Sustainable Soybean Production Using Residual Vermicompost Inputs in Corn-Soybean Rotation
Abstract
1. Introduction
2. Materials and Methods
2.1. Site Description and Experimental Design
2.2. Plant Growth and Physiology Measurements
2.3. Plant and Soil Sampling Procedures
2.4. Statistical Analysis
3. Results
3.1. Soil Physicochemical Properties
3.2. Plant Nutrient Content
3.3. Relative Chlorophyll Content
3.4. Stomatal Conductance
3.5. Biomass and Yield
4. Discussion
4.1. Soil Physicochemical Properties
4.2. Plant Chemical Analysis
4.3. Relative Chlorophyll Content
4.4. Stomatal Conductance
4.5. Biomass and Yield
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kudełka, W.; Kowalska, M.; Popis, M. Quality of Soybean Products in Terms of Essential Amino Acids Composition. Molecules 2021, 26, 5071. [Google Scholar] [CrossRef]
- Guo, B.; Sun, L.; Jiang, S.; Ren, H.; Sun, R.; Wei, Z.; Hong, H.; Luan, X.; Wang, J.; Wang, X.; et al. Soybean genetic resources contributing to sustainable protein production. Theor. Appl. Genet. 2022, 135, 4095–4121. [Google Scholar] [CrossRef]
- Messina, M. Perspective: Soybeans Can Help Address the Caloric and Protein Needs of a Growing Global Population. Front. Nutr. 2022, 9, 909464. [Google Scholar] [CrossRef]
- USDA. Production—Soybeans. Available online: https://www.fas.usda.gov/data/production/commodity/2222000 (accessed on 10 January 2025).
- Xie, W.; Wang, Q.; Guo, L.; Zhang, Q. Improved Biodiesel Production from Soybean Oil Using Molybdenum-Zirconium Doped Aluminosilicates as Heterogeneous Catalysts. BioEnergy Res. 2024, 17, 532–546. [Google Scholar] [CrossRef]
- Abd-Alla, M.H.; Al-Amri, S.M.; El-Enany, A.-W.E. Enhancing Rhizobium–Legume Symbiosis and Reducing Nitrogen Fertilizer Use Are Potential Options for Mitigating Climate Change. Agriculture 2023, 13, 2092. [Google Scholar] [CrossRef]
- Mahmud, K.; Makaju, S.; Ibrahim, R.; Missaoui, A. Current Progress in Nitrogen Fixing Plants and Microbiome Research. Plants 2020, 9, 97. [Google Scholar] [CrossRef] [PubMed]
- Neupane, A.; Bulbul, I.; Wang, Z.; Lehman, R.M.; Nafziger, E.; Marzano, S.L. Long term crop rotation effect on subsequent soybean yield explained by soil and root-associated microbiomes and soil health indicators. Sci. Rep. 2021, 11, 9200. [Google Scholar] [CrossRef]
- Yang, Y.; Zou, J.; Huang, W.; Olesen, J.E.; Li, W.; Rees, R.M.; Harrison, M.T.; Feng, B.; Feng, Y.; Chen, F. Drivers of soybean-based rotations synergistically increase crop productivity and reduce GHG emissions. Agric. Ecosyst. Environ. 2024, 372, 109094. [Google Scholar] [CrossRef]
- e Silva, J.A.G.; de Pinho Costa, K.A.; da Silva, L.M.; da Costa Severiano, E.; Silva, F.G.; Habermann, E.; Martinez, C.A.; Vilela, L.; da Silva, A.G.; Costa, A.C.; et al. Integrated systems improve the sustainability of soybean cultivation in the tropical region. Front. Sustain. Food Syst. 2023, 7, 1224530. [Google Scholar] [CrossRef]
- Simon-Miquel, G.; Reckling, M.; Lampurlanés, J.; Plaza-Bonilla, D. A win-win situation—Increasing protein production and reducing synthetic N fertilizer use by integrating soybean into irrigated Mediterranean cropping systems. Eur. J. Agron. 2023, 146, 126817. [Google Scholar] [CrossRef]
