Analysis of the Rice Yield under an Agrivoltaic System: A Case Study in Japan
Abstract
:1. Introduction
1.1. Energy Situation in Japan
1.2. Current Studies of Agrivoltaic Systems
1.3. Challenges in Agrivoltaic System Application to Different Crops
1.4. Agrivoltaic System Challenges in Japan
2. Materials and Methods
2.1. Topographical Analysis and Layout
2.1.1. Experimental Farm A
2.1.2. Other Experimental Sites (Farm B, C, and D)
2.2. Meteorological Parameters
2.3. Crop Sampling and Yield
3. Results
3.1. Meteorological Data Analysis
3.2. Correlation between Shading Rate and Rice Productivity
3.3. Factors Affecting Rice Productivity
3.4. Electricity Generation Potential of Using Agrivoltaic Systems in Japan
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
MAFF | Ministry of Agriculture, Forestry and Fisheries |
IEEJ | Institute of Energy Economics, Japan |
FIT | Feed-in-Tariff |
PPFD | Photosynthetic Photon Flux Density |
PAR | Photosynthetically Active Radiation |
SPAD | Soil–Plant Analysis Development |
MWh | Megawatt-hour |
TWh | Terawatt-hour |
References
- Ministry of Economy, Trade and Industry (METI). Japan’s Energy 2016; METI: Tokyo, Japan, 2016; Available online: http://www.enecho.meti.go.jp/en/category/brochures/pdf/japan_energy_2016.pdf (accessed on 12 April 2019).
- Masson-Delmotte, V.; Zhai, P.; Pörtner, H.O.; Roberts, D.; Skea, J.; Shukla, P.R.; Pirani, A.; Moufouma-Okia, W.; Péan, C.; Pidcock, R.; et al. IPCC, 2018. Global Warming of 1.5 °C: Summary for Policy Makers; WMO, UNEP: Geneva, Switzerland, 2018; p. 32. [Google Scholar]
- Trencher, G.; Downie, C.; Hasegawa, K.; Asuka, J. Divestment trends in Japan’s international coal businesses. Renew. Sustain. Energy Rev. 2020, 124, 109779. [Google Scholar] [CrossRef]
- Trencher, G.; Healy, N.; Hasegawa, K.; Asuka, J. Discursive resistance to phasing out coal-fired electricity: Narratives in Japan’s coal regime. Energy Policy 2019, 132, 782–796. [Google Scholar] [CrossRef]
- Irie, N.; Kawahara, N.; Esteves, A.M. Sector-wide social impact scoping of agrivoltaic systems: A case study in Japan. Renew. Energy 2019, 139, 1463–1476. [Google Scholar] [CrossRef]
- Wakiyama, T.; Kuriyama, A. Assessment of renewable energy expansion potential and its implications on reforming Japan’s electricity system. Energy Policy 2018, 115, 302–316. [Google Scholar] [CrossRef]
- Kitamura, T.; Managi, S. Energy security and potential supply disruption: A case study in Japan. Energy Policy 2017, 110, 90–104. [Google Scholar] [CrossRef]
- Institute for Sustainable Energy Policies. Renewables 2016 Japan Status Report, Summary; Institute for Sustainable Energy Policies (ISEP): Tokyo, Japan, 2016; ISBN 0-8078-2851-3. [Google Scholar]
- Ogasawara, J. Electric Utility Industry Outlook and Challenges for 2018; The Institute of Energy Economics (IEEJ): Tokyo, Japan, 2018; pp. 2017–2019. [Google Scholar]
- Japan’s Commitment to Green Innovation. Available online: https://www.meti.go.jp/english/policy/energy_environment/global_warming/roadmap/innovation/jctgi.html (accessed on 20 March 2021).
