nominal tracking performance
through the robot manipulator.

(2) The command angle trajectories of joints are being moving in the different phases, as shown in
Figure 3, which are inherently shown in unmatched and matched disturbances, including the
Coulomb friction.

• (Unmatched disturbances)

– 0.3 s, 2 s, 4.3 s, 5.8 s, 7 s, 8.3 s

• (Matched disturbances)

– 3 s, 9.5 s.

The effectiveness of the proposed SS-ASMC approach is simulated to verify its robustness against
being adversely affected by such disturbances.

(3) As an external disturbances, additional payload is applied in joint 2 of the robot manipulator,
i.e., the end-effector of the robot manipulator. In this case, the robust tracking performance of the
proposed SS-ASMC approach is evaluated with or without the payload.

To illustrate the effectiveness of the proposed SS-ASMC approach in these points, a

• Time-delayed control (TDC) approach [32] and
• Adaptive sliding-mode control (ASMC) approach [17]

are employed for comparison. The parameters of these control approaches are set in Appendix E.
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(a) (b)

Figure 3. Command joint angle trajectories with sinusoidal signal: (a) Joint 1. (b) Joint 2.

3.3. Simulation Result

Figure 4 shows the update parameters that are time-varying parameters inherent in the parent
adaptive law (Equation (13)). Given that the switching gains (Figure 5) can be sufficiently increased
to suppress the undesirable side effects through fast adaptation rate, the update parameters move
towards its low bound when the rotational direction of motor of the robot manipulator is changed
at the moment. On the other hand, the update parameters are increased in the vicinity of the sliding
manifold and therefore help decreasing the switching gains (Figure 5) while generating fast and stable
adaptation rate. It results in producing proper switching gains without any negative effects including
the chattering, as shown in Figure 5.

0 2 4 6 8 10
10

12

14

16

(a)

0 2 4 6 8 10
10

13

16

19

(b)

Figure 4. Update parameters generated by the proposed SS-ASMC approach: (a) Joint 1 (×102). (b) Joint
2 (×102).
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(a)
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(b)

0 2 4 6 8 10
0
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(c)

0 2 4 6 8 10
0

20
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60

(d)

Figure 5. A comparison between the switching gains of the proposed SS-ASMC approach and the
existing ASMC approach: (a) Switching gain of the proposed SS-ASMC approach for the Joint 1 (×102).
(b) Switching gain of the proposed SS-ASMC approach for the Joint 2 (×102). (c) Switching gain of the
ASMC approach for the Joint 1 (×102). (d) Switching gain of the ASMC approach for the Joint 2 (×102).

Figure 5 shows a comparison between the switching gains of the proposed SS-ASMC approach
and the existing ASMC approach. As shown in Figure 5a,b, the switching gains of the proposed
SS-ASMC approach are smoothly increased or decreased depending on whether the sliding variables
(Figure 6) are close to the sliding manifold or not. By contrast, as shown in Figure 5c,d, the existing
ASMC approach can suppress the disturbances temporarily through powerful switching gains. It
seems to be superior to the tracking performance at the moment large disturbances occur because their
switching gains adopt larger values than those of the proposed SS-ASMC approach. In other words, it
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is observed that the switching gains of the proposed SS-ASMC approach are slower when compared to
those of the existing ASMC approach. However, there are residual negative effects because of the effect
of inertia in the system, as shown in Figure 7. Moreover, the existing ASMC approach only depends on
the convergence rate of the TDC approach in the transient sections because of the switching gains in the
excessive adaptation rate. It leads to a result of the insufficient behavior in the tracking performance, as
shown in Figure 7. Fortunately, the residual switching gains of the proposed SS-ASMC approach can
solve the problems in the existing ASMC approach. The switching gains remaining during the decrease
do not cause undesired side effects, which result in the chattering-free switching gains. Moreover,
given that the switching gains of the proposed SS-ASMC approach are appropriately adjusted through
fast and stable adaptation rate, it can be observed that they help to improve the nominal tracking
performance in transient sections where the disturbances does not occur directly, as shown in Figure 7.

Figure 6 shows the sliding variables of the proposed SS-ASMC approach which increase
temporarily when the disturbances occur. When the sliding variables leave near sliding manifold, it is
strongly influenced by the switching gains of the SS-ASMC approach. Since then, the sliding variables
are close to the sliding manifold. It is observed that the magnitude on the sliding variables tend to be
similar to that on the tracking errors, as shown in Figure 7.

0 2 4 6 8 10

-0.5

-0.25

0

0.25

0.5

(a)

0 2 4 6 8 10

-3

-1.5

0

1.5

3

(b)

Figure 6. Sliding variables generated by the proposed SS-ASMC approach: (a) Joint 1. (b) Joint 2.