- Kravchenko, A.N.; Snapp, S.S.; Robertson, G.P. Field-scale experiments reveal persistent yield gaps in low-input and organic cropping systems. Proc. Natl. Acad. Sci. USA 2017, 114, 926–931. [Google Scholar] [CrossRef]
- Oyege, I.; Bhaskar, M.S.B. Effects of vermicompost on soil and plant health and promoting sustainable agriculture. Soil Syst. 2023, 7, 101. [Google Scholar] [CrossRef]
- Pathma, J.; Sakthivel, N. Microbial diversity of vermicompost bacteria that exhibit useful agricultural traits and waste management potential. Springerplus 2012, 1, 26. [Google Scholar] [CrossRef] [PubMed]
- Belbase, P.; Jayachandran, K.; Balaji Bhaskar, M.S. Assessment of Soil and Plant Nutrient Status, Spectral Reflectance, and Growth Performance of Various Dragon Fruit (Pitaya) Species Cultivated Under High Tunnel Systems. Soil Syst. 2025, 9, 75. [Google Scholar] [CrossRef]
- Yatoo, A.M.; Ali, M.N.; Baba, Z.A.; Hassan, B. Sustainable management of diseases and pests in crops by vermicompost and vermicompost tea. A review. Agron. Sustain. Dev. 2021, 41, 7. [Google Scholar] [CrossRef]
- Rehman, S.U.; De Castro, F.; Aprile, A.; Benedetti, M.; Fanizzi, F.P. Vermicompost: Enhancing Plant Growth and Combating Abiotic and Biotic Stress. Agronomy 2023, 13, 1134. [Google Scholar] [CrossRef]
- Oyege, I.; Balaji Bhaskar, M.S. Residual Impacts of Vermicompost-Derived Nutrients on a Strawberry–Corn Double Cropping System Under Plasticulture in South Florida. Environments 2025, 12, 171. [Google Scholar] [CrossRef]
- Deb, P.; Mandal, A.; Harendra; Choudhury, S.R.; Das, A.; Hazra, S.; Mukherjee, A.; Ghosh, D.; Choudhury, S.; Santra, S.C.; et al. Improving Plant Nutrient Use Efficiency for Climate-Resilient Agriculture. In Climate-Resilient Agriculture, Volume 2: Agro-Biotechnological Advancement for Crop Production; Hasanuzzaman, M., Ed.; Springer International Publishing: Cham, Switzerland, 2023; pp. 209–243. [Google Scholar]
- Kabato, W.; Getnet, G.T.; Sinore, T.; Nemeth, A.; Molnár, Z. Towards Climate-Smart Agriculture: Strategies for Sustainable Agricultural Production, Food Security, and Greenhouse Gas Reduction. Agronomy 2025, 15, 565. [Google Scholar] [CrossRef]
- Lipper, L.; Thornton, P.; Campbell, B.M.; Baedeker, T.; Braimoh, A.; Bwalya, M.; Caron, P.; Cattaneo, A.; Garrity, D.; Henry, K. Climate-smart agriculture for food security. Nat. Clim. Change 2014, 4, 1068–1072. [Google Scholar] [CrossRef]
- Oyege, I.; Balaji Bhaskar, M.S. The Role of Vermicompost and Vermicompost Tea in Sustainable Corn Production and Fall Armyworm Suppression. Agriculture 2025, 15, 1433. [Google Scholar] [CrossRef]
- Oyege, I.; Bhaskar, M.S.B. Evaluation of vermicompost and vermicompost tea application on corn (Zea mays) growth and physiology using optical plant sensors. J. Plant Nutr. 2024, 48, 1275–1293. [Google Scholar] [CrossRef]
- Xiao, Y.; Zhou, M.; Li, Y.; Zhang, X.; Wang, G.; Jin, J.; Ding, G.; Zeng, X.; Liu, X. Crop Residue Return Rather Than Organic Manure Increases Soil Aggregate Stability under Corn–Soybean Rotation in Surface Mollisols. Agriculture 2022, 12, 265. [Google Scholar] [CrossRef]
