Prediction and Ranking of Corporate Diversity in European and American Firms
Abstract
1. Introduction
2. Literature Review
2.1. Corporate Diversity Theory
2.2. Corporate Diversity Studies with Predictive Models
2.3. Corporate Diversity Studies with Prescriptive Models
3. Methodology
3.1. Data and Variables
3.2. Predictive Analytics Pipeline
- are the True Positive values, high di predicted as so.
- are the True Negative values, low di predicted as so.
- are the False Positive values, low di predicted as high di.
- are the False Negative values, high di predicted as low di.
3.2.1. K Nearest Neighbors
- n is the dimensionality of the vector, or number of attributes.
- is the bth attribute.
- is the weight of the bth attribute.
- p is Minkowski’s order.
- is a test data point.
- is a k nearest neighbor to .
- indicates if belongs to class .
3.2.2. Logistic Regression
- represents the probability of the label belonging to class z.
- are independent variables.
- and are unknown constant parameters.
3.2.3. Decision Tree
3.3. Prescriptive Analytics Pipeline
- are the concordant pairs.
- are the discordant pairs.
- n are the total number of elements.
4. Diversity Prediction with Machine Learning
4.1. Descriptive Statistics of the Data
4.2. Performance of the Simulations
5. Diversity Rankings with Operations Research
5.1. Intersection of the Rankings
5.2. Descriptive Statistics of Rankings
5.3. Comparison of Rankings
6. Conclusions
6.1. Summary of Machine Learning and Operations Research
6.2. Implications and Impact of Research
- There is a relationship between financial variables and diversity scores, and ML can be used to predict the diversity scores from corporate financial variables, in line with Koseoglu et al. (2025). The performance of ML is fair, suggesting the complexity of the diversity climate. This encourages managers to adopt diversity initiatives and is useful for ESG investors to consider investments in diversity-compliant companies (O. Lee et al., 2022).
- Generally, methodologies are different across diversity rankings, producing moderate–low correlations between them; as in Tayar (2017), some of these rankings may only focus on superficial aspects of diversity. When comparing ethnic origin, best companies for Blacks are lowly correlated with best companies for Asian American, Latinos and Native American/Pacific Islanders, especially applicable in the current political scenario (Rice et al., 2025). When comparing diversity to other metrics, the best companies for women are moderately correlated with the best large companies and the best companies for new graduates, in line with LLC (2023) and Dennison (2025). Our results catch the rise in women’s rights awareness that new graduates and Generation Z are creating in the workplace, as detected also in Global (2025).
- The discrepancies between diversity ranking methodologies can be smoothed with rank aggregation tools like the LOP. Treating the different diversity rankings proves how unstable and multifaceted the diversity climate is (Cachat-Rosset et al., 2019). For this paper, LOP solutions were moderately correlated with rankings that were weakly correlated between them, thus providing the LOP a simplified, balanced summary of them. Even though this may imply losing information and perhaps oversimplifying the comparison, it is useful for faster decision-making for managers and ESG investors, as well as for simpler communication of a company’s position across different rankings to both employees and shareholders or investors.
6.3. Limitations and Future Research Directions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A. Additional Tables
Mean | Std. | Min. | Q1 (25%) | Q2 (50%) | Q3 (75%) | Max. | |
---|---|---|---|---|---|---|---|
ps | 2.43 | 3.02 | 0.00 | 0.57 | 1.38 | 3.25 | 20.51 |
er | 2.73 | 3.17 | 0.02 | 0.77 | 1.67 | 3.49 | 22.24 |
ee | 13.21 | 19.56 | −153.99 | 6.16 | 10.39 | 17.90 | 238.68 |
bt | 0.99 | 0.47 | −0.08 | 0.65 | 0.99 | 1.27 | 2.96 |
wk | 0.14 | 0.36 | −0.93 | −0.07 | 0.08 | 0.31 | 1.83 |
pr | 0.71 | 1.78 | 0.00 | 0.19 | 0.42 | 0.67 | 21.14 |
pf | 0.08 | 0.12 | −0.55 | 0.03 | 0.06 | 0.13 | 1.07 |
op | 0.12 | 0.16 | −1.46 | 0.05 | 0.10 | 0.17 | 1.21 |
cr | 1.46 | 1.20 | 0.19 | 0.99 | 1.21 | 1.56 | 15.46 |
qr | 1.11 | 1.07 | 0.17 | 0.70 | 0.94 | 1.21 | 15.46 |
ch | 0.51 | 0.77 | 0.01 | 0.19 | 0.33 | 0.53 | 8.55 |
dr | 0.63 | 0.19 | 0.11 | 0.50 | 0.63 | 0.74 | 1.40 |
ra | 0.05 | 0.07 | −0.52 | 0.02 | 0.05 | 0.08 | 0.45 |
re | 0.12 | 0.92 | −9.25 | 0.06 | 0.12 | 0.20 | 10.40 |
es | 8.37 | 1.56 | −38.96 | 0.54 | 1.83 | 5.10 | 2.93 |
rv | 3.05 | 5.37 | 1.59 | 4.97 | 1.32 | 3.10 | 5.29 |
eb | 6.41 | 1.35 | −6.25 | 6.66 | 1.88 | 6.44 | 1.19 |
ni | 2.93 | 8.07 | −6.44 | 1.89 | 7.31 | 2.71 | 8.92 |
ca | 1.66 | 2.87 | 4.07 | 2.57 | 6.69 | 1.87 | 2.24 |
cs | 5.64 | 1.22 | 6.70 | 5.10 | 1.80 | 5.73 | 1.02 |
iv | 3.26 | 6.61 | 0.00 | 1.25 | 1.18 | 3.72 | 7.34 |
na | 3.13 | 5.37 | 2.90 | 3.51 | 9.92 | 3.42 | 3.41 |
cl | 1.36 | 2.32 | 7.36 | 2.01 | 5.10 | 1.52 | 1.83 |
nl | 1.66 | 2.95 | 4.11 | 1.63 | 5.05 | 1.66 | 2.18 |
wc | 2.97 | 9.52 | −2.15 | −1.33 | 8.50 | 3.01 | 8.25 |
eq | 1.77 | 3.45 | −1.58 | 1.95 | 5.43 | 1.83 | 2.61 |
pd | 55.04 | 1.67 | 52.00 | 54.00 | 55.00 | 56.00 | 61.00 |
wo | 54.81 | 22.88 | 1.00 | 38.00 | 56.00 | 72.00 | 99.00 |
di | 7.48 | 0.26 | 6.94 | 7.29 | 7.47 | 7.65 | 8.45 |
Infineon | Amazon | Royal BAM Group | Iberia | Adecco Group | Redrow |
Allegro | Asics | Vodafone | CBRE | Stora Enso | Bombardier Group |
Cd Projekt | Air France-KLM Group | Air Products | John Deere | TF1 Group | Alcoa |
Hermès | 3M | GSK (GlaxoSmithKline) | BASF | Mondadori | A2A |
Keysight Technologies | Dell Technologies | Bosch | Nestlé | Rentokil Initial | SAS |
Prada Group | Expedia | Knorr-Bremse | Samsung | Teva Pharmaceuticals | Novo Nordisk |
Merit Medical | Aalberts Surface Treatment | Intel | McDonald’s | Asus | ENGIE |
Agilent Technologies | Essity | Lenzing | Fortum | Mitsubishi Electric | The Swatch Group |
Salesforce | Fujitsu | Procter & Gamble | Schindler | Fraport | Konica Minolta |
Accenture | Kingfisher | Daimler | WSP | Sodexo | |
Hyatt Hotels Corporation | Eaton | Mondi | Shell | Renault | Voestalpine |
PayPal | Epiroc | PKN Orlen | Sanofi | Honeywell | KONE |
AbbVie | Orange | Texas Instruments | OMV | Motorola Solutions | Saab Group |
Microsoft | Cognizant | Concentrix | BlackRock | TAURON | Western Union |
Hugo Boss | Severn Trent | Sony | Telenor | Elisa | Ipsos |
alight | Givaudan | Sika | Thales Group | Mitchells & Butlers | Metso |
Sartorius | PEAB | Scandic Hotels | Evonik Industries | Baxter | Morgan Sindall |
EnBW | Jacobs Engineering | Sainsbury’s | The Coca-Cola Company | Skanska | Lassila & Tikanoja |
Orkla | Melia Hotels International | Inditex | Auto Trader | adesso | Estée Lauder |
Cummins | Hapag-Lloyd | Airbus | ABB | Bridgestone | Nokia |
Rexel | adidas | Symrise | Schibsted | Infosys | Grupo Acciona |
IBM | Husqvarna | Rheinmetall | Enel Group | Swisscom | KSB |
Roche | Novartis | Diageo | Aon | Publicis | Magna |
AGCO | Polsat Box | Computacenter | Ahold Delhaize | Canon | DXC Technology |
Boston Scientific | Heidelberg Cement Group | Alfa Laval | Yit | Honda | ArcelorMittal |
Lilly | Deutsche Telekom | Philips | Tokmanni | Koninklijke KPN | SSAB |
Arrow Electronics | Wickes | BMW | Jabil | Prysmian Group | Zeiss |
AstraZeneca | Ericsson | Solvay | Kering | Plastic Omnium | Strabag |
Cisco | L’Oréal | Avery Dennison | Uber | United Internet | Valeo |
Chevron | Beiersdorf | Hitachi | Hyundai Motor Company | Arkema | mastercard |
Louis Vuitton | RELX Group | Unilever | Sandvik | Worldline | Spotify |
Whitbread | Pandora | Ocado Group | Brembo | Costco | knowit |
Booking | Henkel | Goodyear Dunlop | Pepsico | Cloetta | Smith & Nephew |
SAP | Marriott International | BD (Becton, Dickinson and Co.) | Grupa Azoty | FirstGroup | Deutsche Post |
Volvo Car Group | Willis Towers Watson | Taylor Wimpey | Colruyt Group | Bureau Veritas | Netflix |
Fnac Darty | EssilorLuxottica | Brenntag | Greggs | Groupe Carrefour | Saint-Gobain |
Merck | Pets at Home Group | Telia Company | MTU Aero Engines | Nexity | Leonardo |
United Utilities | TietoEVRY | Amadeus | Repsol | OVS | Greencore Group |
Apple | Dalata Hotel Group | RB (Reckitt Benckiser) | STMicroelectronics | SKF Group | Foot Locker |
BP | Takeda | AccorHotels | Schaeffler-Gruppe | Olympus | |
Dow | Tesla | Lufthansa | Oracle | CNH Industrial | amplifon |
Budimex | DuPont | PORR | BAE Systems | Eni | FedEx |
Hewlett Packard Enterprise | Philip Morris International | Marks & Spencer | Danone | Alcon | ITV |
Pfizer | Logista | H&M Hennes & Mauritz | Bouygues | Neuca | Boeing |
Wolters Kluwer | Carnival | eBay | Electrolux | Valmet | Levi Strauss & Co |
Easyjet | Abbott | BT Group | TUI | The Walt Disney Company | Agfa-Gevaert |
NTT Data | Nissan Motor Corporation | Axfood | Lonza | Aubay | Xerox |
Akamai Technologies | Nike | Telefónica O2 | Siemens | Balfour Beatty | |
Medtronic | PageGroup | Nkt | Bayer | DS Smith | |
Moody’s Corporation | Dunelm | Adva Optical Networking | AECOM | ANDRITZ | |
Sage | RWE | Atlas Copco | Iberdrola | Etteplan | |
Logitech International | Microchip | General Electric | GXO Logistics | Caterpillar | |
Ferrari | Zalando | National Grid | BioNTech | BayWa | |
Johnson & Johnson | Savencia Fromage & Dairy | Air Liquide | Centrica | Alstom | |
Sky | Colgate-Palmolive | About You | Thermo Fisher Scientific | MTR Corporation | |
Adobe | Tesco | Capgemini | Legrand | Arcadis | |
PUMA | Ford Motor Company | Ralph Lauren | CGI | Eurofins | |
