Quantification of Acetaminophen, Ibuprofen, and β-Blockers in Wastewater and River Water Bodies During the COVID-19 Pandemic
Abstract
1. Introduction
2. Materials and Methods
2.1. Chemicals and Standards
2.2. Sample Collection, Pretreatment, and Analysis
2.3. Solid Phase Extraction Method and Chromatographic Conditions
2.4. Method Validation
2.5. Quality Assurance and Quality Control
2.6. Environmental Risk Assessment
2.7. Validation of Analytical Method
3. Results and Discussion
3.1. Occurrence of ACE and IBU in River Water and Wastewater
3.1.1. Concentrations of ACE and IBU in Wastewater and River Water Samples from Selected Sites in KwaZulu-Natal Province
3.1.2. Concentrations of ACE and IBU in Wastewater and River Water Samples from Selected Sites in Gauteng During Third Wave of COVID-19 Pandemic
3.2. Occurrence of β-Blockers in River Water and Wastewater
3.2.1. Concentrations of β-Blockers in Wastewater and River Water Samples from Selected Sites in KwaZulu-Natal Province
3.2.2. Concentrations of β-Blockers in Wastewater and River Water Samples from Selected Sites in Gauteng During Third Wave of COVID-19 Pandemic
3.3. Comparison Pre-Pandemic vs. Pandemic
3.4. Environmental Risk Assessment
3.5. Removal of Selected Pharmaceuticals from WWTPs in Gauteng and KwaZulu-Natal Provinces
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Tahar, A.; Tiedeken, E.J.; Clifford, E.; Cummins, E.; Rowan, N. Development of a semi-quantitative risk assessment model for evaluating environmental threat posed by the three first EU watch-list pharmaceuticals to urban wastewater treatment plants: An Irish case study. Sci. Total Environ. 2017, 603–604, 627–638. [Google Scholar] [CrossRef] [PubMed]
- O’Flynn, D.; Lawler, J.; Yusuf, A.; Parle-Mcdermott, A.; Harold, D.; Mc Cloughlin, T.; Holland, L.; Regan, F.; White, B. A review of pharmaceutical occurrence and pathways in the aquatic environment in the context of a changing climate and the COVID-19 pandemic. Anal. Methods 2021, 13, 575–594. [Google Scholar] [CrossRef] [PubMed]
- Chopra, S.; Kumar, D. Ibuprofen as an emerging organic contaminant in environment, distribution and remediation. Heliyon 2020, 6, e04087. [Google Scholar] [CrossRef]
- Ray, I.; Bardhan, M.; Hasan, M.M.; Sahito, A.M.; Khan, E.; Patel, S.; Jani, I.; Bhatt, P.K.; Sp, R.; Swed, S. Over the counter drugs and self-medication: A worldwide paranoia and a troublesome situation in India during the COVID-19 pandemic. Ann. Med. Surg. 2022, 78, 103797. [Google Scholar] [CrossRef] [PubMed]
- Singh, D.S.; Pflugmacher, S.; Riddell, C.H. Ecotoxicological assessments of over-the-counter NSAID (diclofenac, ibuprofen, aspirin) and antipyretic (acetaminophen) pharmaceuticals: A review of their toxicity effects on aquatic crustaceans. Integr. Environ. Assess. Manag. 2025, vjaf082. [Google Scholar] [CrossRef]
- Mostafa, E.M.A.; Tawfik, A.M.; Abd-Elrahman, K.M. Egyptian perspectives on potential risk of paracetamol/acetaminophen-induced toxicities: Lessons learnt during COVID-19 pandemic. Toxicol. Rep. 2022, 9, 541–548. [Google Scholar] [CrossRef]
- Vo, H.N.P.; Koottatep, T.; Chapagain, S.K.; Panuvatvanich, A.; Polprasert, C.; Nguyen, T.M.H.; Chaiwong, C.; Nguyen, N.L. Removal and monitoring acetaminophen-contaminated hospital wastewater by vertical flow constructed wetland and peroxidase enzymes. J. Environ. Manag. 2019, 250, 109526. [Google Scholar] [CrossRef]