- Lei, J.; Su, Y.; Jian, S.; Guo, X.; Yuan, M.; Bates, C.T.; Shi, Z.J.; Li, J.; Su, Y.; Ning, D.; et al. Warming effects on grassland soil microbial communities are amplified in cool months. ISME J. 2024, 18, wrae088. [Google Scholar] [CrossRef]
- Souffront, D.K.S.; Salazar-Amoretti, D.; Jayachandran, K. Influence of vermicompost tea on secondary metabolite production in tomato crop. Sci. Hortic. 2022, 301, 111135. [Google Scholar] [CrossRef]
- Hall, S.J.; Russell, A.E.; Moore, A.R. Do corn-soybean rotations enhance decomposition of soil organic matter? Plant Soil 2019, 444, 427–442. [Google Scholar] [CrossRef]
- Huang, X.; Yuan, J.; Chen, Y.; Yang, X.; Lu, W.; Ding, S.; Jiang, Y.; Zhou, X.; Mi, G.; Xu, J.; et al. Long-term cropping rotation with soybean enhances soil health as evidenced by improved nutrient cycles through keystone phylotypes interaction. Soil Ecol. Lett. 2024, 6, 240251. [Google Scholar] [CrossRef]
- Wang, M.; Ge, A.-H.; Ma, X.; Wang, X.; Xie, Q.; Wang, L.; Song, X.; Jiang, M.; Yang, W.; Murray, J.D.; et al. Dynamic root microbiome sustains soybean productivity under unbalanced fertilization. Nat. Commun. 2024, 15, 1668. [Google Scholar] [CrossRef]
- Al-Musawi, Z.K.; Vona, V.; Kulmány, I.M. Utilizing Different Crop Rotation Systems for Agricultural and Environmental Sustainability: A Review. Agronomy 2025, 15, 1966. [Google Scholar] [CrossRef]
- Kebede, E. Contribution, Utilization, and Improvement of Legumes-Driven Biological Nitrogen Fixation in Agricultural Systems. Front. Sustain. Food Syst. 2021, 5, 767998. [Google Scholar] [CrossRef]
- Coskun, D.; Britto, D.T.; Shi, W.; Kronzucker, H.J. How plant root exudates shape the nitrogen cycle. Trends Plant Sci. 2017, 22, 661–673. [Google Scholar] [CrossRef]
- Blesh, J. Feedbacks between nitrogen fixation and soil organic matter increase ecosystem functions in diversified agroecosystems. Ecol. Appl. 2019, 29, e01986. [Google Scholar] [CrossRef]
- Gelfand, I.; Philip Robertson, G. A reassessment of the contribution of soybean biological nitrogen fixation to reactive N in the environment. Biogeochemistry 2015, 123, 175–184. [Google Scholar] [CrossRef]
- Sun, H.; Jiang, S.; Jiang, C.; Wu, C.; Gao, M.; Wang, Q. A review of root exudates and rhizosphere microbiome for crop production. Environ. Sci. Pollut. Res. 2021, 28, 54497–54510. [Google Scholar] [CrossRef]
- Fan, X.; Ge, A.-H.; Qi, S.; Guan, Y.; Wang, R.; Yu, N.; Wang, E. Root exudates and microbial metabolites: Signals and nutrients in plant-microbe interactions. Sci. China Life Sci. 2025, 68, 2290–2302. [Google Scholar] [CrossRef] [PubMed]
- Vives-Peris, V.; de Ollas, C.; Gómez-Cadenas, A.; Pérez-Clemente, R.M. Root exudates: From plant to rhizosphere and beyond. Plant Cell Rep. 2020, 39, 3–17. [Google Scholar] [CrossRef] [PubMed]
- Domínguez, J.; Aira, M.; Kolbe, A.R.; Gómez-Brandón, M.; Pérez-Losada, M. Changes in the composition and function of bacterial communities during vermicomposting may explain beneficial properties of vermicompost. Sci. Rep. 2019, 9, 9657. [Google Scholar] [CrossRef]
