
applied  
sciences

Article

Long-Term Characteristics of Prestressing Force in
Post-Tensioned Structures Measured Using
Smart Strands

Sang-Hyun Kim 1, Sung Yong Park 1 and Se-Jin Jeon 2,*
1 Department of Infrastructure Safety Research, Korea Institute of Civil Engineering and Building Technology,

283, Goyang-daero, Ilsanseo-gu, Goyang-si, Gyeonggi-do 10223, Korea; kimsanghyun@kict.re.kr (S.-H.K.);
sypark@kict.re.kr (S.Y.P.)

2 Department of Civil Systems Engineering, Ajou University, 206, Worldcup-ro, Yeongtong-gu, Suwon-si,
Gyeonggi-do 16499, Korea

* Correspondence: conc@ajou.ac.kr; Tel.: +82-31-219-2406

Received: 10 May 2020; Accepted: 10 June 2020; Published: 13 June 2020
����������
�������

Abstract: The proper distribution of prestressing force (PF) is the basis for the design of prestressed
concrete (PSC) structures. However, the PF distribution obtained by predictive equations of prestress
losses has not been sufficiently validated by comparison with measured data due to the poor reliability
and durability of conventional sensing technologies. Therefore, the Smart Strand with embedded fiber
optic sensors was developed and applied to PSC structures to investigate the long-term characteristics
of PF distribution as affected by concrete creep and shrinkage. The data measured in a 20 m-long
full-scale specimen and a 60 m-long PSC girder bridge were analyzed by comparing them with the
theoretical estimation obtained from several design equations. Although the long-term decreasing
trend of the PF distribution was similar in the measurement and theory, the equation of Eurocode 2 for
estimating the long-term prestress losses showed better agreement with the measurement than ACI
209R and ACI 423.10R did. This can be attributed to the more refined form of the predictive equation
of Eurocode 2 in dealing with the time-dependency of the PF. The study results also confirmed the
need to compensate for the temperature variation in the long-term monitoring to derive the actual
mechanical strain related to the PF. We expect our developed Smart Strand to be applied practically
in PF measurement for the reasonable safety assessment and maintenance of PSC structures by
improving several of the existing drawbacks of conventional sensors.

Keywords: prestressed concrete; prestressing tendon; strand; prestressing force; prestress loss; fiber
optic sensor; fiber Bragg grating

1. Introduction

Prestressing tendons, such as seven-wire strands in prestressed concrete (PSC) structures, are
used to introduce compressive stress in concrete to overcome its low tensile strength against the
tensile stresses imposed in service. Therefore, determining the proper distribution of the prestressing
force (PF) in the tendons is crucial in the design of PSC structures because it largely affects safety
and serviceability. Underestimated or overestimated PF may cause the concrete stresses to vary from
those calculated in design, leading to the cracking or crushing of concrete and unexpected camber or
deflection. Moreover, PF monitoring is increasingly important to prevent the deterioration or even
collapse of PSC structures due to the corrosion or breakage of tendons, as has occurred [1].

The PF varies along the length of a tendon and over time due to the short- and long-term losses of
prestress. Although the PF distribution is usually estimated using several predictive equations for the
prestress losses during the design of a PSC structure, these equations can only approximate the PF
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distribution. Although many attempts have been made to validate the theoretical distribution of the PF
by using conventional sensing technologies, such as electrical resistance strain gauges (ERSGs), their
outcomes were not very successful due to several drawbacks of the ERSGs that led to unreliable data.
For example, ERSGs attached to a surface of a strand and lead wires for data acquisition are susceptible
to damage during the insertion of strands into a duct, tensioning, and grouting in post-tensioned
members [2,3], and at transfer and during the casting of concrete in pre-tensioned members [4,5].
In particular, ERSGs exhibited poor performance for long-term measurement due to inherent low
durability when compared to fiber optic sensors [6]. The lifetime of ERSGs is typically much shorter
than that of infrastructures.