- Baron, P.A.; Love, D.C.; Nachman, K.E. Pharmaceuticals and personal care products in chicken meat and other food animal products: A market-basket pilot study. Sci. Total Environ. 2014, 490, 296–300. [Google Scholar] [CrossRef]
- Borthakur, P.; Boruah, P.K.; Das, M.R. Facile synthesis of CuS nanoparticles on two-dimensional nanosheets as efficient artificial nanozyme for detection of Ibuprofen in water. J. Environ. Chem. Eng. 2021, 9, 104635. [Google Scholar] [CrossRef]
- Xu, J.; Sun, H.; Zhang, Y.; Alder, A.C. Occurrence and enantiomer profiles of β-blockers in wastewater and a receiving water body and adjacent soil in Tianjin, China. Sci. Total Environ. 2019, 650, 1122–1130. [Google Scholar] [CrossRef]
- Hasanah, A.N.; Susanti, I.; Mutakin, M. An Update on the Use of Molecularly Imprinted Polymers in Beta-Blocker Drug Analysis as a Selective Sep-aration Method in Biological and Environmental Analysis. Molecules 2022, 27, 2880. [Google Scholar] [CrossRef]
- Heriansyah, T.; Chomsy, I.N.; Febrianda, L.; Hadi, T.F.; Wihastuti, T.A. The potential benefit of beta-blockers for the management of COVID-19 protocol therapy-induced qt prolonga-tion: A literature review. Sci. Pharm. 2020, 88, 55. [Google Scholar] [CrossRef]
- Maszkowska, J.; Stolte, S.; Kumirska, J.; Łukaszewicz, P.; Mioduszewska, K.; Puckowski, A.; Caban, M.; Wagil, M.; Stepnowski, P.; Białk-Bielińska, A. Beta-blockers in the environment: Part I. Mobility and hydrolysis study. Sci. Total Environ. 2014, 493, 1112–1121. [Google Scholar] [CrossRef]
- Di Lorenzo, T.; Di Cicco, M.; Di Censo, D.; Galante, A.; Boscaro, F.; Messana, G.; Paola Galassi, D.M. Environmental risk assessment of propranolol in the groundwater bodies of Europe. Environ. Pollut. 2019, 255, 113189. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Lei, L.; Liu, S.; Han, J.; Li, R.; Men, J.; Li, L.; Wei, L.; Sheng, Y.; Yang, L.; et al. Occurrence and risk assessment of pharmaceuticals and personal care products (PPCPs) against COVID-19 in lakes and WWTP-river-estuary system in Wuhan, China. Sci. Total Environ. 2021, 792, 148352. [Google Scholar] [CrossRef]
- Munzhelele, E.P.; Mudzielwana, R.; Ayinde, W.B.; Gitari, W.M. Pharmaceutical Contaminants in Wastewater and Receiving Water Bodies of South Africa: A Review of Sources, Pathways, Occurrence, Effects, and Geographical Distribution. Water 2024, 16, 796. [Google Scholar] [CrossRef]
- Salinas, A.; Rahman, M.S. Exposure to metoprolol and propranolol mixtures on biochemical, immunohistochemical, and molecular alterations in the American oyster, Crassostrea virginica. Toxicol. Rep. 2025, 14, 101979. [Google Scholar] [CrossRef] [PubMed]
- Khasawneh, O.F.S.; Palaniandy, P. Occurrence and removal of pharmaceuticals in wastewater treatment plants. Vol. 150, Process Safety and Environmental Protection. Inst. Chem. Eng. 2021, 150, 532–556. [Google Scholar]
- Jakimska, A.; Śliwka-Kaszyńska, M.; Reszczyńska, J.; Namieśnik, J.; Kot-Wasik, A. Elucidation of transformation pathway of ketoprofen, ibuprofen, and furosemide in surface water and their occurrence in the aqueous environment using UHPLC-QTOF-MS Euroanalysis XVII. Anal. Bioanal. Chem. 2014, 406, 3667–3680. [Google Scholar] [CrossRef]