Icon Plc | Safran Group | Starbucks | Broadcom | Trelleborg | TCS (Tata Consultancy Services) |
Hilton Hotels & Resorts | AT&T | Rolls-Royce | Heinz | Babcock International | UPS (United Parcel Service) |
InterContinental Hotels Group | Schneider Electric | Carlsberg | Teleperformance | Heineken | Smurfit Kappa |
Sector/Country | Austria | Belgium | Denmark | Finland | France | Germany | Ireland | Israel | Italy | Luxembourg | Netherlands | Norway | Poland | Spain | Sweden | Switzerland | United Kingdom | Total |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Aerospace, Defence, Manufacture of Transport Equipment | 3 | 2 | 1 | 1 | 1 | 1 | 6 | 15 | ||||||||||
Automotive (Producers and Suppliers) | 1 | 3 | 8 | 2 | 1 | 1 | 1 | 4 | 21 | |||||||||
Banking and Financial Services | 1 | 1 | 1 | 1 | 2 | 6 | ||||||||||||
Business Services and Supplies | 1 | 3 | 1 | 4 | 9 | |||||||||||||
Clothing and Accessories, Sports Equipment (Manufacturing and Retail) | 1 | 1 | 3 | 5 | 2 | 3 | 1 | 2 | 18 | |||||||||
Construction | 2 | 1 | 1 | 1 | 1 | 2 | 3 | 11 | ||||||||||
Consulting and Accounting | 2 | 2 | 2 | 6 | ||||||||||||||
Drugs and Biotechnology | 1 | 1 | 6 | 1 | 1 | 1 | 5 | 6 | 22 | |||||||||
Engineering, Manufacturing | 1 | 1 | 2 | 1 | 3 | 1 | 4 | 13 | ||||||||||
Food, Soft Beverages, Alcohol and Tobacco | 1 | 2 | 1 | 1 | 1 | 1 | 3 | 5 | 15 | |||||||||
Health Care Equipment and Services | 2 | 3 | 1 | 1 | 2 | 1 | 10 | |||||||||||
Insurance | 1 | 1 | ||||||||||||||||
IT, Internet, Software and Services | 1 | 2 | 3 | 7 | 5 | 1 | 1 | 1 | 2 | 4 | 11 | 38 | ||||||
Manufacture and Processing of Materials, Metals and Paper | 3 | 1 | 1 | 2 | 1 | 1 | 1 | 1 | 1 | 3 | 1 | 16 | ||||||
Media and Advertising | 3 | 1 | 2 | 1 | 1 | 4 | 12 | |||||||||||
Oil and Gas Operations, Mining, and Chemicals | 1 | 1 | 1 | 2 | 4 | 1 | 1 | 2 | 1 | 1 | 2 | 4 | 21 | |||||
Packaged Goods | 2 | 2 | 1 | 3 | 1 | 9 | ||||||||||||
Restaurants | 4 | 4 | ||||||||||||||||
Retail | 1 | 1 | 2 | 1 | 1 | 1 | 1 | 1 | 10 | 19 | ||||||||
Semiconductors, Electronics, Electrical Engineering, Hardware | 1 | 1 | 2 | 10 | 2 | 1 | 2 | 1 | 3 | 2 | 4 | 29 | ||||||
Telecommunications Services, Cable Supplier | 1 | 2 | 1 | 1 | 1 | 1 | 1 | 1 | 3 | 12 | ||||||||
Transportation and Logistics | 1 | 3 | 4 | 1 | 3 | 12 | ||||||||||||
Travel and Leisure | 1 | 1 | 2 | 2 | 1 | 1 | 6 | 14 | ||||||||||
Utilities | 1 | 1 | 3 | 2 | 1 | 1 | 4 | 13 | ||||||||||
Wholesale | 1 | 1 | 1 | 1 | 4 | |||||||||||||
Total | 8 | 8 | 4 | 12 | 44 | 59 | 13 | 1 | 12 | 4 | 20 | 3 | 8 | 11 | 22 | 28 | 93 | 350 |
Companies | Place, Original Ranking | Place, Ranking Intersection | ||||
---|---|---|---|---|---|---|
Fa_D | Fo_D | Gl_D | Fa_D | Fo_D | Gl_D | |
MSCD | 1 | 18 | 1 | 1 | 5 | 1 |
MEDT | 2 | 143 | 11 | 2 | 16 | 11 |
HERS | 3 | 266 | 25 | 3 | 23 | 25 |
TOYO | 4 | 409 | 13 | 4 | 31 | 13 |
LILL | 5 | 400 | 8 | 5 | 30 | 8 |
KPMG | 6 | 262 | 19 | 6 | 22 | 19 |
DOWW | 7 | 387 | 4 | 7 | 27 | 4 |
TIAA | 8 | 3 | 7 | 8 | 2 | 7 |
HUMN | 10 | 6 | 15 | 9 | 3 | 15 |
BOEG | 12 | 475 | 28 | 10 | 35 | 28 |
CNBC | 13 | 83 | 31 | 11 | 10 | 31 |
CIGN | 14 | 106 | 22 | 12 | 12 | 22 |
ABBV | 16 | 27 | 20 | 13 | 7 | 20 |
WALM | 17 | 399 | 33 | 14 | 29 | 33 |
RAND | 19 | 185 | 26 | 15 | 18 | 26 |
TDBK | 20 | 2 | 3 | 16 | 1 | 3 |
KYBK | 22 | 110 | 18 | 17 | 13 | 18 |
SOUC | 24 | 211 | 16 | 18 | 19 | 16 |
ECOL | 25 | 126 | 27 | 19 | 15 | 27 |
NOGR | 27 | 119 | 12 | 20 | 14 | 12 |
CAPO | 28 | 220 | 9 | 21 | 21 | 9 |
SAFI | 29 | 464 | 14 | 22 | 33 | 14 |
ALLY | 31 | 24 | 24 | 23 | 6 | 24 |
GEMO | 33 | 218 | 10 | 24 | 20 | 10 |
TARG | 34 | 65 | 21 | 25 | 9 | 21 |
CENT | 37 | 182 | 23 | 26 | 17 | 23 |
COPA | 39 | 42 | 6 | 27 | 8 | 6 |
UNAI | 41 | 334 | 5 | 28 | 25 | 5 |
P&GG | 43 | 12 | 2 | 29 | 4 | 2 |
AMFI | 45 | 396 | 32 | 30 | 28 | 32 |
WALG | 46 | 473 | 35 | 31 | 34 | 35 |
ALIC | 47 | 428 | 30 | 32 | 32 | 30 |
HOND | 48 | 379 | 34 | 33 | 26 | 34 |
BEBU | 49 | 94 | 17 | 34 | 11 | 17 |
WYNH | 50 | 297 | 29 | 35 | 24 | 29 |
Total in ranking | 50 | 500 | - | 35 | 35 | 35 |
Companies | Place, Original Ranking | Place, Ranking Intersection | ||||||
---|---|---|---|---|---|---|---|---|
Fa_A | Fa_B | Fa_L | Fa_N | Fa_A | Fa_B | Fa_L | Fa_N | |
TOYO | 2 | 2 | 4 | 4 | 1 | 1 | 4 | 4 |
SHIE | 3 | 10 | 3 | 3 | 2 | 7 | 3 | 3 |
MEDT | 4 | 19 | 1 | 1 | 3 | 10 | 1 | 1 |
HERS | 5 | 9 | 2 | 6 | 4 | 6 | 2 | 6 |
LILL | 6 | 6 | 5 | 5 | 5 | 3 | 5 | 5 |
HILT | 8 | 28 | 12 | 13 | 6 | 15 | 10 | 11 |
EYYY | 9 | 18 | 8 | 2 | 7 | 9 | 7 | 2 |
ADPP | 10 | 21 | 9 | 10 | 8 | 11 | 8 | 8 |
BOEG | 12 | 26 | 22 | 21 | 9 | 13 | 15 | 15 |
DOWW | 13 | 25 | 10 | 11 | 10 | 12 | 9 | 9 |
CNBC | 14 | 3 | 7 | 7 | 11 | 2 | 6 | 7 |
ABBT | 15 | 27 | 19 | 19 | 12 | 14 | 14 | 14 |
KPMG | 17 | 12 | 14 | 14 | 13 | 8 | 12 | 12 |
HUMN | 18 | 8 | 15 | 17 | 14 | 5 | 13 | 13 |
CIGN | 19 | 7 | 13 | 12 | 15 | 4 | 11 | 10 |
Total in ranking | 19 | 28 | 24 | 23 | 15 | 15 | 15 | 15 |
Companies | Position in Original Ranking | Position in Intersection Of Rankings | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Fo_D | Fo_W | Fo_G | Fo_L | Fo_V | Fo_D | Fo_W | Fo_G | Fo_L | Fo_V | |
PROG | 1 | 172 | 30 | 59 | 49 | 1 | 11 | 22 | 18 | 16 |
INTL | 11 | 82 | 108 | 55 | 111 | 2 | 25 | 14 | 15 | 31 |
P&GG | 12 | 54 | 76 | 103 | 43 | 3 | 22 | 11 | 23 | 14 |
ALLY | 24 | 191 | 7 | 13 | 76 | 4 | 4 | 26 | 6 | 24 |
ACCT | 26 | 104 | 173 | 235 | 50 | 5 | 31 | 16 | 33 | 17 |
PNCF | 35 | 396 | 139 | 207 | 86 | 6 | 28 | 38 | 30 | 26 |
SALF | 36 | 41 | 52 | 17 | 29 | 7 | 16 | 9 | 7 | 8 |
MATT | 46 | 174 | 249 | 57 | 75 | 8 | 36 | 23 | 17 | 23 |
CISC | 51 | 37 | 38 | 37 | 59 | 9 | 12 | 8 | 12 | 19 |
UNHE | 55 | 286 | 177 | 195 | 127 | 10 | 32 | 33 | 29 | 34 |
APPL | 57 | 125 | 46 | 36 | 91 | 11 | 14 | 18 | 11 | 27 |
GOGL | 59 | 3 | 3 | 11 | 5 | 12 | 2 | 1 | 4 | 2 |
JPMO | 61 | 305 | 196 | 209 | 136 | 13 | 34 | 36 | 31 | 36 |
PFIZ | 66 | 212 | 50 | 152 | 115 | 14 | 15 | 31 | 26 | 32 |
AMEX | 74 | 136 | 18 | 32 | 137 | 15 | 8 | 19 | 10 | 37 |
NASA | 84 | 30 | 2 | 18 | 38 | 16 | 1 | 7 | 8 | 11 |
DELL | 93 | 167 | 83 | 77 | 54 | 17 | 23 | 21 | 21 | 18 |
NIKE | 100 | 211 | 55 | 178 | 131 | 18 | 17 | 30 | 28 | 35 |
DELA | 103 | 13 | 10 | 12 | 23 | 19 | 6 | 5 | 5 | 7 |
MICR | 127 | 48 | 5 | 8 | 33 | 20 | 3 | 10 | 3 | 10 |
MEDT | 143 | 299 | 292 | 258 | 48 | 21 | 38 | 34 | 35 | 15 |
FIDI | 155 | 6 | 8 | 7 | 12 | 22 | 5 | 2 | 2 | 5 |
SONY | 176 | 192 | 61 | 40 | 102 | 23 | 19 | 27 | 13 | 30 |
CSCH | 231 | 152 | 13 | 56 | 62 | 24 | 7 | 20 | 16 | 20 |
IBMM | 245 | 118 | 19 | 113 | 82 | 25 | 9 | 17 | 25 | 25 |
ADDS | 259 | 204 | 229 | 169 | 93 | 26 | 35 | 29 | 27 | 28 |
TEXI | 264 | 75 | 145 | 268 | 149 | 27 | 29 | 13 | 36 | 38 |
3MMM | 268 | 28 | 134 | 112 | 97 | 28 | 26 | 6 | 24 | 29 |
LOCM | 353 | 98 | 95 | 46 | 10 | 29 | 24 | 15 | 14 | 4 |
ORCL | 354 | 393 | 73 | 300 | 65 | 30 | 21 | 37 | 37 | 21 |
BMWG | 357 | 179 | 40 | 66 | 31 | 31 | 13 | 25 | 19 | 9 |
HOND | 379 | 221 | 149 | 252 | 122 | 32 | 30 | 32 | 34 | 33 |
FORD | 385 | 201 | 191 | 222 | 40 | 33 | 33 | 28 | 32 | 13 |
HEBB | 433 | 11 | 27 | 5 | 9 | 34 | 10 | 4 | 1 | 3 |
COST | 469 | 7 | 58 | 25 | 71 | 35 | 18 | 3 | 9 | 22 |
BOEG | 475 | 176 | 138 | 84 | 19 | 36 | 27 | 24 | 22 | 6 |
SOAI | 479 | 62 | 67 | 70 | 4 | 37 | 20 | 12 | 20 | 1 |
CACI | 487 | 303 | 285 | 311 | 39 | 38 | 37 | 35 | 38 | 12 |
Total ranking | 500 | 400 | 300 | 500 | 150 | 38 | 38 | 38 | 38 | 38 |
Company | State | Industry | Abbrv. | Diversity Study | Ethnic Origin Study | General Study |
---|---|---|---|---|---|---|
Progressive | Ohio | Insurance | PROG | X | ||
Intel | California | Semiconductors, Electronics, Hardware & Equipment | INTL | X | ||
Accenture | New York | Professional Services | ACCT | X | ||
PNC Financial Services | Pennsylvania | Banking and Financial Services | PNCF | X | ||
Salesforce.com_ | California | IT, Internet, Software & Services | SALF | X | ||
Marriott International | Maryland | Travel & Leisure | MATT | X | ||
Cisco Systems | California | IT, Internet, Software & Services | CISC | X | ||
UnitedHealth Group | Minnesota | Insurance | UNHE | X | ||
Apple | California | Semiconductors, Electronics, Hardware & Equipment | APPL | X | ||
California | IT, Internet, Software & Services | GOGL | X | |||
JPMorgan Chase | New York | Banking and Financial Services | JPMO | X | ||
Pfizer | New York | Drugs & Biotechnology | PFIZ | X | ||
American Express | New York | Banking and Financial Services | AMEX | X | ||
NASA | District of Columbia | Aerospace & Defense | NASA | X | ||
Dell Technologies | Texas | Semiconductors, Electronics, Hardware & Equipment | DELL | X | ||
Nike | Oregon | Clothing, Shoes, Sports Equipment | NIKE | X | ||
Delta Air Lines | Georgia | Transportation and Logistics | DELA | X | ||
Microsoft | Washington | IT, Internet, Software & Services | MICR | X | ||
Fidelity Investments | Massachusetts | Banking and Financial Services | FIDI | X | ||
Sony | New York | Semiconductors, Electronics, Hardware & Equipment | SONY | X | ||
Charles Schwab | California | Banking and Financial Services | CSCH | X | ||
IBM | New York | IT, Internet, Software & Services | IBMM | X | ||
Adidas | Oregon | Clothing, Shoes, Sports Equipment | ADDS | X | ||
Texas Instruments | Texas | Semiconductors, Electronics, Hardware & Equipment | TEXI | X | ||
3M | Minnesota | Packaged Goods | 3MMM | X | ||
Lockheed Martin | Maryland | Aerospace & Defense | LOCM | X | ||
Oracle | California | IT, Internet, Software & Services | ORCL | X | ||
BMW Group | New Jersey | Automotive (Automotive and Suppliers) | BMWG | X | ||
Honda Motor | California | Automotive (Automotive and Suppliers) | HOND | X | X | |
Ford Motor | Michigan | Automotive (Automotive and Suppliers) | FORD | X | ||