Therefore, alternative experimental methods, instead of measuring the strains of a strand using
ERSGs, have also been adopted to indirectly predict the long-term prestress losses, although the
accuracy is decreased. Pessiki et al. [7] employed the crack opening method to estimate the losses in
full-scale PSC beams removed from an actual bridge. Garber et al. [8] used vibrating wire gauges to
measure the prestress loss in full-scale girder specimens. However, their calculated loss may have
been less accurate because the strand strains were derived from the concrete strains obtained from
the vibrating wire gauges embedded in concrete at mid-span. The study only provided limited
information on the prestress loss at the mid-span. Abdel-Jaber and Glisic [9] monitored long-term
prestress loss in a pedestrian bridge using fiber Bragg gratings (FBGs) embedded in a concrete section.
As in the case of Garber et al. [8], the strand strains were indirectly derived from these concrete
strains. Shing and Kottari [10] compared several predictive equations and field data in terms of the
long-term prestress losses in some PSC box girder bridges. However, the field data were not modified
by temperature correction, even though the data fluctuated temporally. Furthermore, although the
detailed methodology to obtain the field data was not stated, the data showed an unstable trend.
Lundqvist and Nilsson [11] also compared the theoretical prestress losses obtained by several predictive
equations with the measured losses. However, the comparison was made only at the anchorage of
unbonded tendons because of the absence of any data measured inside the tendons using any sensors.
In summary, prestress losses were estimated indirectly or measured only at a specific point on a
tendon in most of the previous studies due to the limitations of conventional sensing technologies.
The complete measurement of the PF distribution along a tendon has very rarely been reported for
full-scale specimens or actual infrastructures.

In order to overcome the abovementioned drawbacks and limitations of existing sensing
technologies in the estimation of the PF distribution, Smart Strands with embedded fiber optic
sensors have been developed recently [2,3]. The Smart Strands were applied to a 20 m-long full-scale
specimen and a 60 m-long PSC girder bridge to investigate the long-term characteristics of the PF
distribution affected by long-term prestress losses. The measured data were compared with the
theoretical values obtained by the predictive equations for long-term prestress losses that are specified
in several design provisions.

2. Smart Strand with Fiber Optic Sensor

The dimensions of the Smart Strand are almost identical to those of a regular seven-wire strand [12]
widely used in PSC structures, as shown in Figure 1. The steel core wire of the regular strand is replaced
with carbon fiber reinforced polymer (CFRP) and a fiber optic sensor with several embedded FBGs,
while the CFRP core wire is manufactured. The Smart Strand can also play the role of a structural
component as a strand because the mechanical properties of the Smart Strand are similar to those of a
regular strand in service. The Smart Strand has the following advantages in the measurement of PF
when compared to a conventional technique where ERSGs are attached to helical wires of a strand:
highly accurate and stable measurement, durability due to the protection provided by embedment,
and the measurement of the actual axial strain of a strand. The reliability of the data obtained by
Smart Strands was validated by the comparison with those of ERSGs in laboratory tests and a full-scale
specimen [2]. If the scope is extended to relatively advanced techniques to measure the PF, other than
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ERSGs and those introduced in Section 1, the following attempts have been made: vibration and modal
analysis [13], ultrasonic waves [14,15], acoustic emission and stress waves [16,17], elasto-magnetic
(EM) sensors [18,19], vibrating strings [20], and FBGs encapsulated inside a strand or attached to
the surface of a strand [21–27]. However, many of these methods suffer similar drawbacks to those
mentioned earlier in Section 1: they were mainly applied only to laboratory test specimens and were
not sufficiently validated through the field measurement of actual full-scale structures. Furthermore,
they can only provide approximate and limited data of PF at a specific location. It is noted that a similar
type of strand with the FBG-embedded steel core wire was developed in other studies [21,22] and
efforts were made to apply this strand to actual structures. Although Shen et al. [27] criticized a type of
Smart Strand [2,3,21,22] by mentioning the difficulty in positioning the FBGs at predetermined points
and in connecting the fiber optic sensor to an optical cable for data logging, these aspects did not matter,
at least in the Smart Strand developed in this study [2,3], according to the authors’ experience. That is,
the position of the FBGs on fiber optic sensors can be easily traced by a proper marking technique when
the CFRP core wire is manufactured through a pultrusion process and helical wires are assembled
around the core wire. Besides, the connection of the fiber optic sensor to the optical cable does not
involve much difficulty if the core wire is extruded in advance, as shown in Figure 1.
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Figure 1. Configuration of a Smart Strand.