- Tambosi, J.L.; Yamanaka, L.Y.; José, H.J.; De Fátima Peralta Muniz Moreira, R.; Schröder, H.F. Recent research data on the removal of pharmaceuticals from sewage treatment plants (STP). Quim. Nova 2010, 33, 411–420. [Google Scholar] [CrossRef]
- Ortiz de García, S.A.; Pinto Pinto, G.; García-Encina, P.A.; Irusta-Mata, R. Ecotoxicity and environmental risk assessment of pharmaceuticals and personal care products in aquatic environments and wastewater treatment plants. Ecotoxicology 2014, 23, 1517–1533. [Google Scholar] [CrossRef]
- Ngqwala, N.P.; Muchesa, P. Occurrence of pharmaceuticals in aquatic environments: A review and potential impacts in South Africa. S. Afr. J. Sci. 2020, 116, 1–7. [Google Scholar] [CrossRef]
- María Baena-Nogueras, R.; G Pintado-Herrera, M.; González-Mazo, E.; Lara-Martín, P.A. Determination of Pharmaceuticals in Coastal Systems Using Solid Phase Extraction (SPE) Followed by Ultra Performance Liquid Chromatography—Tandem Mass Spectrometry (UPLC-MS/MS). Curr. Anal. Chem. 2015, 12, 183–201. [Google Scholar] [CrossRef]
- Desai, R.; Onwubu, S.; Lutge, E.; Buthelezi, N.P.; Moodley, N.; Haffejee, F.; Segobe, B.; Krishna, S.B.N.; Sibiya, M.N.; Jinabhai, C.C. Provision of HIV testing services and its impact on the HIV positivity rate in the public health sector in KwaZulu-Natal: A ten-year review. Sahara J. 2024, 21, 2318797. [Google Scholar] [CrossRef]
- Almeida, C.M.M. Overview of sample preparation and chromatographic methods to analysis pharmaceutical active compounds in waters matrices. Separations 2021, 8, 16. [Google Scholar] [CrossRef]
- Mosekiemang, T.T.; Stander, M.A.; de Villiers, A. Simultaneous quantification of commonly prescribed antiretroviral drugs and their selected metabolites in aqueous environmental samples by direct injection and solid phase extraction liquid chromatography—Tandem mass spectrometry. Chemosphere 2019, 220, 983–992. [Google Scholar] [CrossRef]
- Stahnke, H.; Kittlaus, S.; Kempe, G.; Alder, L. Reduction of Matrix Effects in Liquid Chromatography-Electrospray Ionization-Mass Spectrometry by Dilution of the Sample Extracts: How Much Dilution is Needed? Anal. Chem. 2012, 84, 1474–1482. [Google Scholar] [CrossRef]
- Godoy, A.A.; Domingues, I.; Arsénia Nogueira, A.J.; Kummrow, F. Ecotoxicological effects, water quality standards and risk assessment for the anti-diabetic metformin. Environ. Pollut. 2018, 243, 534–542. [Google Scholar] [CrossRef] [PubMed]
- Ema. Committee for Medicinal Products for Human Use (CHMP) Guideline on the Environmental Risk Assessment of Medicinal Products for Human Use. 2024. Available online: https://www.ema.europa.eu/contact (accessed on 3 August 2024).
- Ndlovu, M.; Clulow, A.D.; Savage, M.J.; Nhamo, L.; Magidi, J.; Mabhaudhi, T. An assessment of the impacts of climate variability and change in Kwazulu-Natal province, South Africa. Atmosphere 2021, 12, 427. [Google Scholar] [CrossRef]
- Gillian, M.; Culwick Fatti, C.; Götz, G.; Hamann, C.; Parker, A. Effects of the COVID-19 Pandemic on the Gauteng City-Region; Gauteng City-Region Observatory: Johannesburg, South Africa, 2021; Available online: https://cdn.gcro.ac.za/media/documents/2021.09.08_GCRO_DataBrief_Effects_of_COVID_on_the_GCR_final_v2.pdf (accessed on 3 August 2024).