H-E-B | Texas | Retail and Wholesale | HEBB | X | ||
Costco Wholesale | Washington | Retail and Wholesale | COST | X | ||
Boeing | Illinois | Aerospace & Defense | BOEG | X | X | X |
Southwest Airlines | Texas | Transportation and Logistics | SOAI | X | ||
CACI International | Virginia | Aerospace & Defense | CACI | X | ||
Mastercard | New York | Banking and Financial Services | MSCD | X | ||
The Hershey Company | Pennsylvania | Food, Soft Beverages, Alcohol & Tobacco | HERS | X | X | |
Toyota North America | Texas | Automotive (Automotive and Suppliers) | TOYO | X | X | |
Eli Lilly and Company | Indiana | Drugs & Biotechnology | LILL | X | X | |
KPMG | New York | Professional Services | KPMG | X | X | |
Dow | Michigan | Construction, Oil & Gas Operations, Mining and Chemicals | DOWW | X | X | |
TIAA | New York | Banking and Financial Services | TIAA | X | ||
Humana | Kentucky | Insurance | HUMN | X | X | |
Comcast NBCUniversal | Pennsylvania | Media & Advertising | CNBC | X | X | |
The Cigna Group | Connecticut | Insurance | CIGN | X | X | |
AbbVie | Illinois | Drugs & Biotechnology | ABBV | X | ||
Walmart | Arkansas | Retail and Wholesale | WALM | X | ||
Randstad | Georgia | Business Services & Supplies | RAND | X | ||
TD Bank | New Jersey | Banking and Financial Services | TDBK | X | ||
KeyBank | Ohio | Banking and Financial Services | KYBK | X | ||
Southern Company | Georgia | Utilities | SOUC | X | ||
Ecolab | Minnesota | Business Services & Supplies | ECOL | X | ||
Northrop Grumman | Virginia | Aerospace & Defense | NOGR | X | ||
Capital One | Virginia | Banking and Financial Services | CAPO | X | ||
Sanofi U.S. | New Jersey | Drugs & Biotechnology | SAFI | X | ||
Ally Financial | Michigan | Banking and Financial Services | ALLY | X | X | |
General Motors | Michigan | Automotive (Automotive and Suppliers) | GEMO | X | ||
Target | Minnesota | Retail and Wholesale | TARG | X | ||
Centene Corporation | Missouri | Insurance | CENT | X | ||
Colgate-Palmolive | New York | Packaged Goods | COPA | X | ||
United Airlines | Illinois | Transportation and Logistics | UNAI | X | ||
Procter & Gamble | Ohio | Packaged Goods | P&GG | X | X | |
American Family Insurance | Wisconsin | Insurance | AMFI | X | ||
Walgreens | Illinois | Retail and Wholesale | WALG | X | ||
Allstate Insurance Company | Illinois | Insurance | ALIC | X | ||
Best Buy | Minnesota | Retail and Wholesale | BEBU | X | ||
Wyndham Hotels & Resorts | New Jersey | Travel & Leisure | WYNH | X | ||
Blue Shield of California | California | Insurance | SHIE | X | ||
Medtronic | Minnesota | Health Care Equipment & Services | MEDT | X | X | X |
Hilton | Virginia | Travel & Leisure | HILT | X | ||
EY | New York | Professional Services | EYYY | X | ||
ADP | New Jersey | IT, Internet, Software & Services | ADPP | X | ||
Abbott | Illinois | Health Care Equipment & Services | ABBT | X |
References
- Afzal, F., & Lyu, K. (2025). Do women leaders promote social sustainability? Exploring the effect of board diversity on equity, diversity, and inclusion practices of project-based organizations. Project Management Journal, 87569728251357495. [Google Scholar] [CrossRef]
- Ahmed, S., Alshater, M. M., El Ammari, A., & Hammami, H. (2022). Artificial intelligence and machine learning in finance: A bibliometric review. Research in International Business and Finance, 61, 101646. [Google Scholar] [CrossRef]
- Ainspan, N. D., & Saboe, K. N. (2021). Military veteran employment: A guide for the data-driven leader. Oxford University Press. [Google Scholar]
- Alagna, S. W., Reddy, D. M., & Collins, D. (1982). Perceptions of functioning in mixed-sex and male medical training groups. Academic Medicine, 57(10), 801–803. [Google Scholar] [CrossRef] [PubMed]
- Allen, R. S., Dawson, G., Wheatley, K., & White, C. S. (2007). Perceived diversity and organizational performance. Employee Relations, 30(1), 20–33. [Google Scholar] [CrossRef]
- Allen, R. S., & Montgomery, K. A. (2001). Applying an organizational development approach to creating diversity. Organizational Dynamics, 30(2), 149–161. [Google Scholar] [CrossRef]
- Amorelli, M.-F., & García-Sánchez, I.-M. (2021). Trends in the dynamic evolution of board gender diversity and corporate social responsibility. Corporate Social Responsibility and Environmental Management, 28(2), 537–554. [Google Scholar] [CrossRef]
- Anderson, P., Chartier, T., & Langville, A. (2019). The rankability of data. SIAM Journal on Mathematics of Data Science, 1(1), 121–143. [Google Scholar] [CrossRef]
- Anderson, P. E., Chartier, T. P., Langville, A. N., & Pedings-Behling, K. E. (2022). Fairness and the set of optimal rankings for the linear ordering problem. Optimization and Engineering, 23(3), 1289–1317. [Google Scholar] [CrossRef]
- Armstrong, A. (2025). Diversity, equity and inclusion work: A difference that makes a difference…? Equality, Diversity and Inclusion: An International Journal, 44(5), 588–601. [Google Scholar] [CrossRef]
- Ascheuer, N., Escudero, L. F., Grötschel, M., & Stoer, M. (1993). A cutting plane approach to the sequential ordering problem (with applications to job scheduling in manufacturing). SIAM Journal on Optimization, 3(1), 25–42. [Google Scholar] [CrossRef]
- Asif, M., Khan, P. A., Irfan, F., Salim, M., Jan, A., & Khan, M. (2023). Is gender diversity is diversity washing or good governance for firm sustainable development goal performance: A scoping review. Environmental Science and Pollution Research, 30(53), 114690–114705. [Google Scholar] [CrossRef]
- Aßländer, M. S., Gössling, T., & Seele, P. (2016). Business ethics in a European perspective: A case for unity in diversity? Journal of Business Ethics, 139, 633–637. [Google Scholar] [CrossRef]
- Baioletti, M., Milani, A., & Santucci, V. (2018, July 8–13). Algebraic crossover operators for permutations. 2018 IEEE Congress on Evolutionary Computation (CEC) (pp. 1–8), Rio de Janeiro, Brazil. [Google Scholar]
- Balakrishnan, K., Copat, R., De la Parra, D., & Ramesh, K. (2023). Racial diversity exposure and firm responses following the murder of George Floyd. Journal of Accounting Research, 61(3), 737–804. [Google Scholar] [CrossRef]
- Bazzi, S., Fiszbein, M., & Gebresilasse, M. (2021). “Rugged individualism” and collective (in) action during the COVID-19 pandemic. Journal of Public Economics, 195, 104357. [Google Scholar] [CrossRef]
- Beckert, J., & Koch, T. (2025). Corporate perspectives on diversity: Engagement, communication motives, and the Diversity-Washing Dilemma. Journal of Marketing Communications, 31, 538–555. [Google Scholar] [CrossRef]
- Behlau, H., Wobst, J., & Lueg, R. (2024). Measuring board diversity: A systematic literature review of data sources, constructs, pitfalls, and suggestions for future research. Corporate Social Responsibility and Environmental Management, 31(2), 977–992. [Google Scholar] [CrossRef]
- Beji, R., Yousfi, O., Loukil, N., & Omri, A. (2021). Board diversity and corporate social responsibility: Empirical evidence from France. Journal of Business Ethics, 173, 133–155. [Google Scholar] [CrossRef]
- Bermiss, S., Green, J., & Hand, J. R. (2024). Racial/Ethnic misrepresentation of and bias against minority executives. Journal of Economics, Race, and Policy, 8(1), 74–103. [Google Scholar] [CrossRef]
- Beugelsdijk, S., Kostova, T., & Roth, K. (2017). An overview of Hofstede-inspired country-level culture research in international business since 2006. Journal of International Business Studies, 48(1), 30–47. [Google Scholar] [CrossRef]
- Bhadury, J., Mighty, E. J., & Damar, H. (2000). Maximizing workforce diversity in project teams: A network flow approach. Omega, 28(2), 143–153. [Google Scholar] [CrossRef]
- Bianchi, M. T., Morrone, C., Valerio, M., & Donato, F. (2022). Board diversity and firm performance: An empirical analysis of Italian small-medium enterprise. Corporate Ownership & Control, 19(3), 8–24. [Google Scholar]
- Bickerstaffe, G., & Ridgers, B. (2007). Ranking of business schools. Journal of Management Development, 26(1), 61–66. [Google Scholar] [CrossRef]
- Birge, J. R., & Linetsky, V. (Eds.). (2007). Handbooks in operations research and management science: Financial engineering. Elsevier. [Google Scholar]
- Blest, D. C. (2000). Theory & methods: Rank correlation—An alternative measure. Australian & New Zealand Journal of Statistics, 42(1), 101–111. [Google Scholar]
- Boehm, S. A., Kunze, F., & Bruch, H. (2014). Spotlight on age-diversity climate: The impact of age-inclusive HR practices on firm-level outcomes. Personnel Psychology, 67(3), 667–704. [Google Scholar] [CrossRef]
- Borroni, C. G. (2013). A new rank correlation measure. Statistical papers, 54, 255–270. [Google Scholar] [CrossRef]
- Bouslah, K., Liern, V., Ouenniche, J., & Pérez-Gladish, B. (2023). Ranking firms based on their financial and diversity performance using multiple-stage unweighted TOPSIS. International Transactions in Operational Research, 30(5), 2485–2505. [Google Scholar] [CrossRef]
- Breiman, L. (2001). Random forests. Machine Learning, 45, 5–32. [Google Scholar] [CrossRef]
- Buertey, S. (2021). Board gender diversity and corporate social responsibility assurance: The moderating effect of ownership concentration. Corporate Social Responsibility and Environmental Management, 28(6), 1579–1590. [Google Scholar] [CrossRef]
- Cabitza, F., Campagner, A., Del Zotti, F., Ravizza, A., & Sternini, F. (2020, July 21–25). All you need is higher accuracy? On the quest for minimum acceptable accuracy for medical artificial intelligence. e-Health Procedings of the 12th International Conference on e-Health (pp. 21–23), Online. [Google Scholar]