The wavelength of a reflected light wave measured at each FBG can be converted to the strain
at the FBG by Equation (1) when the effect of temperature can be ignored, such as in short-term
measurements. However, the temperature should be compensated, as shown in Equation (2), to separate
the temperature effect from the total strain. The resulting actual mechanical strain is obtained from
long-term measurements over a wide range of ambient temperatures [28–30].

ε =
1

1− pe
·
∆λ
λB

, (1)

ε =
1

1− pe

[∆λ
λB
− (α+ ξ)∆T

]
, (2)

where ε: strain, Pe: photo-elastic coefficient, ∆λ = λ− λB: wavelength shift, λ: measured wavelength,
λB: base wavelength at the start of measurement, α: thermal expansion coefficient, ξ: thermo-optic
coefficient, ∆T = T − TB: temperature change, T: measured temperature, and TB: base temperature at
the start of measurement. For the general optical fiber made of silicon dioxide that was used in this
study, pe is 0.22 and ξ ranges from 6 × 10−6~11 × 10−6/◦C, where ξ = 6.2 × 10−6/◦C, as given by the
manufacturer, and was used herein. Because the stiffness of the hosting concrete where the Smart
Strand was embedded was larger than that of the sensor, the thermal behavior of the sensor was
dominated by that of the hosting concrete. Therefore, α of concrete was used, which is 10 × 10−6/◦C
in general.
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The strain obtained in Equations (1) or (2) can further be converted to the PF using the force–strain
relationship obtained by experiment and analysis, as shown in Equation (3) [31].

P =
(
EpAp

)
smart

εp

A +
1−A{

1 +
(
Bεp

)C
}(1/C)

, (3)

where P: PF at an FBG,
(
EpAp

)
smart

: equivalent EpAp with the value of 26,600 kN for the Smart Strand,
which is the hybrid material of steel and CFRP, Ep: modulus of elasticity of a strand, Ap: cross-sectional
area of a strand, εp: strain measured at an FBG of a Smart Strand, A: 0.18, B: 104, and C: 9.9. However,
the curve plotted by Equation (3) is almost linear over a practical service range of εp, which can be
approximated by Equation (4).

P =
(
EpAp

)
smart

εp. (4)

3. Long-Term Losses of Prestress

The prestress losses in prestressing tendons can largely be divided into short-term losses (also
called instantaneous losses or immediate losses) and long-term losses (also called time-dependent
losses). Figure 2 shows the types of the prestress losses and the corresponding PF. Details on each
prestress loss can be found in the literature [32]. Although the short-term losses are beyond the scope
of this study, the friction coefficients related to friction loss were derived in an innovative way using
the Smart Strand in two previous studies [2,3]. The present study focuses on the long-term losses.
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Figure 2. Prestress losses.

The creep loss occurs because a concrete member subjected to compression by prestressing tendons
is shortened for a long time due to the creep. Then, the prestressing tendon is also shortened with the
prestress loss. The creep loss can be calculated by Equation (5) based on the composite action between
concrete and a tendon, as proposed by Zia et al. [33] and adopted in ACI 423.10R [34].

∆ fpCR = nCt fc, (5)

where ∆ fpCR: creep loss, n: modular ratio (=Ep/Ec), Ep: modulus of elasticity of a strand (200,000 MPa),
Ec: modulus of elasticity of concrete, which was calculated as a function of specified concrete
compressive strength ( fc′) according to ACI 318 [35] in this study, Ct: creep coefficient, and fc:
compressive stress of concrete at the location of a strand caused by prestressing, self-weight,
and superimposed permanent dead loads, where fc can be calculated by Equation (6). Note that 0.9Pi
was used instead of Pi to approximately account in advance for the reduction of Pi during long-term
losses [32].

fc =
(

0.9Pi
Ac

+
0.9Piep

Ic
esm

)
−

Md
Ic

esm, (6)

where Pi: total initial PF (refer to Figure 2), Ac: area of the concrete section, Ic: second moment of area
of the concrete section, ep: eccentricity of the tendon centroid with respect to the concrete centroid, esm:
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eccentricity of a specific strand (Smart Strand in this study) of which the stress needs to be obtained,
and Md: bending moment due to self-weight and superimposed permanent dead loads. Additionally,
esm was used in Equation (6) instead of ep because the theoretical prestress loss at a Smart Strand, not
the average prestress loss of all tendons, needs to be compared with the value measured at the Smart
Strand for a reasonable comparison. Concrete creep depends on time, concrete compressive strength,
member shape, relative humidity, loading age, type of cement, curing condition, temperature, and
concrete stress. Equation (7) in ACI 209R [36], originally proposed by Branson and Kripanarayanan [37],
has been frequently used to formulate the time-dependency of creep.

