A Field-Scale Assessment of the Impact of Conventional and Permeable Concrete Pavements on Surface and Air Temperatures
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Site and Pavement Systems Descriptions
2.2. Temperature Measurement
2.2.1. Investigation Periods and Designs
2.2.2. Instruments
2.3. Data Analysis
3. Results and Discussion
3.1. Surface and Air Temperatures Across the Pavement Systems
3.1.1. Overall Annual Surface and Air Temperature Profiles
3.1.2. Seasonal Variations
3.1.3. Diurnal Variation Observed in Summer and Winter
3.2. Differences in Surface and Air Temperatures Across the Pavement Systems in Summer
3.2.1. Average Surface and Air Temperatures
3.2.2. Comparison of Temperature Profiles During Consecutive Hot Days in Summer
3.2.3. Comparison of Temperature Profiles Among Pavement Systems During Selected Hours
3.2.4. Correlation Between Surface Temperature, Air Temperature and Meteorological Parameters
3.2.5. Comparison of Surface Temperatures of the P3 Sites and the Nearby Road
3.3. Influence of Shade on the Surface Temperatures of the Pavement Systems
3.4. Additional Discussion on JW Eco-Technology Aqueducts
4. Conclusions
- PC, IC, and JW demonstrated consistent average annual temperatures;
- Seasonal and diurnal variations revealed that summer is the season when significant differences were found across PC, IC, and JW;
- PC showed higher surface temperature during 12:00–16:00 but was lower during 21:00–5:00 than that of IC and JW;
- Shade effectively reduced the surface temperatures of all pavements during hot summer days.
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Masson-Delmotte, V.P.; Zhai, P.; Pirani, S.L.; Connors, C.; Péan, S.; Berger, N.; Caud, Y.; Chen, L.; Goldfarb, M.I.; Scheel Monteiro, P.M. IPCC, 2021: Summary for policymakers. In Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2021. [Google Scholar]
- United Nations, Department of Economic and Social Affairs. World Urbanization Prospects: The 2018 Revision; United Nations: New York, NY, USA, 2019. [Google Scholar] [CrossRef]
- Oke, T.R. The distinction between canopy and boundary-layer urban heat islands. Atmosphere 1976, 14, 268–277. [Google Scholar] [CrossRef]
- Williams, T.B. Microclimatic temperature relationships over different surfaces. J. Geogr. 1991, 90, 285–291. [Google Scholar] [CrossRef]
- Rosenfeld, A.H.; Akbari, H.; Bretz, S.; Fishman, B.L.; Kurn, D.M.; Sailor, D.; Taha, H. Mitigation of urban heat islands: Materials, utility programs, updates. Energy Build. 1995, 22, 255–265. [Google Scholar] [CrossRef]
- Gago, E.J.; Roldan, J.; Pacheco-Torres, R.; Ordóñez, J. The city and urban heat islands: A review of strategies to mitigate adverse effects. Renew. Sustain. Energy Rev. 2013, 25, 749–758. [Google Scholar] [CrossRef]
- Edmondson, J.L.; Stott, I.; Davies, Z.G.; Gaston, K.J.; Leake, J.R. Soil surface temperatures reveal moderation of the urban heat island effect by trees and shrubs. Sci. Rep. 2016, 6, 33708. [Google Scholar] [CrossRef]
- Founda, D.; Santamouris, M. Synergies between urban heat island and heat waves in Athens (Greece), during an extremely hot summer (2012). Sci. Rep. 2017, 7, 10973. [Google Scholar] [CrossRef]
- Chen, Y.C.; Chiu, H.W.; Su, Y.F.; Wu, Y.C.; Cheng, K.S. Does urbanization increase diurnal land surface temperature variation? Evidence and implications. Landsc. Urban Plan. 2017, 157, 247–258. [Google Scholar] [CrossRef]
- Tan, S.A.; Fwa, T.F. Influence of pavement materials on the thermal environment of outdoor spaces. Build. Environ. 1992, 27, 289–295. [Google Scholar] [CrossRef]
- Gui, J.; Phelan, P.E.; Kaloush, K.E.; Golden, J.S. Impact of pavement thermophysical properties on surface temperatures. J. Mater. Civ. Eng. 2007, 19, 683–690. [Google Scholar] [CrossRef]
- Shooshtarian, S.; Rajagopalan, P. Daytime thermal performance of different urban surfaces: A case study in educational institution precinct of Melbourne. Archit. Sci. Rev. 2018, 61, 29–47. [Google Scholar] [CrossRef]
- Asaeda, T.; Ca, V.T.; Wake, A. Heat storage of pavement and its effect on the lower atmosphere. Atmos. Environ. 1996, 30, 413–427. [Google Scholar] [CrossRef]
- Akbari, H.; Matthews, H.D.; Seto, D. The long-term effect of increasing the albedo of urban areas. Environ. Res. Lett. 2012, 7, 024004. [Google Scholar] [CrossRef]
- Mohajerani, A.; Bakaric, J.; Jeffrey-Bailey, T. The urban heat island effect, its causes, and mitigation, with reference to the thermal properties of asphalt concrete. J. Environ. Manag. 2017, 197, 522–538. [Google Scholar] [CrossRef] [PubMed]
- Zhao, L.; Oleson, K.; Bou-Zeid, E.; Krayenhoff, E.S.; Bray, A.; Zhu, Q.; Zheng, Z.; Chen, C.; Oppenheimer, M. Global multi-model projections of local urban climates. Nat. Clim. Chang. 2021, 11, 152–157. [Google Scholar] [CrossRef]
- U.S. Environmental Protection Agency (U.S. EPA). Low Impact Development (LID): A Literature Review; EPA-841-B-00-005; U.S. Environmental Protection Agency: Washington, DC, USA, 2000.