- Brown, A. Photovoltaic win–win. Nat. Clim. Chang. 2019, 9, 7. [Google Scholar] [CrossRef]
- Dupraz, C.; Marrou, H.; Talbot, G.; Dufour, L.; Nogier, A.; Ferard, Y. Combining solar photovoltaic panels and food crops for optimising land use: Towards new agrivoltaic schemes. Renew. Energy 2011, 36, 2725–2732. [Google Scholar] [CrossRef]
- Carlini, M.; Honorati, T.; Castellucci, S. Photovoltaic greenhouses: Comparison of optical and thermal behaviour for energy savings. Math. Probl. Eng. 2012, 2012. [Google Scholar] [CrossRef]
- Poncet, C.; Muller, M.M.; Brun, R.; Fatnassi, H. Photovoltaic Greenhouses, Non-Sense or a Real Opportunity for the Greenhouse Systems? Acta Hortic. 2012, 927, 75–80. [Google Scholar] [CrossRef]
- Urena-Sanchez, R.; Callejon-Ferre, J.A.; Perez-Alonso, J.; Carreno-Ortega, A. Greenhouse tomato production with electricity generation by roof-mounted flexible solar panels. Sci. Agric. 2012, 69, 233–239. [Google Scholar] [CrossRef]
- Dupraz, C.; Talbot, G.; Marrou, H.; Wery, J.; Roux, S.; Liagre, F.; Ferard, Y.; Nogier, A.; INRA; UMR System; et al. To mix or not to mix: Evidences for the unexpected high productivity of new complex agrivoltaic and agroforestry systems. In Proceedings of the 5th World Congress of Conservation Agriculture incorporating 3rd Farming Systems Design Conference, Brisbane, Australia, 26–29 September 2011; pp. 5–7. [Google Scholar]
- Dinesh, H.; Pearce, J.M. The potential of agrivoltaic systems. Renew. Sustain. Energy Rev. 2016, 54, 299–308. [Google Scholar] [CrossRef] [Green Version]
- Carreño-Ortega, A.; Galdeano-Gómez, E.; Pérez-Mesa, J.C.; Galera-Quiles, M.D.C. Policy and environmental implications of photovoltaic systems in farming in southeast Spain: Can greenhouses reduce the greenhouse effect? Energies 2017, 10, 761. [Google Scholar] [CrossRef] [Green Version]
- Barron-Gafford, G.A.; Pavao-Zuckerman, M.A.; Minor, R.L.; Sutter, L.F.; Barnett-Moreno, I.; Blackett, D.T.; Thompson, M.; Dimond, K.; Gerlak, A.K.; Nabhan, G.P.; et al. Agrivoltaics provide mutual benefits across the food–energy–water nexus in drylands. Nat. Sustain. 2019, 2, 848–855. [Google Scholar] [CrossRef]
- Fami, H.S.; Ghasemi, J.; Malekipoor, R.; Rashidi, P.; Nazari, S.; Mirzaee, A. Renewable energy use in smallholder farming systems: A case study in tafresh township of Iran. Sustainability 2010, 2, 702–716. [Google Scholar] [CrossRef] [Green Version]
- Madeti, S.R.; Singh, S.N. Monitoring system for photovoltaic plants: A review. Renew. Sustain. Energy Rev. 2017, 67, 1180–1207. [Google Scholar] [CrossRef]
- Malu, P.R.; Sharma, U.S.; Pearce, J.M. Agrivoltaic potential on grape farms in India. Sustain. Energy Technol. Assess. 2017, 23, 104–110. [Google Scholar] [CrossRef] [Green Version]
- Sekiyama, T.; Nagashima, A. Solar Sharing for Both Food and Clean Energy Production: Performance of Agrivoltaic Systems for Corn, A Typical Shade-Intolerant Crop. Environments 2019, 6, 65. [Google Scholar] [CrossRef] [Green Version]