- Cachat-Rosset, G., Carillo, K., & Klarsfeld, A. (2019). Reconstructing the concept of diversity climate—A critical review of its definition, dimensions, and operationalization. European Management Review, 16(4), 863–885. [Google Scholar] [CrossRef]
- Cahyono, S., Harymawan, I., & Kamarudin, K. A. (2023). The impacts of tenure diversity on boardroom and corporate carbon emission performance: Exploring from the moderating role of corporate innovation. Corporate Social Responsibility and Environmental Management, 30(5), 2507–2535. [Google Scholar] [CrossRef]
- Cameron, T. R., Charmot, S., & Pulaj, J. (2021). On the linear ordering problem and the rankability of data. arXiv, arXiv:2104.05816. [Google Scholar] [CrossRef]
- Campbell, K., & Mínguez-Vera, A. (2008). Gender diversity in the boardroom and firm financial performance. Journal of Business Ethics, 83, 435–451. [Google Scholar] [CrossRef]
- Canbek, G., Sagiroglu, S., Temizel, T. T., & Baykal, N. (2017, October 5–8). Binary classification performance measures/metrics: A comprehensive visualized roadmap to gain new insights. 2017 International Conference on Computer Science and Engineering (UBMK) (pp. 821–826), Antalya, Turkey. [Google Scholar]
- Canbek, G., Taskaya Temizel, T., & Sagiroglu, S. (2022). PToPI: A comprehensive review, analysis, and knowledge representation of binary classification performance measures/metrics. SN Computer Science, 4(1), 13. [Google Scholar] [CrossRef] [PubMed]
- Carmona, M. A. Á., Ochoa, J. A. C., & Trinidad, J. F. M. (2013, November 11–15). Combining techniques to find the number of bins for discretization. 2013 32nd International Conference of the Chilean Computer Science Society (SCCC) (pp. 54–57), Temuco, Chile. [Google Scholar]
- Carter, D., D’Souza, F. P., Simkins, B. J., & Simpson, W. G. (2007). The diversity of corporate board committees and firm financial performance. Available online: https://papers.ssrn.com/sol3/papers.cfm?abstract_id=972763 (accessed on 21 May 2025).
- Chenery, H. B., & Watanabe, T. (1958). International comparisons of the structure of production. Econometrica: Journal of the Econometric Society, 26(4), 487–521. [Google Scholar] [CrossRef]
- Choi, H., Hong, S., & Lee, J. W. (2018). Does increasing gender representativeness and diversity improve organizational integrity? Public Personnel Management, 47(1), 73–92. [Google Scholar] [CrossRef]
- Collins, S. M. (1993). Blacks on the bubble: The vulnerability of black executives in white corporations. The Sociological Quarterly, 34(3), 429–447. [Google Scholar] [CrossRef]
- Cortes, G. S., Gao, G. P., Silva, F. B., & Song, Z. (2022). Unconventional monetary policy and disaster risk: Evidence from the subprime and COVID–19 crises. Journal of International Money and Finance, 122, 102543. [Google Scholar] [CrossRef]
- Cover, T., & Hart, P. (1967). Nearest neighbor pattern classification. IEEE Transactions on Information Theory, 13, 21–27. [Google Scholar] [CrossRef]
- Cox, T. (1994). Cultural diversity in organizations: Theory, research and practice. Berrett-Koehler Publishers. [Google Scholar]
- Cunningham, P., & Delany, S. J. (2021). k-Nearest neighbour classifiers—A tutorial. ACM Computing Surveys, 54, 1–25. [Google Scholar] [CrossRef]
- D’Amato, V., D’Ecclesia, R., & Levantesi, S. (2021). Fundamental ratios as predictors of ESG scores: A machine learning approach. Decisions in Economics and Finance, 44(2), 1087–1110. [Google Scholar] [CrossRef]
- Dangeti, P. (2017). Statistics for machine learning. Packt Publishing Ltd. [Google Scholar]
- Dantas, M. (2021). Are ESG funds more transparent? Available at SSRN 3269939. Available online: https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3269939 (accessed on 21 June 2025).
- Das Swain, V., Saha, K., Reddy, M. D., Rajvanshy, H., Abowd, G. D., & De Choudhury, M. (2020, April 25–30). Modeling organizational culture with workplace experiences shared on Glassdoor. 2020 CHI Conference on Human Factors in Computing Systems (pp. 1–15), Honolulu, HI, USA. [Google Scholar]
- De Abreu Dos Reis, C. R., Sastre Castillo, M. Á., & Roig Dobón, S. (2007). Diversity and business performance: 50 years of research. Service Business, 1, 257–274. [Google Scholar] [CrossRef]
- Delen, D., Kuzey, C., & Uyar, A. (2013). Measuring firm performance using financial ratios: A decision tree approach. Expert Systems with Applications, 40(10), 3970–3983. [Google Scholar] [CrossRef]
- Dennison, K. (2025, February 10). Companies that value DEIA perform better. Forbes. Available online: https://www.forbes.com/sites/karadennison/2025/02/10/companies-that-value-deia-perform-better/ (accessed on 13 September 2025).
- Ding, F., & Riccucci, N. M. (2023). How does diversity affect public organizational performance? A meta-analysis. Public Administration, 101(4), 1367–1393. [Google Scholar] [CrossRef]
- Dixon, M. F., Halperin, I., & Bilokon, P. (2020). Machine learning in finance (Vol. 1170). Springer International Publishing. [Google Scholar]
- Dobbin, F., & Kalev, A. (2022). Getting to diversity: What works and what doesn’t. Harvard University Press. [Google Scholar]
- Dube, S., & Zhu, C. (2021). The disciplinary effect of social media: Evidence from firms’ responses to Glassdoor reviews. Journal of Accounting Research, 59(5), 1783–1825. [Google Scholar] [CrossRef]
- Dungan, R. (2024, November 1). ‘Opportunities not outcomes’|Boeing disbands DEI department to focus on a ‘merit-based performance system’. HR Grapevine USA. Available online: https://www.hrgrapevine.com/us/content/article/2024-11-01-aircraft-giant-ditches-dei-efforts-as-survey-underlines-consistent-employee-support (accessed on 12 May 2025).
- Dwork, C., Kumar, R., Naor, M., & Sivakumar, D. (2001, May 1–5). Rank aggregation methods for the web. 10th international conference on World Wide Web (pp. 613–622), Hong Kong, China. [Google Scholar]
- Ely, R. J. (2004). A field study of group diversity, participation in diversity education programs, and performance. Journal of Organizational Behavior: The International Journal of Industrial, Occupational and Organizational Psychology and Behavior, 25(6), 755–780. [Google Scholar] [CrossRef]
- Erhardt, N. L., Werbel, J. D., & Shrader, C. B. (2003). Board of director diversity and firm financial performance. Corporate Governance: An International Review, 11(2), 102–111. [Google Scholar] [CrossRef]
- Espeland, W., & Sauder, M. (2008). Rankings and diversity. Southern California Review of Law and Social Justice, 18, 587. [Google Scholar]
- Fernández-Delgado, M., Cernadas, E., Barro, S., & Amorim, D. (2014). Do we need hundreds of classifiers to solve real world classification problems? The Journal of Machine Learning Research, 15(1), 3133–3181. [Google Scholar]
- Feroz, E. H., Kim, S., & Raab, R. L. (2003). Financial statement analysis: A data envelopment analysis approach. Journal of the operational Research Society, 54(1), 48–58. [Google Scholar] [CrossRef]
- Ferrero-Ferrero, I., Fernández-Izquierdo, M. Á., & Muñoz-Torres, M. J. (2015). Integrating sustainability into corporate governance: An empirical study on board diversity. Corporate Social Responsibility and Environmental Management, 22(4), 193–207. [Google Scholar] [CrossRef]
- Filbeck, G., Foster, B., Preece, D., & Zhao, X. (2017). Does diversity improve profits and shareholder returns? Evidence from top rated companies for diversity by DiversityInc. Advances in Accounting, 37, 94–102. [Google Scholar] [CrossRef]
- Filbeck, G., Gorman, R., & Zhao, X. (2013). Are the best of the best better than the rest? The effect of multiple rankings on company value. Review of Quantitative Finance and Accounting, 41, 695–722. [Google Scholar] [CrossRef]
- Fine, M. G., Johnson, F. L., & Ryan, M. S. (1990). Cultural diversity in the workplace. Public Personnel Management, 19(3), 305–320. [Google Scholar] [CrossRef]
- Foma, E. (2014). Impact of workplace diversity. Review of Integrative Business and Economics Research, 3(1), 382. [Google Scholar]
- Foster, B. P., Manikas, A. S., & Kroes, J. R. (2023). Which diversity measures best capture public company value? Corporate Social Responsibility and Environmental Management, 30(1), 236–247. [Google Scholar] [CrossRef]
- Friedman, J. H. (2001). Greedy function approximation: A gradient boosting machine. Annals of Statistics, 1189–1232. [Google Scholar]
- Frynas, J. G., & Yamahaki, C. (2016). Corporate social responsibility: Review and roadmap of theoretical perspectives. Business Ethics: A European Review, 25(3), 258–285. [Google Scholar] [CrossRef]
- Garcia, M. F., Liu, H. F., Triana, M. d. C., & Treviño, L. J. (2025). Support for sustainable development goal 5 and social performance: The role of diversity targets, work-life balance practices, and female representation. Human Resource Management, 64(5), 1457–1479. [Google Scholar] [CrossRef]
- Garcia, S., Luengo, J., Sáez, J. A., Lopez, V., & Herrera, F. (2012). A survey of discretization techniques: Taxonomy and empirical analysis in supervised learning. IEEE Transactions on Knowledge and Data Engineering, 25(4), 734–750. [Google Scholar] [CrossRef]
- Gholamy, A., Kreinovich, V., & Kosheleva, O. (2018). Why 70/30 or 80/20 relation between training and testing sets: A pedagogical explanation. International Journal of Intelligent Technologies and Applied Statistics, 11(2), 105–111. [Google Scholar]
- Global, D. (2025, May 14). 2025 gen z and millennial survey: Focused on growth and learning (Tech. Rep.). Deloitte. Available online: https://www.deloitte.com/global/en/issues/work/genz-millennial-survey.html (accessed on 13 September 2025).