- Mhuka, V.; Dube, S.; Nindi, M.M. Occurrence of pharmaceutical and personal care products (PPCPs) in wastewater and receiving waters in South Africa using LC-OrbitrapTM MS. Emerg. Contam. 2020, 6, 250–258. [Google Scholar] [CrossRef]
- Conceicao, K.C.; Villamar-Ayala, C.A.; Plaza-Garrido, A.; Toledo-Neira, C. Seasonal behavior of pharmaceuticals and personal care products within Chilean rural WWTPs under COVID-19 pandemic conditions. J. Environ. Chem. Eng. 2023, 11, 110984. [Google Scholar] [CrossRef]
- Godoy, A.A.; Kummrow, F.; Pamplin, P.A.Z. Occurrence, ecotoxicological effects and risk assessment of antihypertensive pharmaceutical residues in the aquatic environment—A review. Chemosphere 2015, 138, 281–291. [Google Scholar] [CrossRef]
- Yang, W.; Shaman, J.L. COVID-19 pandemic dynamics in South Africa and epidemiological characteristics of three variants of concern (Beta, Delta, and Omicron). Elife 2022, 11, e78933. [Google Scholar] [CrossRef]
- Agunbiade, F.O.; Moodley, B. Pharmaceuticals as emerging organic contaminants in Umgeni River water system, KwaZulu-Natal, South Africa. Env. Monit Assess 2014, 186, 7273–7291. [Google Scholar] [CrossRef] [PubMed]
- Kanama, K.M.; Daso, A.P.; Mpenyana-Monyatsi, L.; Coetzee, M.A.A. Assessment of pharmaceuticals, personal care products, and hormones in wastewater treatment plants receiving inflows from health facilities in North West Province, South Africa. J. Toxicol. 2018, 2018, 3751930. [Google Scholar] [CrossRef] [PubMed]
- Matongo, S.; Birungi, G.; Moodley, B.; Ndungu, P. Occurrence of selected pharmaceuticals in water and sediment of Umgeni River, KwaZulu-Natal, South Africa. Environ. Sci. Pollut. Res. 2015, 22, 10298–10308. [Google Scholar] [CrossRef]
- Rivers-Moore, N.A.; Goodman, P.S.; Nel, J.L. Scale-based freshwater conservation planning: Towards protecting freshwater biodiversity in KwaZulu-Natal, South Africa. Freshw. Biol. 2011, 56, 125–141. [Google Scholar] [CrossRef]
- Osman, A.I.; Ayati, A.; Farghali, M.; Krivoshapkin, P.; Tanhaei, B.; Karimi-Maleh, H.; Krivoshapkina, E.; Taheri, P.; Tracey, C.; Al-Fatesh, A.; et al. Advanced adsorbents for ibuprofen removal from aquatic environments: A review. Environ. Chem. Lett. 2024, 22, 373–418. [Google Scholar] [CrossRef]
- Yi, M.; Sheng, Q.; Sui, Q.; Lu, H. β-blockers in the environment: Distribution, transformation, and ecotoxicity. Environ. Pollut. 2020, 266, 115269. [Google Scholar] [CrossRef]
- Strotmann, U.; Thouand, G.; Pagga, U.; Gartiser, S.; Heipieper, H.J. Toward the future of OECD/ISO biodegradability testing-new approaches and developments. Appl. Microbiol. Biotechnol. 2023, 107, 2073–2095. [Google Scholar] [CrossRef]
- Poddar, K.; Sarkar, D.; Chakraborty, D.; Patil, P.B.; Maity, S.; Sarkar, A. Paracetamol biodegradation by Pseudomonas strain PrS10 isolated from pharmaceutical effluents. Int. Biodeterior. Biodegrad. 2022, 175, 105490. [Google Scholar] [CrossRef]
- Gheorghe, S.; Petre, J.; Lucaciu, I.; Stoica, C.; Nita-Lazar, M. Risk screening of pharmaceutical compounds in Romanian aquatic environment. Environ. Monit. Assess. 2016, 188, 379. [Google Scholar] [CrossRef]