Ct =
t0.6

10 + t0.6 Cu, (7)

where t: time after prestressing (days) and Cu: ultimate creep coefficient. Equation (7) was suggested,
with Cu = 2.35, for a prestressing age of 7 days for moist-cured concrete and of 1~3 days for steam-cured
concrete. Several correction factors are applied to account for other conditions and various effects on
the creep [36]. The value of Cu varies depending on the provisions; for example, ACI 423.10R [34]
suggested 1.6 for post-tensioned members. The final creep loss can be obtained by using Cu instead of
Ct in Equation (5).

The shrinkage of concrete due to drying shrinkage and autogenous shrinkage can also cause
prestress loss by the reduction of the length of the prestressing tendon. The shrinkage loss can be
expressed by Equation (8).

∆ fpSH = Ep(εsh)t, (8)

where ∆ fpSH: shrinkage loss, Ep: modulus of elasticity of the strand, and (εsh)t: shrinkage strain. The
shrinkage of concrete is affected by such factors as time, concrete compressive strength, member shape,
relative humidity, type of cement, and temperature. Equation (9) was proposed by ACI 209R [36] to
incorporate the time-dependency of (εsh)t for the moist-curing condition.

(εsh)t =
t

35 + t
(εsh)u, (9)

where t: time after 7 days of moist curing (days) and (εsh)u: ultimate shrinkage strain with the
recommended value of 780 × 10−6 m/m. Various correction factors are applied to reflect other effects on
the shrinkage [36]. In comparison, ACI 423.10R [34] suggested (εsh)u by incorporating a few correction
factors in Equation (10). The final shrinkage loss can be obtained by using (εsh)u instead of (εsh)t in
Equation (8). The shrinkage that occurs after the end of initial wet curing and before tensioning is not
considered in the calculation of prestress loss.

(εsh)u = 8.2× 10−6Ksh(1− 0.0024V/S)(100−RH), (10)

where Ksh: correction factor considering the time between the end of initial wet curing and tensioning,
V/S: volume to surface ratio (mm), and RH: relative humidity (%).

On the other hand, whereas the relaxation loss can be estimated using various predictive
equations [33,34], it cannot be measured by using strain-based sensors, such as Smart Strand, because
the relaxation indicates the reduction in tendon stress under constant strain.

The long-term losses can also be obtained in a combined manner using Equation (11), specified in
Eurocode 2 [38]. The notations used in the original Expression (5.46) of Eurocode 2 [38] were partly
modified in Equation (11) to be concise and consistent.

∆ fp,CR+SH+R =
Ep(εsh)t + 0.8∆ fpR + nCt fc

1 + n
Ap
Ac

(
1 + Ac

Ic
ep2

)
(1 + 0.8Ct)

, (11)
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where ∆ fpR: relaxation loss, all other notations were defined earlier. The original form of ep
2 in

Equation (11) can be revised to epesm in order to further enhance the accuracy, as explained above for
Equation (6). However, fc in Equation (11) should be calculated based on Pi instead of 0.9Pi because the
long-term variation of Pi is already accounted for in the derivation of Equation (11) and is incorporated
in the denominator of this equation. The detailed calculation methods of (εsh)t and Ct in Equation
(11) are different from those of the aforementioned ACI 209R. The Korean design code for highway
bridges [39] also uses this form of Equation (11), but (εsh)t and Ct are differently calculated.