- Glover, F., Klastorin, T., & Kongman, D. (1974). Optimal weighted ancestry relationships. Management Science, 20(8), 1190–1193. [Google Scholar] [CrossRef]
- Gordon, A. D. (1979). A measure of the agreement between rankings. Biometrika, 66(1), 7–15. [Google Scholar] [CrossRef]
- Gotsis, G., & Kortezi, Z. (2013). Ethical paradigms as potential foundations of diversity management initiatives in business organizations. Journal of Organizational Change Management, 26(6), 948–976. [Google Scholar] [CrossRef]
- Gray Miller, J. (2023a). 2023 top 50 companies. Available online: https://www.fair360.com/top-50-list/2023/ (accessed on 21 June 2025).
- Gray Miller, J. (2023b). Methodology for fair360’s top companies rankings. Available online: https://www.fair360.com/methodology-for-diversityincs-top-companies-rankings/ (accessed on 21 June 2025).
- Grötschel, M., Jünger, M., & Reinelt, G. (1984). A cutting plane algorithm for the linear ordering problem. Operations Research, 32(6), 1195–1220. [Google Scholar] [CrossRef]
- Gupta, J., & Vegelin, C. (2016). Sustainable development goals and inclusive development. International Environmental Agreements: Politics, Law and Economics, 16, 433–448. [Google Scholar] [CrossRef]
- Harjoto, M., Laksmana, I., & Lee, R. (2015). Board diversity and corporate social responsibility. Journal of Business Ethics, 132, 641–660. [Google Scholar] [CrossRef]
- Hartenian, L. S., & Gudmundson, D. E. (2000). Cultural diversity in small business: Implications for firm performance. Journal of Developmental Entrepreneurship, 5(3), 209. [Google Scholar]
- Hentschel, T., Shemla, M., Wegge, J., & Kearney, E. (2013). Perceived diversity and team functioning: The role of diversity beliefs and affect. Small Group Research, 44(1), 33–61. [Google Scholar] [CrossRef]
- Herdman, A. O., & McMillan-Capehart, A. (2010). Establishing a diversity program is not enough: Exploring the determinants of diversity climate. Journal of Business and Psychology, 25, 39–53. [Google Scholar] [CrossRef]
- Higgins, A. (2020). The relationship between diversity climate perceptions and organizational citizenship behavior and work engagement: The mediating role of overall organizational justice [Unpublished master’s thesis, San Jose State University]. [Google Scholar]
- Hilson, C. (2024). Climate change and the politicization of ESG in the US. Frontiers in Political Science, 6, 1332399. [Google Scholar] [CrossRef]
- Hunt, V., Layton, D., & Prince, S. (2015). Diversity matters. McKinsey & Company, 1(1), 15–29. [Google Scholar]
- ISO. (2021). ISO 37000:2021 Governance of organizations. Guidance. Available online: https://www.iso.org/standard/65036.html (accessed on 20 June 2025).
- Jane Lenard, M., Yu, B., Anne York, E., & Wu, S. (2014). Impact of board gender diversity on firm risk. Managerial Finance, 40(8), 787–803. [Google Scholar] [CrossRef]
- Jauhari, H., & Singh, S. (2013). Perceived diversity climate and employees’ organizational loyalty. Equality, Diversity and Inclusion: An International Journal, 32(3), 262–276. [Google Scholar] [CrossRef]
- Jayne, M. E., & Dipboye, R. L. (2004). Leveraging diversity to improve business performance: Research findings and recommendations for organizations. Human Resource Management: Published in Cooperation with the School of Business Administration, The University of Michigan and in alliance with the Society of Human Resources Management, 43(4), 409–424. [Google Scholar] [CrossRef]
- Kamal, Y., & Ferdousi, M. (2009). Managing diversity at workplace: A case study of hp. ASA University Review, 3(2), 157–170. [Google Scholar]
- Kendall, M. G. (1938). A new measure of rank correlation. Biometrika, 30(1–2), 81–93. [Google Scholar] [CrossRef]
- Kirkman, B. L., Tesluk, P. E., & Rosen, B. (2004). The impact of demographic heterogeneity and team leader-team member demographic fit on team empowerment and effectiveness. Group & Organization Management, 29(3), 334–368. [Google Scholar] [CrossRef]
- Klass, O. S., Biham, O., Levy, M., Malcai, O., & Solomon, S. (2006). The Forbes 400 and the Pareto wealth distribution. Economics Letters, 90(2), 290–295. [Google Scholar] [CrossRef]
- Kleinbaum, D. G., Dietz, K., Gail, M., & Klein, M. (2002). Logistic regression. Springer. [Google Scholar]
- Kochan, T., Bezrukova, K., Ely, R., Jackson, S., Joshi, A., Jehn, K., Leonard, J., Levine, D., & Thomas, D. (2003). The effects of diversity on business performance: Report of the diversity research network. Human Resource Management: Published in Cooperation with the School of Business Administration, The University of Michigan and in Alliance with the Society of Human Resources Management, 42(1), 3–21. [Google Scholar] [CrossRef]
- Kondo, S., Komachi, M., Matsumoto, Y., Sudoh, K., Duh, K., & Tsukada, H. (2011, December 6–9). Learning of linear ordering problems and its application to JE patent translation in NTCIR-9 PatentMT. NTCIR-9 Workshop Meeting, Tokyo, Japan. [Google Scholar]
- Koseoglu, M. A., Arici, H. E., Saydam, M. B., & Olorunsola, V. O. (2025). Financial predictors of firms’ diversity scores: A machine learning approach. Equality, Diversity and Inclusion: An International Journal. [Google Scholar] [CrossRef]
- Kossek, E. E., & Zonia, S. C. (1993). Assessing diversity climate: A field study of reactions to employer efforts to promote diversity. Journal of Organizational Behavior, 14(1), 61–81. [Google Scholar] [CrossRef]
- Kotsiantis, S. B. (2013). Decision trees: A recent overview. Artificial Intelligence Review, 39, 261–283. [Google Scholar] [CrossRef]
- Kuckartz, U., Rädiker, S., Ebert, T., & Schehl, J. (2013). Statistik: Eine verständliche Einführung. Springer. [Google Scholar]
- Kuo, C.-C., Glover, F., & Dhir, K. S. (1993). Analyzing and modeling the maximum diversity problem by zero-one programming. Decision Sciences, 24(6), 1171–1185. [Google Scholar] [CrossRef]
- Landbase. (2025). Companies using glassdoor by glassdoor, inc in 2025. Available online: https://data.landbase.com/technology/glassdoor/ (accessed on 12 September 2025).
- Latukha, M., Kriklivetc, A., & Podgainyi, F. (2022). Generation diverse talent management practices: Main determinants and its influence on firm performance. Journal of East-West Business, 28(4), 291–322. [Google Scholar] [CrossRef]
- Lauring, J., & Selmer, J. (2011). Multicultural organizations: Does a positive diversity climate promote performance? European Management Review, 8(2), 81–93. [Google Scholar] [CrossRef]
- Lawson, C., & Montgomery, D. C. (2006). Logistic regression analysis of customer satisfaction data. Quality and Reliability Engineering International, 22(8), 971–984. [Google Scholar] [CrossRef]
- Lee, H. (2019). Does increasing racial minority representation contribute to overall organizational performance? The role of organizational mission and diversity climate. The American Review of Public Administration, 49(4), 454–468. [Google Scholar] [CrossRef]
- Lee, O., Joo, H., Choi, H., & Cheon, M. (2022). Proposing an integrated approach to analyzing ESG data via machine learning and deep learning algorithms. Sustainability, 14(14), 8745. [Google Scholar] [CrossRef]
- Lev, B., & Sunder, S. (1979). Methodological issues in the use of financial ratios. Journal of Accounting and Economics, 1(3), 187–210. [Google Scholar] [CrossRef]
- Li, H., Sun, J., Li, J. C., & Yan, X. Y. (2013). Forecasting business failure using two-stage ensemble of multivariate discriminant analysis and logistic regression. Expert Systems, 30(5), 385–397. [Google Scholar] [CrossRef]
- Li, X., Wang, X., & Xiao, G. (2019). A comparative study of rank aggregation methods for partial and top ranked lists in genomic applications. Briefings in Bioinformatics, 20(1), 178–189. [Google Scholar] [CrossRef]
- Lim, J., Vaughan, Y., & Jang, J. (2023). Do employees’ perceptions of diversity management enhance firm’s financial performance: The moderating role of board members’ diversity level. International Journal of Contemporary Hospitality Management, 35(11), 3990–4009. [Google Scholar] [CrossRef]
- LLC, B. P. (2023, July). 2023 diversity, equity, and inclusion barometer: The value of diversity, equity & inclusion initiatives: Boom or bust? (Tech. Rep.). Report based on survey of 400 C-Suite and HR leaders. Bridge Partners LLC. Available online: https://bridgepartnersllc.com/insight/survey-2023-diversity-equity-and-inclusion-barometer/ (accessed on 13 September 2025).
- Lorenzo, R., & Reeves, M. (2018). How and where diversity drives financial performance. Available online: https://hbr.org/2018/01/how-and-where-diversity-drives-financial-performance (accessed on 21 June 2025).
- LSEG. (2023). Ftse diversity and inclusion index. Available online: https://www.lseg.com/en/ftse-russell/indices/diversity-and-inclusion-index#t-methodology (accessed on 21 June 2025).
- Lubis, A. R., & Lubis, M. (2020). Optimization of distance formula in K-Nearest Neighbor method. Bulletin of Electrical Engineering and Informatics, 9, 326–338. [Google Scholar] [CrossRef]
- Lundberg, S. M., & Lee, S. I. (2017). A unified approach to interpreting model predictions. In Advances in neural information processing systems (Vol. 30). The MIT Press. [Google Scholar]
- Luque, A., Carrasco, A., Martín, A., & de Las Heras, A. (2019). The impact of class imbalance in classification performance metrics based on the binary confusion matrix. Pattern Recognition, 91, 216–231. [Google Scholar] [CrossRef]
- Ly-Le, T.-M. (2022). Hiring for gender diversity in tech. Journal of Management Development, 41(6), 393–403. [Google Scholar] [CrossRef]
- Madera, J. M., Dawson, M., & Neal, J. A. (2013). Hotel managers’ perceived diversity climate and job satisfaction: The mediating effects of role ambiguity and conflict. International Journal of Hospitality Management, 35, 28–34. [Google Scholar] [CrossRef]
- Malul, M., Hadad, Y., & Ben-Yair, A. (2009). Measuring and ranking of economic, environmental and social efficiency of countries. International Journal of Social Economics, 36(8), 832–843. [Google Scholar] [CrossRef]
- Martin-Melero, I., Gomez-Martinez, R., Medrano-Garcia, M. L., & Hernandez-Perlines, F. (2025). Comparison of sectorial and financial data for ESG scoring of mutual funds with machine learning. Financial Innovation, 11(1), 84. [Google Scholar] [CrossRef]
- Martí, R., Gallego, M., & Duarte, A. (2010). An exact method for the maximum diversity problem. European Journal of Operational Research, 200(1), 36–44. [Google Scholar] [CrossRef]
- Martí, R., & Reinelt, G. (2011). The linear ordering problem: Exact and heuristic methods in combinatorial optimization (Vol. 175). Springer Science & Business Media. [Google Scholar]
- Martín-Zamora, M.-P., Borralho, J. M. C., & Hernández-Linares, R. (2025). Gender diversity in top management teams and corporate reputation: Evidence from Spanish listed companies. Gender, Work & Organization, 32(3), 1144–1168. [Google Scholar]
- McGowan, B. L., Hopson, R., Epperson, L., & Leopold, M. (2025). Navigating the backlash and reimagining diversity, equity, and inclusion in a changing sociopolitical and legal landscape. Journal of College and Character, 26(1), 1–11. [Google Scholar] [CrossRef]
- McKay, P. F., Avery, D. R., & Morris, M. A. (2008). Mean racial-ethnic differences in employee sales performance: The moderating role of diversity climate. Personnel Psychology, 61(2), 349–374. [Google Scholar] [CrossRef]
- Mishra, N. K., & Singh, P. K. (2022). Linear ordering problem based classifier chain using genetic algorithm for multi-label classification. Applied Soft Computing, 117, 108395. [Google Scholar] [CrossRef]
- Mitchell, J. E., & Borchers, B. (1996). Solving real-world linear ordering problems using a primal-dual interior point cutting plane method. Annals of Operations Research, 62(1), 253–276. [Google Scholar] [CrossRef]
- Moon, K.-K., & Christensen, R. K. (2020). Realizing the performance benefits of workforce diversity in the US federal government: The moderating role of diversity climate. Public Personnel Management, 49(1), 141–165. [Google Scholar] [CrossRef]
- Moreno-Gómez, J., Lafuente, E., & Vaillant, Y. (2018). Gender diversity in the board, women’s leadership and business performance. Gender in Management, 33(2), 104–122. [Google Scholar] [CrossRef]
- Murphy, A. J., & Collins, J. M. (2015). The relevance of diversity in the job attribute preferences of college students. College Student Journal, 49(2), 199–216. [Google Scholar]
- Newsweek, & Group, P. I. (2025). America’s greatest workplaces for inclusion & diversity 2025. Available online: https://rankings.newsweek.com/americas-greatest-workplaces-diversity-2025 (accessed on 21 June 2025).