- Reca-Cardeña, J.; López-Luque, R. Chapter 9—Design Principles of Photovoltaic Irrigation Systems. In Advances in Renewable Energies and Power Technologies; Elsevier: Amsterdam, The Netherlands, 2018; pp. 295–333. [Google Scholar]
- Marucci, A.; Monarca, D.; Cecchini, M.; Colantoni, A.; Manzo, A.; Cappuccini, A. The semitransparent photovoltaic films for Mediterranean greenhouse: A new sustainable technology. Math. Probl. Eng. 2012, 2012. [Google Scholar] [CrossRef]
- Loik, M.E.; Carter, S.A.; Alers, G.; Wade, C.E.; Shugar, D.; Corrado, C.; Jokerst, D.; Kitayama, C. Wavelength-Selective Solar Photovoltaic Systems: Powering Greenhouses for Plant Growth at the Food-Energy-Water Nexus. Earth Future 2017, 5, 1044–1053. [Google Scholar] [CrossRef]
- Emmott, C.J.M.; Röhr, J.A.; Campoy-Quiles, M.; Kirchartz, T.; Urbina, A.; Ekins-Daukes, N.J.; Nelson, J. Organic photovoltaic greenhouses: A unique application for semi-transparent PV? Energy Environ. Sci. 2015, 8, 1317–1328. [Google Scholar] [CrossRef]
- Marrou, H.; Dufour, L.; Wery, J. How does a shelter of solar panels influence water flows in a soil-crop system? Eur. J. Agron. 2013, 50, 38–51. [Google Scholar] [CrossRef]
- Cockshull, K.E.; Graves, C.J.; Cave, C.R.J. The influence of shading on yield of glasshouse tomatoes. J. Hortic. Sci. 1992, 67, 11–24. [Google Scholar] [CrossRef]
- Marrou, H.; Guilioni, L.; Dufour, L.; Dupraz, C.; Wery, J. Microclimate under agrivoltaic systems: Is crop growth rate affected in the partial shade of solar panels? Agric. For. Meteorol. 2013, 177, 117–132. [Google Scholar] [CrossRef]
- Cossu, M.; Ledda, L.; Urracci, G.; Sirigu, A.; Cossu, A.; Murgia, L.; Pazzona, A.; Yano, A. An algorithm for the calculation of the light distribution in photovoltaic greenhouses. Sol. Energy 2017, 141, 38–48. [Google Scholar] [CrossRef]
- Adeh, E.H.; Selker, J.S.; Higgins, C.W. Remarkable agrivoltaic influence on soil moisture, micrometeorology and water-use efficiency. PLoS ONE 2018, 13, e0203256. [Google Scholar] [CrossRef] [Green Version]
- Weselek, A.; Ehmann, A.; Zikeli, S.; Lewandowski, I.; Schindele, S.; Högy, P. Agrophotovoltaic systems: Applications, challenges, and opportunities. A review. Agron. Sustain. Dev. 2019, 39. [Google Scholar] [CrossRef]
- Castilla, N. Greenhouse Technology and Management, 2nd ed.; CPI Group (UK) Ltd.: Granada, Spain, 2012. [Google Scholar]
- Aroca-Delgado, R.; Pérez-Alonso, J.; Callejón-Ferre, Á.J.; Velázquez-Martí, B. Compatibility between crops and solar panels: An overview from shading systems. Sustainability 2018, 10, 743. [Google Scholar] [CrossRef] [Green Version]
- Denholm, P.; Margolis, R.M. Land-use requirements and the per-capita solar footprint for photovoltaic generation in the United States. Energy Policy 2008, 36, 3531–3543. [Google Scholar] [CrossRef]
- Leon, A.; Ishihara, K.N. Assessment of new functional units for agrivoltaic systems. J. Environ. Manag. 2018, 226, 493–498. [Google Scholar] [CrossRef] [PubMed]
- Yildirim, N.; Bilir, L. Evaluation of a hybrid system for a nearly zero energy greenhouse. Energy Convers. Manag. 2017. [Google Scholar] [CrossRef]