- García-Pérez, P.; De Gregorio, M.; Capri, E.; Lucini, L. Coordinated Metabolic and Phenotypic Reprogramming in Response to Vermicompost Priming Supports a Promising Sustainable Alternative for the Fortification of Microgreens. J. Soil Sci. Plant Nutr. 2025, 25, 7782–7794. [Google Scholar] [CrossRef]
- Choudhary, S.; Wani, K.I.; Naeem, M.; Khan, M.M.A.; Aftab, T. Cellular Responses, Osmotic Adjustments, and Role of Osmolytes in Providing Salt Stress Resilience in Higher Plants: Polyamines and Nitric Oxide Crosstalk. J. Plant Growth Regul. 2023, 42, 539–553. [Google Scholar] [CrossRef]
- Leung, H.-S.; Chan, L.-Y.; Law, C.-H.; Li, M.-W.; Lam, H.-M. Twenty years of mining salt tolerance genes in soybean. Mol. Breed. 2023, 43, 45. [Google Scholar] [CrossRef]
- Chen, H.; Chen, X.; Gu, H.; Wu, B.; Zhang, H.; Yuan, X.; Cui, X. GmHKT1;4, a novel soybean gene regulating Na+/K+ ratio in roots enhances salt tolerance in transgenic plants. Plant Growth Regul. 2014, 73, 299–308. [Google Scholar] [CrossRef]
- Cruz, G.S.J.; Hermes, P.H.; Miriam, S.V.; López, A.M. Benefits of Vermicompost in Agriculture and Factors Affecting its Nutrient Content. J. Soil Sci. Plant Nutr. 2024, 24, 4898–4917. [Google Scholar] [CrossRef]
- Thomas, A.; Yadav, B.K.; Šimůnek, J. Root water uptake under heterogeneous soil moisture conditions: An experimental study for unraveling compensatory root water uptake and hydraulic redistribution. Plant Soil 2020, 457, 421–435. [Google Scholar] [CrossRef]
- Zhang, W.-P.; Surigaoge, S.; Yang, H.; Yu, R.-P.; Wu, J.-P.; Xing, Y.; Chen, Y.; Li, L. Diversified cropping systems with complementary root growth strategies improve crop adaptation to and remediation of hostile soils. Plant Soil 2024, 502, 7–30. [Google Scholar] [CrossRef]
- Patnaik, P.; Artala, A.; Abbasi, S.A.; Tabassum-Abbasi; Abbasi, T. An Emerging Organic Fertilizer-Cum-Pest Repellant: Vermicompost Tea; Springer: Singapore, 2022; pp. 225–231. [Google Scholar]
- Suhani, I.; de Araujo, A.S.F.; Kothari, R.; Vaish, B.; Singh, R.P. Investigating the Effect of Compost and Vermicompost on Wheat Plants and Soil Health Under Natural Salt Affected Field Conditions. Int. J. Environ. Res. 2024, 19, 42. [Google Scholar] [CrossRef]
- Mehrabi, F.; Sepaskhah, A.R. Leaf Nitrogen, Based on SPAD Chlorophyll Reading Can Determine Agronomic Parameters of Winter Wheat. Int. J. Plant Prod. 2022, 16, 77–91. [Google Scholar] [CrossRef]
- Ievinsh, G. Review on Physiological Effects of Vermicomposts on Plants. In Biology of Composts; Meghvansi, M.K., Varma, A., Eds.; Springer International Publishing: Cham, Switzerland, 2020; pp. 63–86. [Google Scholar]
- Dalorima, T.L.; Zakaria, A.J.; Majrashi, A.; Mahmud, K.; Mohd, K.S.; Muhammad, H.; Khandaker, M.M. Impacts of vermicomposting rates on growth, yield and qualities of red seedless watermelon. Aust. J. Crop Sci. 2018, 12, 1765–1773. [Google Scholar] [CrossRef]
- Savchenko, E.D. Soybean cultivation in short rotation organic crop rotation under different fertilisation systems. Agric. Plant Sci. Theory Pract. 2024, 2, 16–19. [Google Scholar] [CrossRef]