- Ng, E., Fitzsimmons, T., Kulkarni, M., Ozturk, M. B., April, K., Banerjee, R., & Muhr, S. L. (2025). The anti-DEI agenda: Navigating the impact of Trump’s second term on diversity, equity and inclusion. Equality, Diversity and Inclusion: An International Journal, 44(2), 137–150. [Google Scholar] [CrossRef]
- Nicholson-Crotty, S., Nicholson-Crotty, J., & Fernandez, S. (2017). Will more black cops matter? Officer race and police-involved homicides of black citizens. Public Administration Review, 77(2), 206–216. [Google Scholar] [CrossRef]
- Okoye, K., & Hosseini, S. (2024). Correlation tests in R: Pearson cor, kendall’s tau, and spearman’s rho. In R programming. Springer. [Google Scholar]
- Opstrup, N., & Villadsen, A. R. (2015). The right mix? Gender diversity in top management teams and financial performance. Public Administration Review, 75(2), 291–301. [Google Scholar] [CrossRef]
- Orazalin, N., & Baydauletov, M. (2020). Corporate social responsibility strategy and corporate environmental and social performance: The moderating role of board gender diversity. Corporate Social Responsibility and Environmental Management, 27(4), 1664–1676. [Google Scholar] [CrossRef]
- Owens, C. T., & Kukla-Acevedo, S. (2012). Network diversity and the ability of public managers to influence performance. The American Review of Public Administration, 42(2), 226–245. [Google Scholar] [CrossRef]
- Palalar Alkan, D., Ozbilgin, M., & Kamasak, R. (2022). Social innovation in managing diversity: COVID-19 as a catalyst for change. Equality, Diversity and Inclusion: An International Journal, 41(5), 709–725. [Google Scholar] [CrossRef]
- Pasztor, S. K. (2019). Exploring the framing of diversity rhetoric in “top-rated in diversity” organizations. International Journal of Business Communication, 56(4), 455–475. [Google Scholar] [CrossRef]
- Patrick, H. A., & Kumar, V. R. (2012). Managing workplace diversity: Issues and challenges. Sage Open, 2(2), 2158244012444615. [Google Scholar] [CrossRef]
- Paule-Vianez, J., Gutiérrez-Fernández, M., & Coca-Pérez, J. L. (2019). Prediction of financial distress in the Spanish banking system: An application using artificial neural networks. Applied Economic Analysis, 28(82), 69–87. [Google Scholar] [CrossRef]
- Peachman, R. R. (2023a). America’s best employers for new grads. Available online: https://www.forbes.com/lists/best-employers-for-new-grads/?sh=7f55c3bd203a (accessed on 21 June 2025).
- Peachman, R. R. (2023b). America’s best employers for veterans. Available online: https://www.forbes.com/lists/best-employers-for-veterans/?sh=2e1b00313606 (accessed on 21 June 2025).
- Peachman, R. R. (2023c). Meet america’s best employers for diversity 2023. Available online: https://www.forbes.com/sites/rachelpeachman/2023/04/25/meet-americas-best-employers-for-diversity-2023/?sh=424561ac50af (accessed on 21 June 2025).
- Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., & Duchesnay, É. (2011). Scikit-learn: Machine learning in Python. The Journal of Machine Learning Research, 12, 2825–2830. [Google Scholar]
- Prasatha, V. S., Alfeilate, H. A. A., Hassanate, A. B., Lasassmehe, O., Tarawnehf, A. S., Alhasanatg, M. B., & Salmane, H. S. E. (2017). Effects of distance measure choice on knn classifier performance—A review. arXiv, arXiv:1708.04321. [Google Scholar]
- Primec, A., & Belak, J. (2022). Sustainable CSR: Legal and managerial demands of the new EU legislation (CSRD) for the future corporate governance practices. Sustainability, 14(24), 16648. [Google Scholar] [CrossRef]
- Rajgopal, S., Srivastava, A., & Zhao, R. (2023). Do political anti-ESG sanctions have any economic substance. The Case of Texas Law Mandating Divestment from ESG Asset Management Companies. SSRN Electron. J. Available online: https://papers.ssrn.com/sol3/papers.cfm?abstract_id=4386268 (accessed on 21 June 2025). [CrossRef]
- Ranta, M., & Ylinen, M. (2023). Board gender diversity and workplace diversity: A machine learning approach. Corporate Governance: The International Journal of Business in Society, 23(5), 995–1018. [Google Scholar] [CrossRef]
- Rao, K., & Tilt, C. (2016). Board composition and corporate social responsibility: The role of diversity, gender, strategy and decision making. Journal of Business Ethics, 138, 327–347. [Google Scholar] [CrossRef]
- Ray, T. G., & Triantaphyllou, E. (1998). Evaluation of rankings with regard to the possible number of agreements and conflicts. European Journal of Operational Research, 106(1), 129–136. [Google Scholar] [CrossRef]
- Reinwald, M., Huettermann, H., & Bruch, H. (2019). Beyond the mean: Understanding firm-level consequences of variability in diversity climate perceptions. Journal of Organizational Behavior, 40(4), 472–491. [Google Scholar] [CrossRef]
- Rhee, C. S., Woo, S., & Rhee, H. (2023). Effect of gender diversity on corporate soundness and social contribution. Corporate Social Responsibility and Environmental Management, 30(1), 419–430. [Google Scholar] [CrossRef]
- Rice, D. B., Young, N. C., Taylor, R. M., & Leonard, S. R. (2025). Politics and race in the workplace: Understanding how and when trump-supporting managers hinder black employees from thriving at work. Human Resource Management Journal, 35(1), 256–275. [Google Scholar] [CrossRef]
- Richard, O. C. (2000). Racial diversity, business strategy, and firm performance: A resource-based view. Academy of Management Journal, 43(2), 164–177. [Google Scholar] [CrossRef]
- Ritz, A., & Alfes, K. (2018). Multicultural public administration: Effects of language diversity and dissimilarity on public employees’ attachment to employment. Public Administration, 96(1), 84–103. [Google Scholar] [CrossRef]
- Rokach, L., & Maimon, O. (2005). Decision trees. In Data mining and knowledge discovery handbook (pp. 165–192). Springer. [Google Scholar]
- Roman, A., & Șargu, A. C. (2013). Analysing the financial soundness of the commercial banks in Romania: An approach based on the CAMELS framework. Procedia Economics and Finance, 6, 703–712. [Google Scholar] [CrossRef]
- Rose, C., Munch-Madsen, P., & Funch, M. (2013). Does board diversity really matter? Gender does not, but citizenship does. International Journal of Business Science & Applied Management (IJBSAM), 8(1), 16–27. [Google Scholar]
- Sabharwal, M. (2014). Is diversity management sufficient? Organizational inclusion to further performance. Public Personnel Management, 43(2), 197–217. [Google Scholar] [CrossRef]
- Sacco, J. M., & Schmitt, N. (2005). A dynamic multilevel model of demographic diversity and misfit effects. Journal of Applied Psychology, 90(2), 203. [Google Scholar] [CrossRef] [PubMed]
- Safavian, S. R., & Landgrebe, D. (1991). A survey of decision tree classifier methodology. IEEE Transactions on Systems, Man, and Cybernetics, 21(3), 660–674. [Google Scholar] [CrossRef]
- Santucci, V. (2021, July 1–June 28). Is algebraic differential evolution really a differential evolution scheme? 2021 IEEE Congress on Evolutionary Computation (CEC) (pp. 9–16), virtual. [Google Scholar]
- Santucci, V., Ceberio, J., & Baioletti, M. (2020, July 8–12). Gradient search in the space of permutations: An application for the linear ordering problem. 2020 Genetic and Evolutionary Computation Conference Companion (pp. 1704–1711), Cancún, Mexico. [Google Scholar]
- Sarker, I. H. (2021). Machine Learning: Algorithms, Real-World Applications and Research Directions. SN Computer Science, 2(3), 160. [Google Scholar] [CrossRef] [PubMed]
- Schütte, S., Acevedo, P. N. M., & Flahault, A. (2018). Health systems around the world–a comparison of existing health system rankings. Journal of Global Health, 8(1), 010407. [Google Scholar] [CrossRef]
- Schwarz, A. (2023a). America’s best employers for women. Available online: https://www.forbes.com/lists/best-employers-women/?sh=497565c466c3 (accessed on 21 June 2025).
- Schwarz, A. (2023b). America’s best large employers 2023: The top 100. Available online: https://www.forbes.com/sites/forbesstaff/2023/03/22/americas-best-large-employers-2023-the-top-100/?sh=11efc18f1d81 (accessed on 21 June 2025).
- Seriwatana, P. (2021). Diversity climate as a key to employee retention: The moderating role of perceived cultural difference. Asian Administration & Management Review, 4(2). [Google Scholar]
- Shatnawi, R., Li, W., Swain, J., & Newman, T. (2010). Finding software metrics threshold values using ROC curves. Journal of Software Maintenance and Evolution: Research and Practice, 22(1), 1–16. [Google Scholar] [CrossRef]
- Shehatta, I., & Mahmood, K. (2016). Correlation among top 100 universities in the major six global rankings: Policy implications. Scientometrics, 109(2), 1231–1254. [Google Scholar] [CrossRef]
- Shemla, M., Meyer, B., Greer, L., & Jehn, K. A. (2016). A review of perceived diversity in teams: Does how members perceive their team’s composition affect team processes and outcomes? Journal of Organizational Behavior, 37, S89–S106. [Google Scholar] [CrossRef]
- Singal, M., & Gerde, V. W. (2015). Is diversity management related to financial performance in family firms? Family Business Review, 28(3), 243–259. [Google Scholar] [CrossRef]
- Singha, S. (2022). Social inclusion, equality, leadership, and diversity to attain sustainable development goal 5 in the Indian banking industry. Journal of International Women’s Studies, 23(5), 135–141. [Google Scholar]
- Song, Y.-g., Cao, Q.-l., & Zhang, C. (2018). Towards a new approach to predict business performance using machine learning. Cognitive Systems Research, 52, 1004–1012. [Google Scholar] [CrossRef]
- Strecht, P., Cruz, L., Soares, C., Mendes-Moreira, J., & Abreu, R. (2015, June 26-29). A comparative study of classification and regression algorithms for modelling students’ academic performance. International Educational Data Mining Society, Madrid, Spain. [Google Scholar]
- Sun, S., & Huang, R. (2010, August 10–12). An adaptive k-nearest neighbor algorithm. Seventh International Conference on Fuzzy Systems and Knowledge Discovery (Vol. 1, pp. 91–94), Yantai, China. [Google Scholar]
- Šilenskytė, A., & Rašković, M. (2024). Embedding diversity, equity, and inclusion (DEI) in international business education. In International business and sdg 8: Exploring the relationship between ib and society (pp. 299–318). Springer. [Google Scholar]
- Tayar, M. (2017). Ranking LGBT inclusion: Diversity ranking systems as institutional archetypes. Canadian Journal of Administrative Sciences/Revue Canadienne des Sciences de l’Administration, 34(2), 198–210. [Google Scholar] [CrossRef]
- Terjesen, S., Vinnicombe, S., & Freeman, C. (2007). Attracting Generation Y graduates: Organisational attributes, likelihood to apply and sex differences. Career Development International, 12(6), 504–522. [Google Scholar] [CrossRef]
- Tromble, R., & Eisner, J. (2009, August 6–7). Learning linear ordering problems for better translation. 2009 Conference on Empirical Methods in Natural Language Processing (pp. 1007–1016), Singapore. [Google Scholar]
- Van der Meer, M., & Roosblad, J. (2004). Overcoming marginalisation?: Gender and ethnic segregation in the dutch construction, health, IT and printing industries. Available online: https://hdl.handle.net/11245/1.427072 (accessed on 21 June 2025).