(a) (b)

Figure 7. Comparison of the tracking errors of time-delayed control (TDC) approach (dotted line),
adaptive sliding-mode control (ASMC) approach (dotted dashed line), and the proposed SS-ASMC
approach (solid line): (a) Joint 1. (b) Joint 2.

Figure 7 shows the tracking errors generated from the TDC approach, the existing ASMC approach,
and the proposed SS-ASMC approach. As shown in Figure 7, the TDC approach is sufficiently affected
by both unmatched/matched disturbances and the changes in the payload on the end-effector of
the robot manipulator. By contrast, the existing ASMC approach improves the tracking performance
against unmatched and matched disturbances. Moreover, it is not sufficiently affected by the command
joint angle trajectory with and without payload on the end-effector of the robot manipulator. However,
the existing ASMC approach only depends on the tracking performance of the TDC approach in the
transient sections because there is no interaction between the switching gain and the control input,
as in Figure 5. Furthermore, in the two control approaches described above, i.e., the TDC approach
and existing ASMC approach, it can be seen that some chattering is slightly caused by the unmatched
disturbances. Besides, given that the existing ASMC approach employs the switching gain with the
excessive adaptation rate, its control parameters are not easy to set to be adjusted appropriately and
therefore may also cause some chattering. By contrast, it is remarkably observed that the proposed
SS-ASMC approach works well without undesirable side effects shown in two control approaches.
Especially, ase the decreasing switching gains of the proposed SS-ASMC approach does not become
zero instantaneously, they help to improve the nominal tracking performance in transient sections
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where the disturbances does not occur directly. Owing to fast and stable adaptation rate, it can quickly
cope with undesirable side effects caused by unmatched and matched disturbances and hence can
enhance the robust tracking performance. Moreover, it can be observed that the proposed one derives
the natural tracking performance irrespective of payload on the end-effector of the robot manipulator.
From the above results, it can be said that the proposed SS-ASMC approach offers more precise nominal
and robust tracking performance than other two control approaches. The root-mean-square (RMS)
tracking errors are given in Table 1.

Table 1. The root-mean-square (RMS) tracking errors for sinusoidal command joint angle trajectory.

Control Strategies Joint 1 (Deg) Joint 2 (Deg)

TDC approach [32] 6.70 × 10−2 40.66 × 10−2

ASMC approach [17] 2.92 × 10−2 10.46 × 10−2

Proposed SS-ASMC approach (Equation (12)) 0.78 × 10−2 4.59 × 10−2

4. Conclusions

In this paper, we proposed a practical ASMC approach with two adaptive laws, namely, the parent
and child adaptive laws, in the robot manipulator. The parent adaptive law helped to provide the strong
switching gains that mainly improved the tracking performance while enhancing the robustness when
away from the equilibrium point. The child adaptive law helped to improve the tracking performance
while achieving a fast convergence rate near the equilibrium point. The proposed SS-ASMC approach
could be taken without the knowledge of the system information in the robot manipulator, which
makes it unnecessary to have a rather complete system dynamics. From the synergistic effects of
these properties, the proposed SS-ASMC approach provided a simple structure, but worked well for
simulations with the robot manipulator accompanying undesirable side effects. The effectiveness of
the proposed SS-ASMC approach was illustrated in simulations with robot manipulators, and then
the proposed control approach had better tracking performance and robustness than the existing
control approaches.

In the future, we believe that the proposed SS-ASMC approach will be applied to
various applications.
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Appendix A. How to Choose the TDC Gain

If the TDC gain M̄ can be chosen as the diagonal elements of M(qt), we can achieve the best
tracking performance when operating in the system without noise. However, for real systems, given
that the information of M(qt) is not known exactly, the TDC gain M̄ should be tuned through the
trial-and-error method. Fortunately, the stability criteria (Equation (11)) introduced in this paper
implies that the smaller the TDC gain M̄, the easier it is to stabilize the system. Therefore, we
recommend a tuning method that increases the TDC gain M̄ at very small values.
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Appendix B. Proof of Theorem

To prove the overall system stability, the Lyapunov function, denoted by Vt ∈ <, is defined as

Vt =
1
2

sT
t st +

1
2

n

∑
i=1

1
δ̄i

(
K̃i,t
)2

+
1
2

n

∑
i=1

1
γ̄i

(
η̂i,t
)2 (A1)

whose the time derivative can be computed as

V̇t = sT
t ṡt −

n

∑
i=1

1
δ̄i

K̃i,t
˙̂Ks

i,t +
n

∑
i=1

1
γ̄i

η̂i,t ˙̂ηi,t

= sT
t ṡt + Λ1,t + Λ2,t (A2)

where

Λ1,t = −
n

∑
i=1

1
δ̄i

K̃i,t
˙̂Ks

i,t

Λ2,t =
n

∑
i=1

1
γ̄i

η̂i,t ˙̂ηi,t.

