Long-Term Characteristics of Prestressing Force in Post-Tensioned Structures Measured Using Smart Strands
Abstract
:1. Introduction
2. Smart Strand with Fiber Optic Sensor
3. Long-Term Losses of Prestress
4. Application of Smart Strands to Post-Tensioned Structures
4.1. Full-Scale Specimen
4.2. PSC Girder Bridge
5. Analysis of Long-Term Prestressing Force (PF)
5.1. Importance of Temperature Correction
5.2. Long-Term Prestress Losses in the Full-Scale Specimen
5.3. Long-Term Prestress Losses in the PSC Girder Bridge
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Potson, R.W.; Frank, K.H.; West, J.S. Enduring strength. Civ. Eng. ASCE 2003, 73, 58–63. [Google Scholar]
- Jeon, S.J.; Park, S.Y.; Kim, S.H.; Kim, S.T.; Park, Y.H. Estimation of friction coefficient using Smart Strand. Int. J. Concr. Struct. M 2015, 9, 369–379. [Google Scholar] [CrossRef] [Green Version]
- Kim, S.H.; Park, S.Y.; Park, Y.H.; Jeon, S.J. Friction characteristics of post-tensioning tendons in full-scale structures. Eng. Struct. 2019, 183, 389–397. [Google Scholar] [CrossRef]
- Russell, B.W.; Burns, N.H. Measured transfer lengths of 0.5 and 0.6 in. strands in pretensioned concrete. PCI J. 1996, 41, 44–65. [Google Scholar] [CrossRef]
- Jeon, S.J.; Shin, H.; Kim, S.H.; Park, S.Y.; Yang, J.M. Transfer lengths in pretensioned concrete measured using various sensing technologies. Int. J. Concr. Struct. M 2019, 13, 739–754. [Google Scholar] [CrossRef]
- Anderegg, P.; Brönnimann, R.; Meier, U. Reliability of long-term monitoring data. J. Civ. Struct. Health Monit. 2014, 4, 69–75. [Google Scholar] [CrossRef] [Green Version]
- Pessiki, S.; Kaczinski, M.; Wescott, H.H. Evaluation of effective prestress force in 28-year-old prestressed concrete bridge beams. PCI J. 1996, 41, 78–89. [Google Scholar] [CrossRef]
- Garber, D.B.; Gallardo, J.M.; Deschenes, D.J.; Bayrak, O. Experimental investigation of prestress losses in full-scale bridge girders. ACI Struct. J. 2015, 112, 553–564. [Google Scholar] [CrossRef] [Green Version]
- Abdel-Jaber, H.; Glisic, B. Monitoring of long-term prestress losses in prestressed concrete structures using fiber optic sensors. Struct. Health Monit. 2019, 18, 254–269. [Google Scholar] [CrossRef]
- Shing, P.B.; Kottari, A. Evaluation of Long-Term Prestress Losses in Post-Tensioned Box-Girder Bridges; Report No. SSRP-11/02; University of California, San Diego: La Jolla, CA, USA, 2011. [Google Scholar]
- Lundqvist, P.; Nilsson, L.O. Evaluation of prestress losses in nuclear reactor containments. Nucl. Eng. Des. 2011, 241, 168–176. [Google Scholar] [CrossRef]
- American Society for Testing and Materials (ASTM). Standard Specification for Low-Relaxation, Seven-Wire Strand for Prestressed Concrete; ASTM A416/A416M-18; ASTM International: West Conshohocken, PA, USA, 2018. [Google Scholar]
- Kim, J.T.; Yun, C.B.; Ryu, Y.S.; Cho, H.M. Identification of prestress-loss in PSC beams using modal information. Struct. Eng. Mech. 2004, 17, 467–482. [Google Scholar] [CrossRef]
- Rizzo, P. Ultrasonic wave propagation in progressively loaded multi-wire strands. Exp. Mech. 2006, 46, 297–306. [Google Scholar] [CrossRef]
- Washer, G.A.; Green, R.E.; Pond, R.B., Jr. Velocity constants for ultrasonic stress measurement in prestressing tendons. Res. Nondestruct. Eval. 2002, 14, 81–94. [Google Scholar] [CrossRef]
- Chaki, S.; Bourse, G. Stress level measurement in prestressed steel strands using acoustoelastic effect. Exp. Mech. 2009, 49, 673–681. [Google Scholar] [CrossRef]
- Chen, H.L.; Wissawapaisal, K. Measurement of tensile forces in a seven-wire prestressing strand using stress waves. J. Eng. Mech. 2001, 127, 599–606. [Google Scholar] [CrossRef]