- Veganzones, D., & Séverin, E. (2018). An investigation of bankruptcy prediction in imbalanced datasets. Decision Support Systems, 112, 111–124. [Google Scholar] [CrossRef]
- Veltri, S., Mazzotta, R., & Rubino, F. E. (2021). Board diversity and corporate social performance: Does the family firm status matter? Corporate Social Responsibility and Environmental Management, 28(6), 1664–1679. [Google Scholar] [CrossRef]
- Vincent, M. (2022). Investors and workers in diversity data challenge. Available online: https://www.ft.com/content/a2c1ceeb-a5bd-400b-b475-a1c742884720 (accessed on 21 June 2025).
- Wolfson, N., Kraiger, K., & Finkelstein, L. (2011). The relationship between diversity climate perceptions and workplace attitudes. The Psychologist-Manager Journal, 14(3), 161–176. [Google Scholar] [CrossRef]
- Wolsey, L. A., & Nemhauser, G. L. (2014). Integer and combinatorial optimization. John Wiley & Sons, Inc. [Google Scholar]
- Wood, E. H. (2006). The internal predictors of business performance in small firms: A logistic regression analysis. Journal of Small Business and Enterprise Development, 13(3), 441–453. [Google Scholar] [CrossRef]
- Xu, R., Farooq, U., Alam, M. M., & Dai, J. (2024). How does cultural diversity determine green innovation? New empirical evidence from Asia region. Environmental Impact Assessment Review, 106, 107458. [Google Scholar] [CrossRef]
- Yahoo. (2023). Yahoo finance. Available online: https://finance.yahoo.com/ (accessed on 21 June 2025).
- Yang, L.-W., Nguyen, T. T. B., & Young, W.-J. (2024). Performance and Board Diversity: A Practical AI Perspective. Big Data and Cognitive Computing, 8(9), 106. [Google Scholar] [CrossRef]
- Yousaf, U. B., Jebran, K., & Wang, M. (2021). Can board diversity predict the risk of financial distress? Corporate Governance: The International Journal of Business in Society, 21(4), 663–684. [Google Scholar]
Financial ratios | |||
Full name | Abbrv. | Full name | Abbrv. |
Price/Sales | ps | Current ratio | cr |
Enterprise Value/Revenue | er | Quick ratio | qr |
Enterprise Value/EBITDA | ee | Cash ratio | ch |
Beta (5Y Monthly) | bt | Debt ratio | dr |
52-Week Change | wk | ROA | ra |
Payout Ratio | pr | ROE | re |
Profit Margin | pf | EPS | es |
Operating Margin | op | ||
Financial information | |||
Full name | Abbrv. | Full name | Abbrv. |
Revenue | rv | Non Current Assets | na |
Normalized EBITDA | eb | Current Liabilities | cl |
Net Income | ni | Non Current Liabilities | nl |
Current Assets | ca | Working Capital | wc |
Cash | cs | Equity | eq |
Inventory | iv | ||
Diversity variables | |||
Full name | Abbrv. | Full name | Abbrv. |
Policy Diversity | pd | Diversity Index | di |
Women Employees | wo |
Study | Data Source | Name | Abbrv. | Companies |
---|---|---|---|---|
1. Diversity | Fair360 | Top 50 Companies For Diversity | Fa_D | 50 |
Forbes | America’s Best Employers for Diversity | Fo_D | 500 | |
Glassdoor | Diversity and Inclusion score | Gl_D | 49,233 | |
2. Ethic origin | Fair360 | Top Companies for Asian American Executives | Fa_A | 19 |
Fair360 | Top Companies for Black Executives | Fa_B | 28 | |
Fair360 | Top Companies for Latino Executives | Fa_L | 24 | |
Fair360 | Top Companies for Native American/Pacific Islander Executives | Fa_N | 23 | |
3. Global | Forbes | America’s Best Employers for Diversity | Fo_D | 500 |
Forbes | America’s Best Employers for Women | Fo_W | 400 | |
Forbes | America’s Best Employers for New Grads | Fo_G | 300 | |
Forbes | America’s Best Large Employers | Fo_L | 500 | |
Forbes | America’s Best Employers for Veterans | Fo_V | 150 |
Algorithm | Parameter | Values |
---|---|---|
K Nearest Neighbors | n_neighbors | [1, 5, 10, 15, 20] |
metric | [euclidean, manhattan, minkowski] | |
Logistic Regression | penalty | [l1, l2, elasticnet] |
C | [0.1, 1, 10] | |
Decision Tree | criterion | [gini, entropy, log_loss] |
max_depth | [2, 4, 8, 16, 32, 64, 128] |
ps | er | ee | bt | wk | pr | pf | op | cr | qr | ch | dr | ra | re | es | rv | eb | ni | ca | cs | iv | na | cl | nl | wc | eq | pd | wo | di | |
ps | — | ||||||||||||||||||||||||||||
er | 97 | — | |||||||||||||||||||||||||||
ee | 40 | 49 | — | ||||||||||||||||||||||||||
bt | −18 | −18 | −4 | — | |||||||||||||||||||||||||
wk | 31 | 29 | 10 | 8 | — | ||||||||||||||||||||||||
pr | 6 | 14 | 37 | −8 | −11 | — | |||||||||||||||||||||||
pf | 56 | 50 | 7 | −15 | 27 | −15 | — | ||||||||||||||||||||||
op | 53 | 55 | 27 | −13 | 15 | 1 | 41 | — | |||||||||||||||||||||
cr | 24 | 17 | 6 | 0 | −2 | 2 | 19 | 16 | — | ||||||||||||||||||||
qr | 30 | 23 | 7 | −3 | 2 | 1 | 23 | 20 | 90 | — | |||||||||||||||||||
ch | 35 | 27 | 8 | −1 | 2 | 0 | 24 | 22 | 86 | 93 | — | ||||||||||||||||||
dr | −15 | −9 | −3 | 19 | 9 | −4 | −13 | 1 | −39 | −29 | −31 | — | |||||||||||||||||
ra | 46 | 40 | 11 | −12 | 10 | −7 | 33 | 30 | 14 | 14 | 15 | −14 | — | ||||||||||||||||
re | 15 | 14 | 5 | −7 | 9 | 1 | 8 | 7 | 3 | 3 | 1 | −5 | 25 | — | |||||||||||||||
es | 20 | 18 | 4 | 0 | 7 | −6 | 28 | 11 | 17 | 18 | 16 | 1 | 26 | −1 | — | ||||||||||||||
rv | 3 | 2 | −1 | −4 | 12 | 0 | 7 | 0 | −7 | −3 | −2 | 3 | 11 | 5 | 11 | — | |||||||||||||
eb | 21 | 20 | 2 | −8 | 10 | −2 | 23 | 11 | -3 | 2 | 4 | −3 | 25 | 9 | 15 | 87 | — | ||||||||||||
ni | 29 | 27 | 5 | −6 | 11 | −4 | 27 | 15 | 0 | 5 | 7 | −4 | 35 | 11 | 16 | 72 | 92 | — | |||||||||||
ca | 6 | 5 | 0 | −2 | 12 | −1 | 9 | 3 | −2 | 2 | 2 | 5 | 8 | 4 | 13 | 86 | 80 | 67 | — | ||||||||||
cs | 18 | 15 | 1 | −1 | 16 | −4 | 16 | 8 | 4 | 10 | 14 | −5 | 15 | 5 | 13 | 83 | 85 | 79 | 91 | — | |||||||||
iv | −8 | −8 | 5 | 1 | 3 | 3 | −4 | −5 | −2 | −9 | −7 | 7 | −5 | 1 | 8 | 59 | 38 | 22 | 70 | 49 | — | ||||||||
na | 6 | 8 | −1 | −11 | 7 | 3 | 12 | 6 | −5 | 1 | 1 | 0 | 4 | 5 | 12 | 84 | 82 | 62 | 81 | 76 | 53 | — | |||||||
cl | 2 | 1 | −1 | −3 | 10 | −1 | 6 | 1 | −12 | −7 | −7 | 15 | 5 | 4 | 11 | 87 | 76 | 61 | 95 | 81 | 70 | 83 | — | ||||||
nl | 5 | 8 | 0 | −8 | 6 | 3 | 12 | 8 | −5 | 2 | 0 | 19 | 2 | 7 | 12 | 75 | 72 | 52 | 74 | 62 | 52 | 93 | 82 | — | |||||
wc | 15 | 10 | 1 | 3 | 11 | 1 | 12 | 6 | 24 | 25 | 23 | −21 | 12 | 2 | 13 | 48 | 55 | 52 | 69 | 76 | 40 | 41 | 44 | 24 | — | ||||
eq | 10 | 9 | −1 | −10 | 9 | 2 | 12 | 5 | 2 | 7 | 8 | −23 | 8 | 2 | 11 | 80 | 82 | 66 | 81 | 86 | 49 | 88 | 72 | 65 | 70 | — | |||
pd | 8 | 7 | 3 | −5 | −1 | 4 | 3 | 5 | 3 | 5 | 7 | −7 | 1 | −1 | 3 | -3 | 2 | 2 | 3 | 4 | 3 | 0 | 1 | −2 | 8 | 3 | — | ||
wo | 2 | 3 | −9 | 5 | −3 | −3 | 3 | 2 | −5 | −5 | −4 | 9 | 2 | −1 | 0 | 0 | −1 | 0 | 2 | −1 | 4 | −1 | 1 | 0 | 4 | 0 | 9 | — | |
di | 27 | 27 | 17 | −6 | 14 | 3 | 16 | 17 | 4 | 8 | 11 | −5 | 14 | 0 | 6 | 10 | 18 | 21 | 11 | 17 | −5 | 13 | 9 | 10 | 10 | 15 | 2 | 9 | — |
Approach | Model | Training Set | Testing Set | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
ACC | PRE | SEN | SPE | F1S | AUC | ACC | PRE | SEN | SPE | F1S | AUC | ||
Dummy | Random | 0.489 | 0.455 | 0.500 | 0.480 | 0.476 | 0.500 | 0.414 | 0.350 | 0.483 | 0.366 | 0.406 | 0.500 |
Financial data | KNN | 0.643 | 0.654 | 0.424 | 0.819 | 0.515 | 0.644 | 0.486 | 0.450 | 0.265 | 0.694 | 0.333 | 0.567 |
LR | 0.618 | 0.594 | 0.456 | 0.748 | 0.516 | 0.632 | 0.343 | 0.125 | 0.059 | 0.611 | 0.080 | 0.245 | |
DT | 0.686 | 0.768 | 0.424 | 0.897 | 0.546 | 0.696 | 0.543 | 0.550 | 0.324 | 0.750 | 0.407 | 0.578 | |
Financial ratios | KNN | 0.668 | 0.667 | 0.512 | 0.794 | 0.579 | 0.722 | 0.586 | 0.632 | 0.353 | 0.806 | 0.453 | 0.603 |
LR | 0.657 | 0.679 | 0.440 | 0.832 | 0.534 | 0.664 | 0.600 | 0.667 | 0.353 | 0.833 | 0.462 | 0.556 | |
DT | 0.650 | 0.696 | 0.384 | 0.865 | 0.495 | 0.688 | 0.657 | 0.750 | 0.441 | 0.861 | 0.556 | 0.631 | |