- USDA. 2023 State Agriculture Overview Georgia. Available online: https://www.nass.usda.gov/Quick_Stats/Ag_Overview/stateOverview.php?state=GEORGIA (accessed on 21 November 2024).
- Hokazono, S.; Hayashi, K. Comparative Life Cycle Assessment of Organic and Conventional Soybean Production in Paddy Fields under Rotational Cropping. J. Life Cycle Assess. Jpn. 2012, 8, 2–13. [Google Scholar] [CrossRef]
Treatment | pH | N (%) | P (%) | K (%) | Ca (mg kg−1) | Mg (mg kg−1) | Zn (mg kg−1) | Na (mg kg−1) | C (%) | OM (%) | CEC (cmol kg−1) |
---|---|---|---|---|---|---|---|---|---|---|---|
VC a | 7.5 | 1.55 | 0.176 | 0.502 | 1831 | 1391 | 30.5 | 296 | 22.8 | 39.3 | 33.6 |
Surface soils (0–10 cm) | |||||||||||
V0 | 7.83 a | 0.09 b | 0.002 b | 0.001 b | 267 b | 43 b | 1.6 b | 2.0 b | 1.80 c | 3.1 c | 1.7 b |
VCT10 | 7.77 a | 0.69 a | 0.018 a | 0.010 a | 2517 a | 385 a | 17.0 a | 19.5 a | 12.4 ab | 21.3 ab | 16.0 a |
VCT20 | 7.83 a | 0.80 a | 0.017 a | 0.008 a | 2578 a | 368 a | 17.0 a | 18.7 a | 14.2 ab | 24.4 ab | 16.2 a |
VCT40 | 7.77 a | 0.86 a | 0.016 a | 0.009 a | 2694 a | 373 a | 14.1 a | 17.2 a | 17.6 a | 30.2 a | 16.8 a |
VC1+VCT10 | 7.77 a | 0.72 a | 0.018 a | 0.009 a | 2676 a | 372 a | 16.3 a | 15.2 a | 13.1 ab | 22.6 ab | 16.7 a |
VC1+VCT20 | 7.9 a | 0.62 a | 0.017 a | 0.008 a | 2579 a | 356 a | 15.1 a | 21.2 a | 11.0 b | 18.9 b | 16.1 a |
VC1+VCT40 | 7.83 a | 0.85 a | 0.019 a | 0.010 a | 2641 a | 397 a | 15.7 a | 21.8 a | 15.0 ab | 25.8 ab | 16.8 a |
Subsurface soils (10–20 cm) | |||||||||||
V0 | 7.87 ab | 0.08 b | 0.002 c | 0.002 c | 237 b | 55 b | 1.5 b | 3.3 b | 1.5 c | 2.6 c | 1.7 c |
VCT10 | 7.87 ab | 0.88 a | 0.018 ab | 0.009 b | 2409 a | 432 a | 13.8 a | 17.6 a | 15.4 ab | 26.4 ab | 15.9 ab |
VCT20 | 7.80 ab | 0.77 a | 0.018 ab | 0.009 b | 2505 a | 457 a | 14.6 a | 19.3 a | 13.5 ab | 23.1 ab | 16.6 ab |
VCT40 | 7.73 b | 0.83 a | 0.017 b | 0.010 b | 2416 a | 503 a | 15.4 a | 21.7 a | 16.1 a | 27.8 a | 16.5 a |
VC1+VCT10 | 7.93 ab | 0.69 a | 0.019 ab | 0.011 b | 2512 a | 488 a | 15.1 b | 20.9 a | 12.0 b | 20.6 b | 16.9 b |
VC1+VCT20 | 7.93 ab | 0.78 a | 0.024 a | 0.018 a | 2609 a | 590 a | 16.6 a | 25.0 a | 13.7 ab | 23.6 ab | 18.4 ab |
VC1+VCT40 | 7.97 a | 0.70 a | 0.019 ab | 0.012 b | 2442 a | 474 a | 20.0 a | 21.8 a | 12.2 b | 21.0 b | 16.5 b |
Treatment | pH | N (%) | P (%) | K (%) | Ca (mg kg−1) | Mg (mg kg−1) | Zn (mg kg−1) | Na (mg kg−1) | C (%) | OM (%) | CEC (cmol kg−1) |
---|---|---|---|---|---|---|---|---|---|---|---|
Surface soil (0–10 cm) | |||||||||||
V0 | 7.57 a | 0.41 c | 0.011 c | 0.006 b | 1761 c | 283 c | 10.84 c | 11.16 b | 8.13 b | 13.98 b | 11.32 c |
VCT10 | 7.40 a | 0.65 b | 0.020 ab | 0.010 ab | 2816 b | 377 ab | 19.37 a | 19.52 ab | 12.41 ab | 21.34 ab | 17.48 b |
VCT20 | 7.50 a | 0.69 b | 0.019 ab | 0.012 ab | 2856 ab | 369 b | 18.45 ab | 24.62 a | 12.74 ab | 21.91 ab | 17.66 b |
VCT40 | 7.43 a | 0.73 b | 0.018 b | 0.012 ab | 2857 ab | 450 a | 16.53 b | 26.00 a | 14.92 b | 25.66 b | 18.33 ab |
VC1+VCT10 | 7.07 a | 0.70 b | 0.024 a | 0.014 a | 3095 a | 425 ab | 19.84 a | 28.34 a | 12.41 ab | 21.34 ab | 19.38 a |