- Fabo, P.; Jarosevic, A.; Chandoga, M. Health monitoring of the steel cables using the elasto-magnetic method. In Proceedings of the ASME 2002 International Mechanical Engineering Congress and Exposition, New Orleans, LA, USA, 17–22 November 2002; pp. 295–299. [Google Scholar]
- Cho, K.H.; Park, S.Y.; Cho, J.R.; Kim, S.T.; Park, Y.H. Estimation of prestress force distribution in the multi-strand system of prestressed concrete structures. Sensors 2015, 15, 14079–14092. [Google Scholar] [CrossRef] [Green Version]
- Deng, Y.; Liu, Y.; Chen, S. Long-term in-service monitoring and performance assessment of the main cables of long-span suspension bridges. Sensors 2017, 17, 1414. [Google Scholar] [CrossRef] [Green Version]
- Kim, J.M.; Kim, H.W.; Choi, S.Y.; Park, S.Y. Measurement of prestressing force in pretensioned UHPC deck using a fiber optic FBG sensor embedded in a 7-wire strand. J. Sens. 2016, 2016, 8634080. [Google Scholar] [CrossRef]
- Kim, J.M.; Kim, H.W.; Park, Y.H.; Yang, I.H.; Kim, Y.S. FBG sensors encapsulated into 7-wire steel strand for tension monitoring of a prestressing tendon. Adv. Struct. Eng. 2012, 15, 907–917. [Google Scholar] [CrossRef]
- Nellen, P.M.; Frank, A.; Broennimann, R.; Meier, U.; Sennhauser, U.J. Fiber optical Bragg grating sensors embedded in CFRP wires. SPIE Proc. 1999, 3670, 440–449. [Google Scholar]
- Zhou, Z.; He, J.; Chen, G.; Ou, J. A smart steel strand for the evaluation of prestress loss distribution in posttensioned concrete structures. J. Intel. Mater. Syst. Str. 2009, 20, 1901–1912. [Google Scholar] [CrossRef]
- Lan, C.; Zhou, Z.; Ou, J. Monitoring of structural prestress loss in RC beams by inner distributed Brillouin and fiber Bragg grating sensors on a single optical fiber. Struct. Control Hlth. 2014, 21, 317–330. [Google Scholar] [CrossRef]
- Perry, M.; Yan, Z.; Sun, Z.; Zhang, L.; Niewczas, P.; Johnston, M. High stress monitoring of prestressing tendons in nuclear concrete vessels using fibre-optic sensors. Nucl. Eng. Des. 2014, 268, 35–40. [Google Scholar] [CrossRef] [Green Version]
- Shen, S.; Wang, Y.; Ma, S.L.; Huang, D.; Wu, Z.H.; Guo, X. Evaluation of prestress loss distribution during pre-tensioning and post-tensioning using long-gauge fiber Bragg grating sensors. Sensors 2018, 18, 4106. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Magne, S.; Rougeault, S.; Vilela, M.; Ferdinand, P. State-of-strain evaluation with fiber Bragg grating rosettes: Application to discrimination between strain and temperature effects in fiber sensors. Appl. Opt. 1997, 36, 9437–9447. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Z.; Ou, J. Techniques of temperature compensation for FBG strain sensors used in long-term structural monitoring. In Proceedings of the Asian Pacific Fundamental Problems of Opto- and Microelectronics (APCOM 2004), Khabarovsk, Russia, 13–16 September 2004; pp. 465–471. [Google Scholar]
- Pereira, G.; McGugan, M.; Mikkelsen, L.P. Method for independent strain and temperature measurement in polymeric tensile test specimen using embedded FBG sensors. Polym. Test. 2016, 50, 125–134. [Google Scholar] [CrossRef] [Green Version]
- Cho, K.; Kim, S.T.; Cho, J.R.; Park, Y.H. Analytical model of nonlinear stress-strain relation for a strand made of two materials. Materials 2017, 10, 1003. [Google Scholar]
- Nilson, A.H. Design of Prestressed Concrete, 2nd ed.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 1987; pp. 255–277. [Google Scholar]
- Zia, P.; Preston, H.K.; Scott, N.L.; Workman, E.B. Estimating prestress losses. Concr. Int. 1979, 1, 32–38. [Google Scholar]