- Amaducci, S.; Yin, X.; Colauzzi, M. Agrivoltaic systems to optimise land use for electric energy production. Appl. Energy 2018, 220, 545–561. [Google Scholar] [CrossRef]
- Marrou, H.; Wery, J.; Dufour, L.; Dupraz, C. Productivity and radiation use efficiency of lettuces grown in the partial shade of photovoltaic panels. Eur. J. Agron. 2013, 44, 54–66. [Google Scholar] [CrossRef]
- Valle, B.; Simonneau, T.; Sourd, F.; Pechier, P.; Hamard, P.; Frisson, T.; Ryckewaert, M.; Christophe, A. Increasing the total productivity of a land by combining mobile photovoltaic panels and food crops. Appl. Energy 2017, 206, 1495–1507. [Google Scholar] [CrossRef]
- Murchie, E.H. Acclimation of Rice Photosynthesis to Irradiance under Field Conditions. Plant Physiol. 2002, 130, 1999–2010. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kimura, K. Feed-in Tariffs in Japan: Five Years of Achievements and Future Challenges; Renewable Energy Institute: Tokyo, Japan, 2017. [Google Scholar]
- Elborg, M. Reducing Land Competition for Agriculture and Photovoltaic Energy Generation—A Comparison of Two Agro-Photovoltaic Plants in Japan. In Proceedings of the International Conference on Sustainable and Renewable Energy Development and Design vol. 3, SREDD2017, Mohithang Thimpu, Bhutan, 3–5 April 2017; Volume 6, pp. 418–422. [Google Scholar] [CrossRef]
- Ministry of Agriculture, Forestry and Fisheries (MAFF). FY 2014 Annual Report on Food, Agriculture and Rural Areas in Japan Summary; Ministry of Agriculture Forestry and Fisheries: Tokyo, Japan, 2015. [Google Scholar]
- Fang, X.; Li, Y.; Nie, J.; Wang, C.; Huang, K.; Zhang, Y.; Zhang, Y.; She, H.; Liu, X.; Ruan, R.; et al. Effects of nitrogen fertilizer and planting density on the leaf photosynthetic characteristics, agronomic traits and grain yield in common buckwheat (Fagopyrum esculentum M.). Field Crop. Res. 2018, 219, 160–168. [Google Scholar] [CrossRef]
- Dordas, C.A.; Sioulas, C. Safflower yield, chlorophyll content, photosynthesis, and water use efficiency response to nitrogen fertilization under rainfed conditions. Ind. Crop. Prod. 2008, 27, 75–85. [Google Scholar] [CrossRef]
- Sage, R.F.; Pearcy, R.W. The Nitrogen Use Efficiency of C3 and C4 Plants. Plant Physiol. 1987, 84, 959–963. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tamaki, M.; Tashiro, T.; Yamamoto, Y. Effect of Shading and Fertilized Nitrogen Levels on the Growth, Yield Components and Physicochemical Properties of Rice. Jpn. J. Crop Sci. 1997, 66, 708–709. [Google Scholar] [CrossRef] [Green Version]
- Liang, J.Y.; Chien, Y.H. Effects of photosynthetic photon flux density and photoperiod on water quality and crop production in a loach (Misgurnus anguillicandatus)-nest fern (Asplenium nidus) raft aquaponics system. Int. Biodeterior. Biodegrad. 2015, 102, 214–222. [Google Scholar] [CrossRef]
- Hosaka, M. Rice Objective Yield Survey in Japan. In Crop Monitoring for Improved Food Security, Proceedings of the Expert Meeting, Vientiane, Lao People’s Democratic Republic, 17 February 2014; FAO: Bangkok, Thailand; ADB: Bangkok, Thailand; pp. 149–156.