4. Application of Smart Strands to Post-Tensioned Structures

4.1. Full-Scale Specimen

Figure 3 shows the post-tensioned 20 m-long full-scale specimen which was fabricated to
investigate the long-term characteristics of PF using Smart Strands. Three ducts denoted by T1, T2,
and T3 in Figure 3 with different curvatures, including one straight duct of T3, were arranged and a
total of 12 strands, each with a diameter of 15.2 mm and an ultimate tensile strength ( fpu) of 1860 MPa,
were inserted into each duct with a diameter of 85 mm. The strands in each duct were tensioned using
a multi-strand jack up to 0.7 fpu at one end at a concrete age of 27 days when the concrete strength
attained 30 MPa, which was considered in the calculation of Ec. Then, all the ducts were grouted
to bond the tendons. Three types of Smart Strand with three, five, and seven equally spaced FBGs,
respectively, were fabricated and selectively inserted into each duct, together with regular strands.
Figure 4 shows how the Smart Strands and regular strands were located in each anchor head, where
the numbers indicate the number of FBGs.
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4.2. PSC Girder Bridge

Figure 5 shows the PSC girder bridge with a 60 m span, where one Smart Strand was applied
to one of the six ducts arranged in one of the 10 girders for long-term monitoring. The girders of
this bridge incorporate a series of holes in the web, which can enhance the aesthetics and reduce the
self-weight, and have multi-stage prestressing, with the secondary tendons anchored at the holes [40].
The Smart Strand had seven FBGs and was inserted into the duct, together with 11 regular strands,
as shown in Figure 5d. Six FBGs were concentrated near both ends of the girder because a wide
range of variation in PF was anticipated there, whereas the remaining one FBG was located at the
mid-span that is practically important in safety assessment. The strands were tensioned up to 0.675 fpu

at the concrete age of 1 month using a multi-strand jack at both ends, after which the ducts were
grouted. The diameter and fpu of the strands are the same as those used in the full-scale specimen and
fc′ = 80 MPa.
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Figure 5. Prestressed concrete (PSC) girder bridge: (a) Tensioning of strands, (b) view after completion,
(c) arrangement of tendons, and (d) Smart Strand with fiber Bragg gratings (FBGs).

5. Analysis of Long-Term Prestressing Force (PF)

5.1. Importance of Temperature Correction

The PFs of the full-scale specimen and the PSC girder bridge were measured using Smart Strands
for as long as possible, but the data measured for 318 days and 476 days after tensioning for the
full-scale specimen and for the PSC girder bridge, respectively, were analyzed in this study. During
the long-term measurement, the strains measured by sensors are affected by seasonal and daily
temperature variations, and such temperature-dependent variation must be corrected or compensated
for to derive the purely mechanical strain of interest that is directly related to stress. The correction can
be accomplished by applying Equation (2) instead of Equation (1). Figure 6 compares the temporal PF
variation before and after the temperature correction, which was measured in an FBG of a Smart Strand
in the full-scale specimen. The temperatures were measured simultaneously when the wavelengths at
FBGs were measured. The PF fluctuated in line with the trend of temperature variation without the
correction, whereas consistent long-term prestress losses were obtained by applying the correction.
Consequently, the following analyses are based on the temperature-corrected data. Abdel-Jaber and
Glisic [9] also performed temperature compensation for the long-term strains obtained using FBGs.
However, they did not rely on Equation (2), which was derived by taking the principles of FBGs
into account, but simply applied a general temperature compensation procedure for concrete strain.
This could be a potential problem due to the decreased accuracy of mechanical strain.
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5.2. Long-Term Prestress Losses in the Full-Scale Specimen

Figure 7 representatively shows the distribution of PF in the Smart Strand of T1-H1 (refer to
Figure 4) that varies at four time points: right after short-term losses of prestress in Figure 2, and 91,
198, and 318 days after tensioning. In the legend of Figure 7, “After short-term losses” indicates the
beginning of the long-term losses and thus corresponds to “Tensioning + 0 days”. The measured
distribution, which was obtained by connecting the PFs at FBGs (shown as bullets), was compared with
that calculated by Eurocode 2 [38], which is one of the provisions analyzed in Figure 8. The theoretical
values were calculated at 2-m intervals and interpolated. The theoretical jacking force of the strand,
shown in Figure 7 and the following figures, was calculated by dividing the total jacking force measured
in the multi-strand jack by the number of strands inserted into the corresponding duct. On the other
hand, the actual jacking force in each strand was also measured using EM sensors. The measured
jacking force of T1-H1 was 188 kN, which was higher than the theoretically estimated value of 180 kN.
This aspect will be further analyzed below.
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Figure 7. Distribution of PFs in the full-scale specimen (T1-H1).
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Figure 8. PFs at mid-span in the full-scale specimen (T1-H1, H7, and H12).