- ACI-ASCE Committee 423. Guide to Estimating Prestress Loss; ACI 423.10R-16; American Concrete Institute (ACI): Farmington Hills, MI, USA, 2016. [Google Scholar]
- ACI Committee 318. Building Code Requirements for Structural Concrete; ACI 318-19; American Concrete Institute (ACI): Farmington Hills, MI, USA, 2019. [Google Scholar]
- ACI Committee 209. Prediction of Creep, Shrinkage, and Temperature Effects in Concrete Structures; ACI 209R-92; American Concrete Institute (ACI): Farmington Hills, MI, USA, 1997. [Google Scholar]
- Branson, D.E.; Kripanarayanan, K.M. Loss of prestress, camber and deflection of non-composite and composite prestressed concrete structures. PCI J. 1971, 16, 22–52. [Google Scholar] [CrossRef]
- European Committee for Standardization (CEN). Eurocode 2: Design of Concrete Structures—Part 1-1: General Rules and Rules for Buildings; EN 1992-1-1; CEN: Brussels, Belgium, 2004. [Google Scholar]
- Korea Road and Transportation Association (KRTA). Design Code for Highway Bridges (Limit State Design); KRTA: Seoul, Korea, 2015. [Google Scholar]
- Han, M.Y.; Jin, K.S.; Chang, D.H.; Kang, T.H.; Jeon, S.J. Effect of holes and segmentation on the structural behavior of a prestressed concrete girder. KSCE J. Civ. Eng. 2014, 18, 1711–1719. [Google Scholar] [CrossRef]
- Gilbert, R.I. Time Effects in Concrete Structures; Elsevier Science Publishers B. V.: Amsterdam, The Netherlands, 1988; pp. 64–68. [Google Scholar]
Distance (m) | 1 | 4 | 7 | 10 | 13 | 16 | 19 | |
---|---|---|---|---|---|---|---|---|
Measurement 2 (kN) [difference (%)] | Tensioning | 188 | 188 | 188 | 188 | 188 | 188 | 188 |
After short-term losses | 167.2 [11.1] 1 | 168.8 [10.2] | 166.5 [11.4] | 172.4 [8.3] | 172.5 [8.2] | 167.5 [10.9] | 168.4 [10.4] | |
Tensioning + 91 days | 162.6 [2.7] | 165.3 [2.1] | 163.6 [1.8] | 167.5 [2.8] | 167.6 [2.8] | 163.6 [2.3] | 164.1 [2.6] | |
Tensioning + 198 days | 155.9 [4.1] | 159.4 [3.6] | 157.9 [3.5] | 161.7 [3.5] | 161.9 [3.5] | 157.8 [3.6] | 158.0 [3.7] | |
Tensioning + 318 days | 155.3 [0.4] | 158.7 [0.4] | 156.9 [0.6] | 160.3 [0.8] | 160.9 [0.6] | 156.7 [0.7] | 157.1 [0.6] | |
Theory 3 (kN) [difference (%)] | Tensioning | 180 | 180 | 180 | 180 | 180 | 180 | 180 |
After short-term losses | 151.4 [15.9] | 154.1 [14.4] | 155.8 [13.5] | 158.2 [12.1] | 158.6 [11.9] | 157.2 [12.7] | 154.9 [13.9] | |
Tensioning + 91 days | 145.9 [3.6] | 148.6 [3.5] | 149.8 [3.8] | 151.8 [4.1] | 152.6 [3.8] | 151.6 [3.5] | 149.3 [3.6] | |
Tensioning + 198 days | 143.9 [1.4] | 146.6 [1.3] | 147.8 [1.4] | 149.7 [1.4] | 150.5 [1.4] | 149.6 [1.3] | 147.2 [1.3] | |
Tensioning + 318 days | 142.5 [1.0] | 145.3 [0.9] | 146.4 [1.0] | 148.2 [1.0] | 149.1 [0.9] | 148.3 [0.9] | 145.8 [1.0] |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, S.-H.; Park, S.Y.; Jeon, S.-J. Long-Term Characteristics of Prestressing Force in Post-Tensioned Structures Measured Using Smart Strands. Appl. Sci. 2020, 10, 4084. https://doi.org/10.3390/app10124084
Kim S-H, Park SY, Jeon S-J. Long-Term Characteristics of Prestressing Force in Post-Tensioned Structures Measured Using Smart Strands. Applied Sciences. 2020; 10(12):4084. https://doi.org/10.3390/app10124084
Chicago/Turabian StyleKim, Sang-Hyun, Sung Yong Park, and Se-Jin Jeon. 2020. "Long-Term Characteristics of Prestressing Force in Post-Tensioned Structures Measured Using Smart Strands" Applied Sciences 10, no. 12: 4084. https://doi.org/10.3390/app10124084
APA StyleKim, S.-H., Park, S. Y., & Jeon, S.-J. (2020). Long-Term Characteristics of Prestressing Force in Post-Tensioned Structures Measured Using Smart Strands. Applied Sciences, 10(12), 4084. https://doi.org/10.3390/app10124084