VC1+VCT20 | 7.33 a | 0.65 b | 0.022 ab | 0.012 a | 2990 ab | 384 ab | 19.59 a | 25.30 a | 11.70 ab | 20.13 ab | 18.46 ab |
VC1+VCT40 | 7.37 a | 0.62 ab | 0.022 ab | 0.015 a | 2974 ab | 394 ab | 19.21 a | 25.53 a | 11.04 ab | 18.98 ab | 18.53 ab |
Subsurface soils (10–20 cm) | |||||||||||
V0 | 7.50 a | 0.43 b | 0.012 b | 0.005 b | 1749 b | 320 b | 10.63 b | 8.09 b | 8.22 b | 14.14 b | 11.54 b |
VCT10 | 7.40 a | 0.70 a | 0.024 a | 0.008 a | 2910 a | 481 a | 19.14 a | 11.91 ab | 12.57 a | 21.63 a | 18.78 a |
VCT20 | 7.47 a | 0.73 a | 0.020 a | 0.009 a | 3086 a | 498 a | 17.98 a | 13.60 a | 13.73 a | 23.61 a | 19.80 a |
VCT40 | 7.57 a | 0.71 a | 0.019 a | 0.008 a | 2991 a | 534 a | 17.08 a | 13.81 a | 13.38 a | 23.02 a | 19.60 a |
VC1+VCT10 | 7.47 a | 0.66 a | 0.023 a | 0.010 a | 3032 a | 504 a | 18.39 a | 12.97 a | 12.16 a | 20.91 a | 19.63 a |
VC1+VCT20 | 7.37 a | 0.72 a | 0.024 a | 0.009 a | 2919 a | 499 a | 18.71 a | 10.79 ab | 13.28 a | 22.84 a | 18.97 a |
VC1+VCT40 | 7.40 a | 0.69 a | 0.023 a | 0.010 a | 2973 a | 484 a | 19.03 a | 11.87 ab | 12.33 a | 21.21 a | 19.15 a |
Sample | N (%) | P (%) | K (%) | Ca (%) | Mg (%) | S (%) | Na (%) | B (mg kg−1) | Fe (mg kg−1) | Mn (mg kg−1) | Zn (mg kg−1) | Cu (mg kg−1) |
---|---|---|---|---|---|---|---|---|---|---|---|---|
V0 | 1.00 f | 0.74 d | 0.40 e | 1.90 e | 0.36 e | 0.07 b | 0.04 a | 42.85 g | 43.06 g | 22.55 f | 165.85 f | 7.22 d |
VCT10 | 1.56 d | 1.71 b | 0.82 b | 2.97 d | 0.63 bc | 0.14 a | 0.05 a | 67.46 e | 101.78 b | 37.56 b | 259.43 e | 7.32 d |
VCT20 | 1.95 a | 1.58 c | 0.58 c | 2.99 d | 0.56 d | 0.13 ab | 0.05 a | 65.23 f | 86.25 d | 35.64 d | 284.42 b | 9.71 b |
VCT40 | 1.87 b | 1.79 a | 0.80 b | 3.01 cd | 0.57 d | 0.11 ab | 0.05 a | 70.80 c | 81.30 e | 32.55 e | 315.64 a | 7.39 cd |
VC1+VCT10 | 1.62 c | 1.56 c | 0.60 c | 3.29 b | 0.67 b | 0.15 a | 0.05 a | 78.50 b | 77.25 f | 36.77 c | 262.41 d | 7.90 c |
VC1+VCT20 | 1.39 e | 1.70 b | 0.51 d | 3.74 a | 0.76 a | 0.14 a | 0.04 a | 82.22 a | 88.25 c | 43.61 a | 259.51 e | 6.99 d |
VC1+VCT40 | 1.53 d | 1.58 c | 0.88 a | 3.05 c | 0.59 cd | 0.12 ab | 0.06 a | 68.19 d | 109.80 a | 37.87 b | 271.44 c | 10.71 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Oyege, I.; Balaji Bhaskar, M.S. Sustainable Soybean Production Using Residual Vermicompost Inputs in Corn-Soybean Rotation. Environments 2025, 12, 333. https://doi.org/10.3390/environments12090333
Oyege I, Balaji Bhaskar MS. Sustainable Soybean Production Using Residual Vermicompost Inputs in Corn-Soybean Rotation. Environments. 2025; 12(9):333. https://doi.org/10.3390/environments12090333
Chicago/Turabian StyleOyege, Ivan, and Maruthi Sridhar Balaji Bhaskar. 2025. "Sustainable Soybean Production Using Residual Vermicompost Inputs in Corn-Soybean Rotation" Environments 12, no. 9: 333. https://doi.org/10.3390/environments12090333
APA StyleOyege, I., & Balaji Bhaskar, M. S. (2025). Sustainable Soybean Production Using Residual Vermicompost Inputs in Corn-Soybean Rotation. Environments, 12(9), 333. https://doi.org/10.3390/environments12090333