The theoretical PF can be obtained by subtracting the loss of PF (prestress loss multiplied by the area
of a strand) from the original PF. Even the measured and theoretical distributions after the short-term
losses do not completely agree with each other, because the short-term losses differed between the
theoretical values obtained by predictive equations and measurement. However, the analysis of the PF
distribution, based on the short-term losses, is beyond the scope of this study and will be covered in



Appl. Sci. 2020, 10, 4084 10 of 15

another study. The aforementioned difference between the measured and theoretical jacking forces is
another factor that affects the subsequent long-term comparison. These intrinsic differences can be
intentionally removed to make a reasonable comparison for long-term PFs, as is analyzed in Table 1,
by introducing the difference of the PFs between two adjacent time steps. Note that the form of the
PF distribution along the span of the specimen is unsymmetrical in both measurement and theory
despite the symmetrical shape of the strand, as shown in Figure 7. Because all the strands were
tensioned only at one end (left end), the unsymmetrical PF distribution is formed by the friction loss and
anchorage-seating loss of Figure 2 and is maintained when subjected to other types of prestress losses.

Table 1. PFs at the location of FBGs in the full-scale specimen (T1-H1).

Distance (m) 1 4 7 10 13 16 19

Measurement
2 (kN)

[difference
(%)]

Tensioning 188 188 188 188 188 188 188

After short-term
losses

167.2
[11.1] 1

168.8
[10.2]

166.5
[11.4]

172.4
[8.3]

172.5
[8.2]

167.5
[10.9]

168.4
[10.4]

Tensioning + 91
days

162.6
[2.7]

165.3
[2.1]

163.6
[1.8]

167.5
[2.8]

167.6
[2.8]

163.6
[2.3]

164.1
[2.6]

Tensioning + 198
days

155.9
[4.1]

159.4
[3.6]

157.9
[3.5]

161.7
[3.5]

161.9
[3.5]

157.8
[3.6]

158.0
[3.7]

Tensioning + 318
days

155.3
[0.4]

158.7
[0.4]

156.9
[0.6]

160.3
[0.8]

160.9
[0.6]

156.7
[0.7]

157.1
[0.6]

Theory 3

(kN)
[difference

(%)]

Tensioning 180 180 180 180 180 180 180

After short-term
losses

151.4
[15.9]

154.1
[14.4]

155.8
[13.5]

158.2
[12.1]

158.6
[11.9]

157.2
[12.7]

154.9
[13.9]

Tensioning + 91
days

145.9
[3.6]

148.6
[3.5]

149.8
[3.8]

151.8
[4.1]

152.6
[3.8]

151.6
[3.5]

149.3
[3.6]

Tensioning + 198
days

143.9
[1.4]

146.6
[1.3]

147.8
[1.4]

149.7
[1.4]

150.5
[1.4]

149.6
[1.3]

147.2
[1.3]

Tensioning + 318
days

142.5
[1.0]

145.3
[0.9]

146.4
[1.0]

148.2
[1.0]

149.1
[0.9]

148.3
[0.9]

145.8
[1.0]

1 Square bracket indicates the difference of PF from previous time step (%); 2 T1-H1; 3 Eurocode 2.

It is apparent that the PFs were decreased over time by the long-term losses of prestress in both
measurement and theory. Although the two approaches gave a similar decreasing trend, the decrement
in each time step varied between the two, as shown in Figure 7 and Table 1. However, the total
long-term losses, until 318 days after tensioning, are very comparable at 7.0% and 6.3% of the jacking
force in measurement and theory, respectively, at the mid-span. Therefore, Eurocode 2 [38] made a
reasonable estimation of the long-term prestress losses, as will be confirmed again by comparing with
other provisions in Figure 8.

Figure 8 presents the PF variation at mid-span over time in both measurement and theory. H1, H7,
and H12 of T1 in Figure 4 were representatively analyzed herein. Zero-day corresponds to the time
after tensioning when the short-term losses had just occurred. The PFs measured at a specific time
are different in three Smart Strands, including at the time of tensioning. This indicates that the PF
of a strand can vary from strand to strand inside a duct due to the uneven interlocking between a
strand and a wedge at the anchor head, although all the strands are tensioned simultaneously using a
multi-strand jack. The PF variation of a strand in a duct was statistically analyzed by Cho et al. [19]
Therefore, the averaged value of the PFs in the three Smart Strands was also provided in Figure 8 to
reduce any bias.