- Maszkowska, J.; Stolte, S.; Kumirska, J.; Łukaszewicz, P.; Mioduszewska, K.; Puckowski, A.; Caban, M.; Wagil, M.; Stepnowski, P.; Białk-Bielińska, A. Beta-blockers in the environment: Part II. Ecotoxicity study. Sci. Total Environ. 2014, 493, 1122–1126. [Google Scholar] [CrossRef]
- Menz, J.; Toolaram, A.P.; Rastogi, T.; Leder, C.; Olsson, O.; Kümmerer, K.; Schneider, M. Transformation products in the water cycle and the unsolved problem of their proactive assessment: A combined in vitro/in silico approach. Environ. Int. 2017, 98, 171–180. [Google Scholar] [CrossRef]
- Paranhos, J.; De Vargas, R.; Camotti Bastos, M.; Al Badany, M.; Gonzalez, R.; Wolff, D.; Dos Santos, D.R.; Labanowski, J. Pharmaceutical compound removal efficiency by a small constructed wetland located in south Brazil. Environ. Sci. Pollut. Res. 2021, 28, 30955–30974. [Google Scholar] [CrossRef]
- Madikizela, L.M.; Ncube, S.; Chimuka, L. Analysis, occurrence and removal of pharmaceuticals in African water resources: A current status. J. Environ. Manag. 2020, 253, 109741. [Google Scholar] [CrossRef]
- Pandey, B.; Dubey, S.K. Delineating acetaminophen biodegradation kinetics and metabolomics using bacterial community. Biodegradation 2024, 35, 951–967. [Google Scholar] [CrossRef]
- Baginska, E.; Haiß, A.; Kümmerer, K. Biodegradation screening of chemicals in an artificial matrix simulating the water-sediment interface. Chemosphere 2015, 119, 1240–1246. [Google Scholar] [CrossRef]
- Gartiser, S.; Brunswik-Titze, A.; Flach, F.; Junker, T.; Sättler, D.; Jöhncke, U. Enhanced ready biodegradability screening tests for the evaluation of potential PBT substances. Sci. Total Environ. 2022, 833, 155134. [Google Scholar] [CrossRef]
- Wilde, M.L.; Mahmoud, W.M.M.; Kümmerer, K.; Martins, A.F. Oxidation-coagulation of β-blockers by K2FeVIO4 in hospital wastewater: Assessment of degradation products and biodegradability. Sci. Total Environ. 2013, 452–453, 137–147. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mpayipheli, N.; Mpupa, A.; Madala, N.E.; Nomngongo, P.N. Quantification of Acetaminophen, Ibuprofen, and β-Blockers in Wastewater and River Water Bodies During the COVID-19 Pandemic. Environments 2025, 12, 278. https://doi.org/10.3390/environments12080278
Mpayipheli N, Mpupa A, Madala NE, Nomngongo PN. Quantification of Acetaminophen, Ibuprofen, and β-Blockers in Wastewater and River Water Bodies During the COVID-19 Pandemic. Environments. 2025; 12(8):278. https://doi.org/10.3390/environments12080278
Chicago/Turabian StyleMpayipheli, Neliswa, Anele Mpupa, Ntakadzeni Edwin Madala, and Philiswa Nosizo Nomngongo. 2025. "Quantification of Acetaminophen, Ibuprofen, and β-Blockers in Wastewater and River Water Bodies During the COVID-19 Pandemic" Environments 12, no. 8: 278. https://doi.org/10.3390/environments12080278
APA StyleMpayipheli, N., Mpupa, A., Madala, N. E., & Nomngongo, P. N. (2025). Quantification of Acetaminophen, Ibuprofen, and β-Blockers in Wastewater and River Water Bodies During the COVID-19 Pandemic. Environments, 12(8), 278. https://doi.org/10.3390/environments12080278