- Xiong, D.; Ling, X.; Huang, J.; Peng, S. Meta-analysis and dose-response analysis of high temperature effects on rice yield and quality. Environ. Exp. Bot. 2017, 141, 1–9. [Google Scholar] [CrossRef]
- Tani, A.; Shiina, S.; Nakashima, K.; Hayashi, M. Improvement in lettuce growth by light diffusion under solar panels. J. Agric. Meteorol. 2014, 70, 139–149. [Google Scholar] [CrossRef] [Green Version]
- Medrano, E.; Lorenzo, P.; García, M.L.; Caparrós, I.; Giménez, M. Influence of an External Greenhouse Mobile Shading on Tomato Crop Transpiration. Acta Hortic. 2004, 195–199. [Google Scholar] [CrossRef]
- García, M.L.; Medrano, E.; Sánchez-Guerrero, M.C.; Lorenzo, P. Climatic effects of two cooling systems in greenhouses in the Mediterranean area: External mobile shading and fog system. Biosyst. Eng. 2011, 108, 133–143. [Google Scholar] [CrossRef]
- Horie, T. Global warming and rice production in Asia: Modeling, impact prediction and adaptation. Proc. Jpn. Acad. Ser. B Phys. Biol. Sci. 2019, 95, 211–245. [Google Scholar] [CrossRef] [Green Version]
- Ahemd, H.A.; Al-Faraj, A.A.; Abdel-Ghany, A.M. Shading greenhouses to improve the microclimate, energy and water saving in hot regions: A review. Sci. Hortic. 2016. [Google Scholar] [CrossRef]
- Martin, M.; Fitzgerald, M.A.Ã. Proteins in Rice Grains Influence Cooking Properties! J. Cereal Sci. 2002, 36, 285–294. [Google Scholar] [CrossRef]
- Shibata, Y. How Can “Solar PV + Battery System” Be Economically Competitive and Reliable Power Generation; The Institute of Energy Economics (IEEJ): Tokyo, Japan, 2017; pp. 1–23. [Google Scholar]
- Fulton, M.; Carboy, M.; Cao, J.; Cotter, L. Japan: The Peoples’ Greener Choice; Deutsche Bank Group: Frankfurt am Main, Germany, 2011; pp. 1–49. [Google Scholar]
- Eto, R.; Okabayashi, H.; Aizawa, N.; Onda, C.; Iwata, T.; Shibata, Y.; Suehiro, S.; Yanagisawa, A.; Ito, K. Economic and Energy Outlook of Japan for FY2020 Leveled off Japan’s Economic Growth and Shift to Low Carbon; The Institute of Energy Economics (IEEJ): Tokyo, Japan, 2019; pp. 1–7. [Google Scholar]
- Nakano, R.; Miwa, T.; Morikawa, T. Comparative analysis on citizen’s subjective responses related to their willingness to pay for renewable energy in Japan using latent variables. Sustainability 2018, 10, 2423. [Google Scholar] [CrossRef] [Green Version]
- Mizuno, E. Overview of wind energy policy and development in Japan. Renew. Sustain. Energy Rev. 2014, 40, 999–1018. [Google Scholar] [CrossRef]
- Cherp, A.; Vinichenko, V.; Jewell, J.; Suzuki, M.; Antal, M. Comparing electricity transitions: A historical analysis of nuclear, wind and solar power in Germany and Japan. Energy Policy 2017, 101, 612–628. [Google Scholar] [CrossRef] [Green Version]
- Evans, L.T.; De Datta, S.K. The relation between irradiance and grain yield of irrigated rice in the tropics, as influenced by cultivar, nitrogen fertilizer application and month of planting. Field Crop. Res. 1979, 2, 1–17. [Google Scholar] [CrossRef]
- Adeh, E.H.; Good, S.P.; Calaf, M.; Higgins, C.W. Solar PV Power Potential is Greatest over Croplands. Sci. Rep. 2019, 9, 11442. [Google Scholar] [CrossRef]
- Ghosh, M.; Swain, D.K.; Jha, M.K.; Tewari, V.K. Precision nitrogen management using chlorophyll meter for Improving Growth, Productivity and N Use Efficiency of Rice in Subtropical Climate. J. Agric. Sci. 2013, 5. [Google Scholar] [CrossRef] [Green Version]
- Ravi, S.; Macknick, J.; Lobell, D.; Field, C.; Ganesan, K.; Jain, R.; Elchinger, M.; Stoltenberg, B. Colocation opportunities for large solar infrastructures and agriculture in drylands. Appl. Energy 2016, 165, 383–392. [Google Scholar] [CrossRef] [Green Version]
- Hernandez, R.R.; Easter, S.B.; Murphy-Mariscal, M.L.; Maestre, F.T.; Tavassoli, M.; Allen, E.B.; Barrows, C.W.; Belnap, J.; Ochoa-Hueso, R.; Ravi, S.; et al. Environmental impacts of utility-scale solar energy. Renew. Sustain. Energy Rev. 2014, 29, 766–779. [Google Scholar] [CrossRef] [Green Version]
- Tsoutsos, T.; Frantzeskaki, N.; Gekas, V. Environmental impacts from the solar energy technologies. Energy Policy 2005, 33, 289–296. [Google Scholar] [CrossRef]
- Rice Crops: Area Harvested, Yield and Production. 2017. Available online: http://www.fao.org/faostat/en/#data/QC (accessed on 9 July 2019).