The predictive equations for the long-term prestress losses induced by creep and shrinkage, that
were introduced in Section 3, were compared with the measurements: ACI 209R [36], ACI 423.10R [34],
and Eurocode 2 [38]. In contrast to ACI 209R and Eurocode 2, ACI 423.10R only suggests the ultimate
creep and shrinkage losses without time function. However, relaxation loss was intentionally not
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considered in the equations to make a reasonable comparison with the Smart Strands, where the
relaxation loss is not directly measured, as mentioned previously. Although the ultimate creep
coefficient of ACI 209R is 2.35, it was reduced to 1.11 by incorporating such correction factors as loading
age, ambient relative humidity (65%), and volume to surface ratio (231 mm). Likewise, the ultimate
shrinkage strain of 780× 10−6 m/m was reduced to 150 × 10−6 m/m by considering the correction factors,
including relative humidity and volume to surface ratio, and by deducting the shrinkage that occurred
before tensioning. Regarding Equation (10) of ACI 423.10R used for predicting ultimate shrinkage
strain, the above three factors are already integrated into the equation. The detailed calculation of
creep and shrinkage included in Equation (11) of Eurocode 2 involves a very complicated procedure,
incorporating several correction factors, such as relative humidity, concrete compressive strength,
loading age, type of cement, and notional size, which approximately corresponds to double the volume
to surface ratio. The deduction of the shrinkage prior to tensioning was also separately considered.

Among the three equations considered, Eurocode 2 showed relatively good agreement with
the averaged measurement values, partly because Equation (11) takes into account the long-term
PF variation by applying the advanced technique of the age-adjusted effective modulus method
(AEMM) [41] for more accurately calculating creep. Although ACI 209R also provided a good
estimation for the trend of the long-term prestress losses, the latter half of the history after 180 days
overestimated the actual PF, which is not desired for accurate and conservative design. On the other
hand, the ultimate value of ACI 423.10R was very similar to the converged value of Eurocode 2,
despite their different equations and parameters. Therefore, it would also be desirable to combine
an appropriate time function with the ultimate creep coefficient and ultimate shrinkage strain of ACI
423.10R in order to obtain the time variation. The difference in the time function between ACI 209R
and Eurocode 2 does not significantly affect the decreasing trend of the PF over time. The ultimate
values of Cu and (εsh)u, together with a number of correction factors, greatly affected the long-term PF.

5.3. Long-Term Prestress Losses in the PSC Girder Bridge

Similar to the full-scale specimen, the theoretical estimation obtained by Eurocode 2 [38] and
the measurement of PF were compared in Figure 9 at a few different time points. The bullets in
the measured PF indicate the locations of FBGs, whereas the theoretical values were produced at
5-m intervals. Because the actual PF of each strand was not measured using an EM sensor, only the
theoretical jacking force is presented.
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Although both approaches produced a decreasing PF trend, the measured PF distribution was
more irregular than that of the theory. This implies that the PF distribution is, in reality, more complex,
and hence its theoretical estimation is more difficult. Despite the tensioning at both ends, the measured
distribution does not assume the perfect symmetry that is theoretically predicted with respect to the
center, and the strands seem to be entangled at the right end region, as implied by the irregularity
of the distribution. The situation in the actual PSC girder bridge is further complicated by the effect
of construction stages on the variation of the PF distribution; some construction stages can increase
the PF, as opposed to the prestress losses. Therefore, the decreasing trend of the PF over time is not
clear in some parts of the two graphs with consecutive times in Figure 9. This aspect will be further
analyzed below. In the allowable stress design of PSC members, concrete stresses at the top fiber and
the bottom fiber are adjusted to within a range of allowable stresses by the appropriate design of
prestressing tendons. However, if the actual PF is significantly different from that estimated during the
design, and if the marginal concrete stress is not sufficient, the concrete stresses can possibly exceed the
allowable range, sometimes resulting in the cracking or crushing of concrete. The comparison shown
in Figure 9 explains how and why this adverse outcome can occur in reality.