Substituting the time derivative of Equation (6) into Equation (A2), we have

V̇t = sT
t
[
q̈d,t − q̈t + K̄s

]
+ Λ1,t + Λ2,t. (A3)

Substituting Equations (3) and (12) into Equation (A3), Equation (A3) can be represented as

V̇t = sT
t
[
q̈d,t −Lt − M̄−1τt + K̄s

]
+ Λ1,t + Λ2,t

= −sT
t
[
Et + K̄gst − K̂s

tsgn(st)
]
+ Λ1,t + Λ2,t (A4)

where Et = Lt − Lt−L ∈ <n is the TDE error that is bounded according to Equation (11), e.g.,
|Ei,t| ≤ Ē∗i for all i = 1, 2, · · · , n. It follows then that

V̇t ≤−
[
K̄gst

]Tst +
n

∑
i=1
|si,t|

(
|Ei,t| − K̂s

i,t
)
+ Λ1,t + Λ2,t

=−
[
K̄gst

]Tst +
n

∑
i=1
|si,t|K̃i,t −

n

∑
i=1

η̂i,t|si,t|K̃i,tχt +
n

∑
i=1

1
γ̄i

η̂i,t ˙̂ηi,t. (A5)

If ‖st‖∞ is larger than the boundedness ε̄, i.e., χt = 1, Equation (A5) can be represented as follows,

V̇t ≤ −
[
K̄gst

]Tst +
n

∑
i=1

1
γ̄i

η̂i,t ˙̂ηi,t. (A6)

If | ˙̂Ks
i,t| is less than the positive value µ̄, Equation (A6) yields

V̇t ≤ −
[
K̄gst

]Tst −
n

∑
i=1

η̂i,t|si,t|a ≤ −
n

∑
i=1

K̄g,is2
i,t (A7)

when ‖st‖∞ ≤ ε̄ is satisfied. Equation (A8) means that the Lyapunov function Vt will be decreased.
Then, the time derivative of the Lyapunov function has a low-bounded value, not zero, as follows,

V̇t ≤ −
n

∑
i=1

K̄g,is2
i,t ≤ −

n

∑
i=1

K̄g,i ε̄
2 (A8)
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which means that the sliding variable st reaches the boundedness ε̄ within the finite time tε̄ = t1 > 0. In
other words, given that the sliding variable st enters the boundedness ε̄, we are able to have more room
for the improper tracking performance if the boundedness ε̄ can be chosen as being smaller. However,
the time derivative of the Lyapunov function does not always guarantee that the sliding variable st the
boundedness ε̄, i.e., ‖st‖∞ < ε̄. It is a reason that two terms in forth line of Equation (A5) may become
positive, e.g., V̇t > 0. If the sliding variable st moves out of the boundedness ε̄, Equation (A8) will steer
it back toward the sliding manifold. After that, the sliding variable st arrives at the boundedness ε̄

within the finite time t2 > t1. As another point, it means that the upper bound of the sliding variable st

exists inherently.
From now, let us prove the upper bound of the sliding variable st. To begin with, it can be seen in

Equation (A1) that the Lyapunov function Vt is bounded as follows,

1
2
‖st‖2

2 ≤ Vt ≤
1
2
‖st‖2

2 +
1
2

n

∑
i=1

1
δ̄i

(
K̃i,t
)2

+
1
2

n

∑
i=1

1
γ̄i

(
η̂i,t
)2. (A9)

Given that 1
2 ∑n

i=1
1
δ̄i

(
K̃i,t
)2 and 1

2 ∑n
i=1

1
γ̄i

(
η̂i,t
)2 are bounded by Lemma 1 and Equation (13),

Equation (A9) can be represented as

1
2
‖st‖2

2 ≤ Vt ≤
1
2

n

∑
i=1

ε̄2 +
1
2

n

∑
i=1

1
δ̄i

(
K̃∗i,M

)2
+

1
2

n

∑
i=1

1
γ̄i

(
η̄∗i
)2. (A10)

It follows then that

‖st‖2 =

√
n

∑
i=1

ε̄2 +
n

∑
i=1

1
δ̄i

(
K̄∗i,M

)2
+

n

∑
i=1

1
γ̄i

(
η̄∗i
)2 (A11)

where K̃∗i,M and η̄∗i are the maximum values of K̃i,t and η̂i,t, respectively. It is noted that the
boundedness ε̄ is dominant in relation to the magnitude of the sliding variable. From Equation (A11),
the sliding variable st is guaranteed to be bounded, which is uniformly ultimately bounded for
t ≥ tε̄. In Equation (A1), the sliding variable st serves as a bounded input of the dynamics system,
including the tracking error et. It means that the tracking error et is also bounded owing to the
bounded-input-bounded-output stability [33].