- Organisation for Economic Cooperation and Development (OECD). Green Growth Studies; OECD Publishing: Paris, France, 2012; p. 104. ISBN 9789264115118. [Google Scholar]
- Thompson, E.P.; Bombelli, E.L.; Shubham, S.; Watson, H.; Everard, A.; D’Ardes, V.; Schievano, A.; Bocchi, S.; Zand, N.; Howe, C.J.; et al. Tinted Semi-Transparent Solar Panels Allow Concurrent Production of Crops and Electricity on the Same Cropland. Adv. Energy Mater. 2020, 10. [Google Scholar] [CrossRef]
- Liang, T.S.; Pravettoni, M.; Deline, C.; Stein, J.S.; Kopecek, R.; Singh, J.P.; Luo, W.; Wang, Y.; Aberle, A.G.; Khoo, Y.S. A review of crystalline silicon bifacial photovoltaic performance characterisation and simulation. Energy Environ. Sci. 2019, 12, 116–148. [Google Scholar] [CrossRef]
Early growth (heading) stage | Till number per plant | |
Plant height | ||
SPAD value of a flag leaf | ||
Harvest time | At harvesting | Panicle number per plant |
Panicle length | ||
Plant height | ||
SPAD value of a flag leaf | ||
After threshing and milling | Grain weight | |
Spikelet number per panicle | ||
Percentage of ripened grains | ||
Thousand grain weight | ||
Protein content | ||
Green kernelled rice ratio |
Farm | Year | Crop Sampling |
---|---|---|
Farm A | 2016 | Two bundles of 40 plants from each of the 18 experimental plots for measuring the grain weight, panicle number, panicle length, plant height, and SPAD value. In addition, another bundle of 10 plants from each of the18 plots for measuring spikelet number per panicle, percentage of ripened grains, and thousand grain weight. |
2017 | A bundle of 30 plants from each of the 18 experimental plots for measuring the grain weight, panicle number, panicle length, plant height, and SPAD value. In addition, another bundle of 15 plants from each of the 18 plots for measuring spikelet number per panicle, percentage of ripened grains, and thousand grain weight. | |
2018 | A bundle of 25 plants from each of the nine plots in the northern area of the site for measuring the grain weight, panicle number, panicle length, plant height, and SPAD value. In addition, a bundle of 15 plants from each of the same nine plots for measuring spikelet number per panicle, percentage of ripened grains, and thousand grain weight. | |
Farm B | 2014 | A bundle of 20 plants each from the two control plots and two shaded plots. |
2015 | ||
Farm C | 2014 | |
Farm D | 2017 | A bundle of 21 plants each from the one control plot and two shaded plots. |
2019 | A bundle of 25 plants each from the one control plot and one shaded plot. |
Strongly Shaded Plots | Weakly Shaded Plots | Control Plots | Top Surface of Panel | ||
---|---|---|---|---|---|
Air Temperature in Daytime * (°C) | Mean | 28.3 | 28.4 | 28.5 | - |
Standard Deviation | 4.2 | 4.5 | 4.5 | - | |
PPFD ** (μmol m−2 d−1) | Mean | 194 | 236 | 275 | 297 |
Max | 2166 | 2265 | 2413 | 2482 | |
Shading Rate | 34.5% | 20.4% | 7.4% | - |
Farm | Year | Number of Samples for ANOVA | Shading | Fertilization | Interaction of Shading and Fertilization |
---|---|---|---|---|---|
Farm A | 2016 | 18 | * | * | n.s. |
2017 | 18 | ** | ** | n.s. | |