Figure 10 compares PFs at the mid-span between the predictive equations and the measurement.
The figure suggests that several major construction stages caused significant PF fluctuations, in addition
to the decreasing trend induced by long-term prestress losses. For example, when the additional dead
loads were applied, including the deck and barrier, the PF tended to increase due to the deformation
of the PSC girder and the accompanied elongation of the embedded prestressing tendon. On the
contrary, the secondary prestressing, which is a special technique applied to extend the span [40],
reduced the existing PF introduced at the primary prestressing stage due to elastic-shortening loss.
Furthermore, the composite action of the girders and deck increases the complexity because of the
change in cross-sectional constants for stress calculation and the difference in the long-term behavior
of the girders and deck.
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The same correction factors as those considered in the analysis of the full-scale specimen were
applied to the predictive equations, including the volume to surface ratio (110 mm) of the girder.
Consequently, the ultimate creep coefficient, 2.35, and the ultimate shrinkage strain, 780 × 10−6 m/m,
were reduced to 1.23 and 259 × 10−6 m/m, respectively, in ACI 209R. Overall, Equation (11) of Eurocode
2 [38] was in good agreement with the measured values, similar to the full-scale specimen. Figure 10
also presents the theoretical PFs of Eurocode 2 with or without the additional consideration of the effect
of a few major construction stages on the PF. However, the accurate evaluation of the PF, as affected by
each construction stage, can be difficult because of the complex structural behavior in reality. In this
respect, the responses of Smart Strands can also be utilized to assess the structural safety during
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construction and in service because they are critical in the structural health monitoring (SHM) of
PSC structures. However, the predictive equations of ACI 209R [36] and ACI 423.10R [34] showed a
relatively large difference from the measured PF, even though they provided a conservative estimation
with a smaller PF than the measured value. The differences from the measured value at 476 days after
tensioning were 0.6, 2.5, 6.5, and 8.8% in Eurocode 2 with and without construction stages, ACI 209R,
and ACI 423.10R, respectively. These overall analysis results of the full-scale specimen and PSC girder
bridge demonstrate that Eurocode 2 produced consistent and reliable estimation in both cases.

It is evident that a large portion of the long-term prestress losses occurred within a few months,
while the remaining losses occurred gradually and subsequently. If the PF variation caused by the
construction stages is excluded, approximately half of the total creep and shrinkage losses for 476 days
occurred within approximately 1 month in the Smart Strand. The equations of ACI 209R and Eurocode
2 also exhibited a similar tendency. Therefore, the long-term prestress losses were concentrated at a
relatively early concrete age in this study when compared to the results of Abdel-Jaber and Glisic [9],
where half the long-term losses occurred within 6 months.

6. Conclusions

The correct design of the prestressing force (PF) distribution is very important to ensure the safety
and serviceability of PSC structures. However, the prestress losses closely related to the PF distribution
have generally been estimated using predictive equations specified in design codes or manuals, which
were mostly derived from small-scale experiments. The validity of these equations at the scale of actual
full-scale structures has not been sufficiently investigated because of the poor reliability and durability,
and the difficulty in installation, when using conventional sensing technologies.

Therefore, Smart Strands with embedded fiber optic sensors were developed and applied to a
20 m-long full-scale specimen and a 60 m-long PSC girder bridge to investigate the characteristics of
the PF distribution affected by long-term prestress losses. The measured data were compared with the
theoretical values obtained by the predictive equations for long-term prestress losses that are specified
in several design provisions. The results revealed that temperature correction or compensation is very
important to obtain the PFs based on true mechanical strains, which are not affected by a seasonal or
daily temperature variation in the long-term monitoring.

Although the two approaches of measurement and theory produced a similar long-term trend of the
PF distribution, the difference between them varied depending on the design equations. The equation
of Eurocode 2 to estimate the long-term prestress losses showed relatively good agreement with the
measurement, when compared to that of ACI 209R and ACI 423.10R, for both the full-scale specimen
and the actual PSC girder bridge. This can be attributed to the more refined form of the predictive
equation of Eurocode 2 that addresses the time-dependency of the PF. The difference in the time
function between ACI 209R and Eurocode 2 did not significantly affect the decreasing trend of the PF
over time. The ultimate values of creep and shrinkage, together with a number of correction factors,
greatly affected the long-term PF. In addition to the analysis of the long-term prestress losses, the Smart
Strands also provided useful data in terms of the PF variation at each major stage during construction.

We expect our developed Smart Strand to be applied practically in PF measurement for
the reasonable safety assessment and maintenance of structures, such as in structural health
monitoring (SHM).
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