Performance of a Woodchip Bioreactor for the Treatment of Nitrate-Laden Agricultural Drainage Water in Northeastern Germany
Abstract
1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Hydraulic Conditions in the Woodchip Bioreactor
3.2. Impact of the Woodchip Bioreactor on Nutrient Loads (N, o-PO4-P, OC)
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Carpenter, S.R.; Caraco, N.F.; Correll, D.L.; Howarth, R.W.; Sharpley, A.N.; Smith, V.H. Nonpoint pollution of surface waters with phosphorus and nitrogen. Ecol. Appl. 1998, 8, 559–568. [Google Scholar] [CrossRef]
- Howarth, R.W.; Sharpley, A.; Walker, D. Sources of nutrient pollution to coastal waters in the United States: Implications for achieving coastal water quality goals. Estuaries 2002, 25, 656–676. [Google Scholar] [CrossRef]
- Bauwe, A.; Kahle, P.; Tiemeyer, B.; Lennartz, B. Hydrology is the key factor for nitrogen export from tile-drained catchments under consistent land-management. Environ. Res. Lett. 2020. [Google Scholar] [CrossRef]
- Kovacic, D.A.; David, M.B.; Gentry, L.E.; Starks, K.M.; Cooke, R.A. Effectiveness of Constructed Wetlands in Reducing Nitrogen and Phosphorus Export from Agricultural Tile Drainage. J. Environ. Qual. 2000, 29, 1262–1274. [Google Scholar] [CrossRef]
- David, M.B.; Gentry, L.E.; Cooke, R.A.; Herbstritt, S.M. Temperature and Substrate Control Woodchip Bioreactor Performance in Reducing Tile Nitrate Loads in East-Central Illinois. J. Environ. Qual. 2016, 45, 822–829. [Google Scholar] [CrossRef] [PubMed]
- Hoover, N.L.; Bhandari, A.; Soupir, M.L.; Moorman, T.B. Woodchip Denitrification Bioreactors: Impact of Temperature and Hydraulic Retention Time on Nitrate Removal. J. Environ. Qual. 2016, 45, 803–812. [Google Scholar] [CrossRef] [PubMed]
- Christianson, L.E.; Bhandari, A.; Helmers, M.J.; Kult, K.J.; Sutphin, T. Performance Evaluation of Four Field-Scale Agricultural Drainage Denitrification Bioreactors in Iowa. Trans. Asabe 2012, 55, 2163–2174. [Google Scholar] [CrossRef]
- Kleimeier, C.; Liu, H.; Rezanezhad, F.; Lennartz, B. Nitrate Attenuation in Degraded Peat Soil-Based Constructed Wetlands. Water 2018, 10, 355. [Google Scholar] [CrossRef]
- Rivett, M.O.; Buss, S.R.; Morgan, P.; Smith, J.W.N.; Bemment, C.D. Nitrate attenuation in groundwater: A review of biogeochemical controlling processes. Water Res. 2008, 42, 4215–4232. [Google Scholar] [CrossRef] [PubMed]
- Christianson, L.; Helmers, M.; Bhandari, A.; Moorman, T. Internal hydraulics of an agricultural drainage denitrification bioreactor. Ecol. Eng. 2013, 52, 298–307. [Google Scholar] [CrossRef]
- Ghane, E.; Feyereisen, G.W.; Rosen, C.J. Efficacy of bromide tracers for evaluating the hydraulics of denitrification beds treating agricultural drainage water. J. Hydrol. 2019, 574, 129–137. [Google Scholar] [CrossRef]
- Christianson, L.; Christianson, R.; Helmers, M.; Pederson, C.; Bhandari, A. Modeling and Calibration of Drainage Denitrification Bioreactor Design Criteria. J. Irrig. Drain. Eng. 2013, 139, 699–709. [Google Scholar] [CrossRef]
- Christianson, L.; Castelló, A.; Christianson, R.; Helmers, M.; Bhandari, A. Technical Note: Hydraulic Property Determination of Denitrifying Bioreactor Fill Media. Appl. Eng. Agric. 2010, 26, 849–854. [Google Scholar] [CrossRef]
- Headley, T.R.; Kadlec, R.H. Conducting hydraulic tracer studies of constructed wetlands: A practical guide. Ecohydrol. Hydrobiol. 2007, 7, 269–282. [Google Scholar] [CrossRef]