2018 | 9 | n.s. | - | - | |
Farm B | 2014 | 7 | n.s. | - | - |
2015 | 9 | * | - | - | |
Farm C | 2014 | 7 | * | - | - |
Farm A 2016 | Farm A 2017 | Farm A 2018 | Farm B 2014 | Farm B 2015 | Farm C 2014 | Farm D 2017 | Farm D 2019 | ||
---|---|---|---|---|---|---|---|---|---|
Shading rate | 35%, 20% | 35%, 20% | 35%, 20% | 39% | 39% | 45% | 40% | 40% | |
Fertilizer | Chemical | Chemical | Chemical | Chemical | Chemical | Chemical | Organic | Organic | |
Cultivar | Nihonbare | Koshi-hikari | Koshi-hikari | Kinu-musume | Kinu-musume | Aichino-kaori | Koshi-hikari | Koshi-hikari | |
Harvest time (Quantity) | Panicle number per plant | ** (n = 485) | ** (n = 432) | n.s (n = 225) | n.a. | * (n = 10) | n.a. | ** (n = 63) | n.s. (n = 50) |
Spikelet number per panicle | n.s. (n = 18) | n.s. (n = 18) | n.s. (n = 9) | n.a. | n.a. | n.a. | n.a. | n.a. | |
Percentage of ripened grains | n.s. (n = 18) | n.s. (n = 18) | n.s. (n = 9) | n.s. (n = 8) | n.s. (n = 10) | n.s. (n = 8) | n.a. | n.a. | |
Thousand kernel weight | n.s. (n = 18) | n.s. (n = 18) | n.s. (n = 9) | * (n = 8) | n.s. (n = 10) | n.s. (n = 8) | n.a. | n.a. | |
Panicle length | ** (n = 486) | ** (n = 432) | * (n = 225) | n.s (n = 18) | n.s (n = 10) | n.s (n = 18) | n.s. (n = 63) | n.a. | |
Plant height | n.s. (n = 485) | ** (n = 432) | n.s. (n = 225) | n.s. (n = 18) | n.s. (n = 10) | n.s. (n = 18) | ** (n = 63) | n.a. | |
SPAD value | ** (n = 485) | ** (n = 270) | ** (n = 162) | * (n = 18) | * (n = 10) | n.s. (n = 18) | n.a. | n.a. | |
Harvest time (Quality) | Protein content | n.s. (n = 36) | ** (n = 18) | n.s. (n = 9) | * (n = 8) | * (n = 10) | * (n = 8) | n.a. | n.a. |
Green kernelled rice ratio | n.s. (n = 36) | n.s. (n = 18) | n.s. (n = 9) | * (n = 8) | n.s. (n = 10) | * (n = 8) | n.a. | n.a. | |
Early growth (heading) stage | Till number | n.s. (n = 54) | ** (n = 431) | n.s. (n = 144) | n.a. | n.a. | n.a. | n.s. (n = 30) | n.a. |
Plant height | ** (n = 54) | ** (n = 216) | n.a. | n.a. | n.a. | n.a. | n.s. (n = 30) | n.a. | |
SPAD value | * (n = 54) | n.a. | n.a. | n.a. | n.a. | n.a. | n.a. | n.a. |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gonocruz, R.A.; Nakamura, R.; Yoshino, K.; Homma, M.; Doi, T.; Yoshida, Y.; Tani, A. Analysis of the Rice Yield under an Agrivoltaic System: A Case Study in Japan. Environments 2021, 8, 65. https://doi.org/10.3390/environments8070065
Gonocruz RA, Nakamura R, Yoshino K, Homma M, Doi T, Yoshida Y, Tani A. Analysis of the Rice Yield under an Agrivoltaic System: A Case Study in Japan. Environments. 2021; 8(7):65. https://doi.org/10.3390/environments8070065
Chicago/Turabian StyleGonocruz, Ruth Anne, Ren Nakamura, Kota Yoshino, Masaru Homma, Tetsuya Doi, Yoshikuni Yoshida, and Akira Tani. 2021. "Analysis of the Rice Yield under an Agrivoltaic System: A Case Study in Japan" Environments 8, no. 7: 65. https://doi.org/10.3390/environments8070065
APA StyleGonocruz, R. A., Nakamura, R., Yoshino, K., Homma, M., Doi, T., Yoshida, Y., & Tani, A. (2021). Analysis of the Rice Yield under an Agrivoltaic System: A Case Study in Japan. Environments, 8(7), 65. https://doi.org/10.3390/environments8070065