Diversity data | KNN | 0.579 | 0.551 | 0.304 | 0.800 | 0.392 | 0.623 | 0.414 | 0.267 | 0.118 | 0.694 | 0.163 | 0.455 |
LR | 0.536 | 0.222 | 0.016 | 0.955 | 0.030 | 0.539 | 0.543 | 0.750 | 0.088 | 0.972 | 0.158 | 0.516 | |
DT | 0.596 | 0.568 | 0.400 | 0.755 | 0.469 | 0.635 | 0.543 | 0.542 | 0.382 | 0.694 | 0.448 | 0.522 |
Diversity Study | Ethnic Origin Study | Global Study | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Fa_D | Fo_D | Gl_D | Fa_A | Fa_B | Fa_L | Fa_N | Fo_D | Fo_W | Fo_G | Fo_L | Fo_V | |||
Fa_D | - | Fa_A | - | Fo_D | - | |||||||||
Fo_D | 35 | - | Fa_B | 15 | - | Fo_W | 231 | - | ||||||
Gl_D | 35 | 35 | - | Fa_L | 19 | 18 | - | Fo_G | 174 | 169 | - | |||
Fa_N | 19 | 18 | 23 | - | Fo_L | 269 | 224 | 192 | - | |||||
Fo_V | 76 | 59 | 64 | 92 | - |
Diversity Study Rankings | Ethnic Origin Study Rankings | Global Study Rankings | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Companies | Fa_D | Fo_D | Gl_D | Companies | Fa_A | Fa_B | Fa_L | Fa_N | Companies | Fo_D | Fo_W | Fo_G | Fo_L | Fo_V |
MSCD | 1 | 5 | 1 | TOYO | 1 | 1 | 4 | 4 | PROG | 1 | 11 | 22 | 18 | 16 |
MEDT | 2 | 16 | 11 | SHIE | 2 | 7 | 3 | 3 | INTL | 2 | 25 | 14 | 15 | 31 |
HERS | 3 | 23 | 25 | MEDT | 3 | 10 | 1 | 1 | P&GG | 3 | 22 | 11 | 23 | 14 |
TOYO | 4 | 31 | 13 | HERS | 4 | 6 | 2 | 6 | ALLY | 4 | 4 | 26 | 6 | 24 |
LILL | 5 | 30 | 8 | LILL | 5 | 3 | 5 | 5 | ACCT | 5 | 31 | 16 | 33 | 17 |
KPMG | 6 | 22 | 19 | HILT | 6 | 15 | 10 | 11 | PNCF | 6 | 28 | 38 | 30 | 26 |
DOWW | 7 | 27 | 4 | EYYY | 7 | 9 | 7 | 2 | SALF | 7 | 16 | 9 | 7 | 8 |
TIAA | 8 | 2 | 7 | ADPP | 8 | 11 | 8 | 8 | MATT | 8 | 36 | 23 | 17 | 23 |
HUMN | 9 | 3 | 15 | BOEG | 9 | 13 | 15 | 15 | CISC | 9 | 12 | 8 | 12 | 19 |
BOEG | 10 | 35 | 28 | DOWW | 10 | 12 | 9 | 9 | UNHE | 10 | 32 | 33 | 29 | 34 |
CNBC | 11 | 10 | 31 | CNBC | 11 | 2 | 6 | 7 | APPL | 11 | 14 | 18 | 11 | 27 |
CIGN | 12 | 12 | 22 | ABBT | 12 | 14 | 14 | 14 | GOGL | 12 | 2 | 1 | 4 | 2 |
ABBV | 13 | 7 | 20 | KPMG | 13 | 8 | 12 | 12 | JPMO | 13 | 34 | 36 | 31 | 36 |
WALM | 14 | 29 | 33 | HUMN | 14 | 5 | 13 | 13 | PFIZ | 14 | 15 | 31 | 26 | 32 |
RAND | 15 | 18 | 26 | CIGN | 15 | 4 | 11 | 10 | AMEX | 15 | 8 | 19 | 10 | 37 |
TDBK | 16 | 1 | 3 | NASA | 16 | 1 | 7 | 8 | 11 | |||||
KYBK | 17 | 13 | 18 | DELL | 17 | 23 | 21 | 21 | 18 | |||||
SOUC | 18 | 19 | 16 | NIKE | 18 | 17 | 30 | 28 | 35 | |||||
ECOL | 19 | 15 | 27 | DELA | 19 | 6 | 5 | 5 | 7 | |||||
NOGR | 20 | 14 | 12 | MICR | 20 | 3 | 10 | 3 | 10 | |||||
CAPO | 21 | 21 | 9 | MEDT | 21 | 38 | 34 | 35 | 15 | |||||
SAFI | 22 | 33 | 14 | FIDI | 22 | 5 | 2 | 2 | 5 | |||||
ALLY | 23 | 6 | 24 | SONY | 23 | 19 | 27 | 13 | 30 | |||||
GEMO | 24 | 20 | 10 | CSCH | 24 | 7 | 20 | 16 | 20 | |||||
TARG | 25 | 9 | 21 | IBMM | 25 | 9 | 17 | 25 | 25 | |||||
CENT | 26 | 17 | 23 | ADDS | 26 | 35 | 29 | 27 | 28 | |||||
COPA | 27 | 8 | 6 | TEXI | 27 | 29 | 13 | 36 | 38 | |||||
UNAI | 28 | 25 | 5 | 3MMM | 28 | 26 | 6 | 24 | 29 | |||||
P&GG | 29 | 4 | 2 | LOCM | 29 | 24 | 15 | 14 | 4 | |||||
AMFI | 30 | 28 | 32 | ORCL | 30 | 21 | 37 | 37 | 21 | |||||
WALG | 31 | 34 | 35 | BMWG | 31 | 13 | 25 | 19 | 9 | |||||
ALIC | 32 | 32 | 30 | HOND | 32 | 30 | 32 | 34 | 33 | |||||
HOND | 33 | 26 | 34 | FORD | 33 | 33 | 28 | 32 | 13 | |||||
BEBU | 34 | 11 | 17 | HEBB | 34 | 10 | 4 | 1 | 3 | |||||
WYNH | 35 | 24 | 29 | COST | 35 | 18 | 3 | 9 | 22 | |||||
BOEG | 36 | 27 | 24 | 22 | 6 | |||||||||
SOAI | 37 | 20 | 12 | 20 | 1 | |||||||||
CACI | 38 | 37 | 35 | 38 | 12 |
Diversity Study | Ethnic Origin Study | Global Study | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Fa_D | Fo_D | Gl_D | Fa_A | Fa_B | Fa_L | Fa_N | Fo_D | Fo_W | Fo_G | Fo_L | Fo_V | |||
Fa_D | - | Fa_A | - | Fo_D | - | |||||||||
Fo_D | 8 | - | Fa_B | 6 | - | Fo_W | 11 | - | ||||||
Gl_D | 18 | 28 | - | Fa_L | 56 | 31 | - | Fo_G | 1 | 40 | - | |||
Fa_N | 50 | 26 | 82 | - | Fo_L | 11 | 58 | 54 | - | |||||
Fo_V | -15 | 19 | 33 | 30 | - |
Study | Alternatives | Optimum Order | LOP Optimum |
---|---|---|---|
Diversity | D.A | [MSCD, TDBK, TIAA, P&GG, COPA, MEDT, DOWW, LILL, TOYO, HUMN, ABBV, CNBC, CIGN, KYBK NOGR, SOUC, CAPO, ALLY, GEMO, BEBU, KPMG, TARG, CENT, HERS, RAND, ECOL, UNAI, SAFI, BOEG, WYNH, AMFI, WALM, ALIC, HOND, WALG] | 1381 |
D.B | [MSCD, TDBK, P&GG, DOWW, TIAA, COPA, MEDT, LILL, TOYO, HUMN, ABBV, CNBC, CIGN, KYBK, NOGR, SOUC, CAPO, ALLY, GEMO, TARG, BEBU, KPMG, CENT, HERS, RAND, ECOL, UNAI, SAFI, BOEG, WYNH, AMFI, WALM, ALIC, HOND, WALG] | 1381 | |
D.C | [MSCD, TDBK, TIAA, P&GG, MEDT, DOWW, LILL, TOYO, HUMN, ABBV, COPA, CNBC, CIGN, KYBK, NOGR, SOUC, CAPO, GEMO, KPMG, SAFI, ALLY, TARG, BEBU, CENT, HERS, RAND, ECOL, UNAI, BOEG, WYNH, AMFI, WALM, ALIC, HOND, WALG] | 1381 | |
Ethnic Origin | EO.A | [MEDT, SHIE, TOYO, HERS, LILL, CNBC, EYYY, ADPP, DOWW, CIGN, HILT, KPMG, HUMN, ABBT, BOEG] | 354 |
EO.B | [MEDT, SHIE, TOYO, HERS, LILL, EYYY, CNBC, ADPP, DOWW, CIGN, HILT, KPMG, HUMN, ABBT, BOEG] | 354 | |
EO.C | [MEDT, SHIE, TOYO, HERS, LILL, CNBC, EYYY, ADPP, DOWW, HILT, CIGN, KPMG, HUMN, ABBT, BOEG] | 354 | |
Global | G.A | [GOGL, FIDI, HEBB, DELA, SALF, NASA, MICR, PROG, ALLY, CISC, COST, APPL, SOAI, P&GG, LOCM, INTL, ACCT, AMEX, CSCH, DELL, MATT, IBMM, BMWG, SONY, 3MMM, BOEG, PFIZ, NIKE, PNCF, FORD, ADDS, HOND, UNHE, JPMO, MEDT, TEXI, ORCL, CACI] | 2715 |
G.B | [GOGL, FIDI, HEBB, DELA, SALF, NASA, MICR, PROG, ALLY, CISC, COST, P&GG, APPL, SOAI, LOCM, INTL, ACCT, AMEX, CSCH, DELL, MATT, IBMM, BMWG, SONY, 3MMM, BOEG, PFIZ, NIKE, PNCF, FORD, ADDS, HOND, UNHE, JPMO, MEDT, TEXI, ORCL, CACI] | 2715 | |
G.C | [GOGL, FIDI, HEBB, DELA, SALF, NASA, MICR, PROG, ALLY, CISC, COST, SOAI, P&GG, APPL, LOCM, INTL, ACCT, AMEX, CSCH, DELL, MATT, IBMM, BMWG, SONY, 3MMM, BOEG, PFIZ, NIKE, PNCF, FORD, ADDS, HOND, UNHE, JPMO, MEDT, TEXI, ORCL, CACI] | 2715 |
Diversity Study | Ethnic Origin Study | Global Study | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
D.A | D.B | D.C | EO.A | EO.B | EO.C | G.A | G.B | G.C | |||
D.A | - | EO.A | - | G.A | - | ||||||
D.B | 98 | - | EO.B | 98 | - | G.B | 99 | - | |||
D.C | 94 | 93 | - | EO.C | 98 | 96 | - | G.C | 99 | 99 | - |
Diversity Study | Ethnic Origin Study | Global Study | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
D.A | D.B | D.C | EO.A | EO.B | EO.C | G.A | G.B | G.C | |||
Fa_D | 43 | 43 | 47 | Fa_A | 58 | 60 | 60 | Fo_D | 21 | 22 | 21 |
Fo_D | 54 | 54 | 50 | Fa_B | 33 | 31 | 31 | Fo_W | 60 | 59 | 59 |
Gl_D | 67 | 67 | 67 | Fa_L | 94 | 92 | 96 | Fo_G | 69 | 70 | 69 |
Fa_N | 89 | 90 | 87 | Fo_L | 78 | 77 | 77 | ||||
Fo_V | 44 | 44 | 44 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Martín-Melero, I.; Hernández-Perlines, F.; Gómez-Martínez, R.; Medrano-García, M.L. Prediction and Ranking of Corporate Diversity in European and American Firms. Adm. Sci. 2025, 15, 406. https://doi.org/10.3390/admsci15110406
Martín-Melero I, Hernández-Perlines F, Gómez-Martínez R, Medrano-García ML. Prediction and Ranking of Corporate Diversity in European and American Firms. Administrative Sciences. 2025; 15(11):406. https://doi.org/10.3390/admsci15110406
Chicago/Turabian StyleMartín-Melero, Iñigo, Felipe Hernández-Perlines, Raúl Gómez-Martínez, and María Luisa Medrano-García. 2025. "Prediction and Ranking of Corporate Diversity in European and American Firms" Administrative Sciences 15, no. 11: 406. https://doi.org/10.3390/admsci15110406
APA StyleMartín-Melero, I., Hernández-Perlines, F., Gómez-Martínez, R., & Medrano-García, M. L. (2025). Prediction and Ranking of Corporate Diversity in European and American Firms. Administrative Sciences, 15(11), 406. https://doi.org/10.3390/admsci15110406