- Hillel, D. Environmental Soil Physics; AP Academic Press: San Diego, CA, USA, 1998; ISBN 9780123485250. [Google Scholar]
- Metcalf and Eddy Inc. Wastewater Engineering. Treatment and Resource Recovery, 5th ed.; McGraw-Hill: New York, NY, USA, 2014; ISBN 9781259010798. [Google Scholar]
- Christianson, L.; Feyereisen, G.W.; Hay, C.; Tschirner, U.W.; Kult, K.; Wickramarathne, N.M.; Hoover, N.; Soupir, M.L. Denitrifying Bioreactor Woodchip Recharge: Media Properties after Nine Years. Trans. ASABE 2020, 63, 407–416. [Google Scholar] [CrossRef]
- Welander, U.; Mattiasson, B. Denitrification at low temperatures using a suspended carrier biofilm process. Water Res. 2003, 37, 2394–2398. [Google Scholar] [CrossRef]
- Feyereisen, G.W.; Moorman, T.B.; Christianson, L.E.; Venterea, R.T.; Coulter, J.A.; Tschirner, U.W. Performance of Agricultural Residue Media in Laboratory Denitrifying Bioreactors at Low Temperatures. J. Environ. Qual. 2016, 45, 779–787. [Google Scholar] [CrossRef] [PubMed]
- Hao, Z.; Sun, M.; Ducoste, J.J.; Benson, C.H.; Luettich, S.; Castaldi, M.J.; Barlaz, M.A. Heat Generation and Accumulation in Municipal Solid Waste Landfills. Environ. Sci. Technol. 2017, 51, 12434–12442. [Google Scholar] [CrossRef] [PubMed]
- Soupir, M.L.; Hoover, N.L.; Moorman, T.B.; Law, J.Y.; Bearson, B.L. Impact of temperature and hydraulic retention time on pathogen and nutrient removal in woodchip bioreactors. Ecol. Eng. 2018, 112, 153–157. [Google Scholar] [CrossRef]
Parameter | 2017/2018 | 2018/2019 | 2019/2020 |
---|---|---|---|
Air temperature (°C) | 3.1 | 4.8 | 5.3 |
Water temperature (°C) | 4.9 | 10.3 | 7.1 |
Redox potential E0 at inlet 1 (mV) | +145 | +286 | +190 |
Redox potential E0 at inlet 2 (mV) | −185 | −137 | −204 |
Hydraulic retention time tn (d) | 3.2 | 3.8 | 3.1 |
NO3−-N in inflow (mg L−1) | 15.1 | 16.3 | 5.8 |
NO3−-N in outflow (mg L−1) | 1.0 | 3.5 | 0.5 |
NO3−-N removal rate (g m−3 d−1) | 2.31 | 0.78 | 0.75 |
NO3−-N removal efficiency (%) | 90.2 | 51.0 | 84.8 |
NO3−-N in outflow (g) | 2099.9 | 1132.1 | 1229.4 |
(percentage of inflow) | (9.8%) | (49.0%) | (15.2%) |
NO2−-N in outflow (g) | 2385.0 | 50.3 | 57.3 |
(percentage of inflow) | (854.6%) | (136.0%) | (189.8%) |
TNb in outflow (g) | No data | 1234.8 | 4651.5 |
(percentage of inflow) | (50.3%) | (41.9%) | |
PO43−-P in outflow (g) | 419.8 | 0.5 | 16.8 |
(percentage of inflow) | (530.2%) | (34.4%) | (17.3%) |
TOC in outflow (g) | 36,786.6 | 5676.5 | 39,840.1 |
(percentage of inflow) | (197.8%) | (169.7%) | (145.6%) |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gosch, L.; Liu, H.; Lennartz, B. Performance of a Woodchip Bioreactor for the Treatment of Nitrate-Laden Agricultural Drainage Water in Northeastern Germany. Environments 2020, 7, 71. https://doi.org/10.3390/environments7090071
Gosch L, Liu H, Lennartz B. Performance of a Woodchip Bioreactor for the Treatment of Nitrate-Laden Agricultural Drainage Water in Northeastern Germany. Environments. 2020; 7(9):71. https://doi.org/10.3390/environments7090071
Chicago/Turabian StyleGosch, Lennart, Haojie Liu, and Bernd Lennartz. 2020. "Performance of a Woodchip Bioreactor for the Treatment of Nitrate-Laden Agricultural Drainage Water in Northeastern Germany" Environments 7, no. 9: 71. https://doi.org/10.3390/environments7090071
APA StyleGosch, L., Liu, H., & Lennartz, B. (2020). Performance of a Woodchip Bioreactor for the Treatment of Nitrate-Laden Agricultural Drainage Water in Northeastern Germany. Environments, 7(9), 71. https://doi.org/10.3390/environments7090071