Appendix C. Proof of Lemma

To prove that the upper bound of the switching gain exists, i.e., K̂s
i,t ≤ K̄s,∗

i , we assume that the
Lyapunov function Vt is upper-bounded as a sufficiently large V̄∗. It follows then that

Vt =
1
2

sT
t st︸ ︷︷ ︸

Sliding term

+
1
2

n

∑
i=1

1
δ̄i

(
K̃i,t
)2

︸ ︷︷ ︸
Switching term

+
1
2

n

∑
i=1

1
γ̄i

(
η̂i,t
)2

︸ ︷︷ ︸
Updated term

≤ V̄∗. (A12)

Given that the updated term is bounded by Equation (13), we consider that one of them, i.e.,
sliding term or switching term, should be sufficiently large. To begin with, if the sliding term is
sufficiently large, then the time derivative of the Lyapunov function Vt becomes negative owing to
Equation (A8). Next, we consider that the switching term is sufficiently large. Then, the time derivative
of the Lyapunov function can be shown to be negative through the following optimal problem,

max
1
2

n

∑
i=1

1
δ̄i

K̃i,t (A13)
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subject to

1
2

n

∑
i=1

1
δ̄i

(
K̃i,t
)2

= M ≤ V̄∗

where M is sufficiently large number. Given that K̃i,t is defined as Ē∗i − K̂s
i,t, the optimal problem of

Equation (A13) clearly provides a negative value. It means then that the second term in Equation (A12)
can be represented as

n

∑
i=1

1
δ̄i

K̃i,t < 0 (A14)

for a sufficiently large value M. It is noted that Equation (A5) is provided as

V̇t =−
[
K̄gst

]Tst +
n

∑
i=1
|si,t|K̃i,t +

n

∑
i=1

η̂i,t|si,t|K̃i,t +
n

∑
i=1

η̂i,t|si,t|a < 0. (A15)

From Equation (A15), we can say that the time derivative of the Lyapunov function becomes
negative, i.e., V̇t < 0, in these cases where the sliding term or the switching term is sufficiently large. It
implies that the Lyapunov function Vt is globally upper-bounded, i.e., Vt ≤ V̄∗. Therefore, it follows
then that the switching gain K̂s

i,t has a upper value K̄s,∗
i for all i = 1, 2, · · · , n and t ≥ 0.

Appendix D. A Two-Link Planar Robot Manipulator System Model

A 2-link planar robot manipulator model [21] is given as

M(qt) =

[
l2
2m2 + 2l1l2m2c2 + l2

1(m1 + m2) l2
2m2 + l1l2m2c2

l2
2m2 + l1l2m2c2 l2

2m2

]
, C(qt, q̇t)q̇t =

[
−m2l1l2s2 q̇2

2,t − 2m2l1l2s2 q̇1,t q̇2,t

m2l1l2s2 q̇2
2,t

]
,

G(qt) =

[
m2l2gc12 + (m1 + m2)l1gc1

m2l2gc12

]
, F(q̇t) =

[
ψ1sgn(q̇1,t)

ψ2sgn(q̇2,t)

]
,

where qi,t is the angle for the joint i, and si, ci, and cij are defined by sin
(
qi,t
)
, cos

(
qi,t
)
, and cos

(
qi,t +

qj,t
)
, respectively. The system parameters are given in Table A1.

Table A1. System parameters for simulation setup.

Axis Time Mass Length Gravity Friction
t (s) m (kg) l (mm) g (m/s2) ψ

1 0 ∼ 5 12 200 9.81 70

2 0 ∼ 5 6 100 9.81 70
5 ∼ 10 4 100 9.81 70

Appendix E. Parameters of Both TDC Approach and ASMC Approach in the Simulation

The adaptive law of switching gain in [17] can be described as follows,

˙̂Ks
i,t =

{
ᾱi
[
β̄−1

i |si,t|
]sgn(‖st‖∞−ε̄)sgn(‖st‖∞ − ε̄) if K̂s

i,t > 0 and si,t 6= 0

ᾱi β̄
−1
i |si,t| if K̂s

i,t = 0 or si,t = 0.
(A16)

From Equations (9) and (A16), the parameters in both the TDC approach [32] and the ASMC
approach [17] can be defined as in Table A2.
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Table A2. Parameters of control approaches for simulation.

Control Approaches Axis M̄i K̄g,i K̄s,i ᾱi β̄i ε̄

TDC approach [32] 1 4 × 10−3 8 × 102 1 — — —
2 2 × 10−3 9 × 102 1 — — —

ASMC approach [17] 1 4 × 10−3 6 × 102 1 4 × 103 1 × 10−1
9 × 10−1

2 2 × 10−3 8 × 102 1 2 × 103 1 × 10−1
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