- Scholz, M.; Grabowiecki, P. Review of permeable pavement systems. Build. Environ. 2007, 42, 3830–3836. [Google Scholar] [CrossRef]
- Mullaney, J.; Lucke, T. Practical review of pervious pavement designs. CLEAN–Soil Air Water 2014, 42, 111–124. [Google Scholar] [CrossRef]
- Liu, C.M.; Chen, J.W.; Hsieh, Y.S.; Liou, M.L.; Chen, T.H. Build sponge eco-cities to adapt hydroclimatic hazards. In Handbook of Climate Change Adaptation; Filho, W.L., Ed.; Springer: Berlin/Heidelberg, Germany, 2015. [Google Scholar] [CrossRef]
- Chen, L.M.; Chen, J.W.; Chen, T.H.; Lecher, T.; Davidson, P.C. Measurement of permeability and comparison of pavements. Water 2019, 11, 444. [Google Scholar] [CrossRef]
- Chen, L.M.; Chen, J.W.; Lecher, T.; Chen, T.H.; Davidson, P. Assessment of clogging of permeable pavements by measuring change in permeability. Sci. Total Environ. 2020, 749, 141352. [Google Scholar] [CrossRef]
- Liu, C.M.; Chen, J.W.; Tsai, J.H.; Lin, W.S.; Yen, M.T.; Chen, T.H. Experimental studies of the dilution of vehicle exhaust pollutants by environment-protecting pervious pavement. J. Air Waste Manag. Assoc. 2012, 62, 92–102. [Google Scholar] [CrossRef]
- Fan, L.F.; Wang, S.F.; Chen, C.P.; Hsieh, H.L.; Chen, J.W.; Chen, T.H.; Chao, W.L. Microbial community structure and activity under various pervious pavements. J. Environ. Eng. 2013, 140, 04013012. [Google Scholar] [CrossRef]
- Architecture and Building Research Institute of Taiwan. Manual of Low Embodied-Carbon Building Rating System; Architecture and Building Research Institute of Taiwan: New Taipei City, Taiwan, 2023. [Google Scholar]
- China Municipality. Sponge City Construction: Practical Technical Handbook; China Building Materials Industry Press: Beijing, China, 2017. [Google Scholar]
- Lin, T.P.; Ho, Y.F.; Huang, Y.S. Seasonal effect of pavement on outdoor thermal environments in subtropical Taiwan. Build. Environ. 2007, 42, 4124–4131. [Google Scholar] [CrossRef]
- Srivanit, M.; Hokao, K. Evaluating the cooling effects of greening for improving the outdoor thermal environment at an institutional campus in the summer. Build. Environ. 2013, 66, 158–172. [Google Scholar] [CrossRef]
- Simonsen, E.; Isacsson, U. Thaw weakening of pavement structures in cold regions. Cold Reg. Sci. Technol. 1999, 29, 135–151. [Google Scholar] [CrossRef]
- ud Din, I.M.; Mir, M.S.; Farooq, M.A. Effect of Freeze-Thaw Cycles on the Properties of Asphalt Pavements in Cold Regions: A Review. Transp. Res. Procedia 2020, 48, 3634–3641. [Google Scholar] [CrossRef]
- Bäckström, M. Ground temperature in porous pavement during freezing and thawing. J. Transp. Eng. 2000, 126, 375–381. [Google Scholar] [CrossRef]
- Wu, H.; Sun, B.; Li, Z.; Yu, J. Characterizing thermal behaviors of various pavement materials and their thermal impacts on ambient environment. J. Clean. Prod. 2018, 172, 1358–1367. [Google Scholar] [CrossRef]
- Doulos, L.; Santamouris, M.; Livada, I. Passive cooling of outdoor urban spaces: The role of materials. Sol. Energy 2004, 77, 231–249. [Google Scholar] [CrossRef]
- Li, H.; Harvey, J.T.; Holland, T.J.; Kayhanian, M. The use of reflective and permeable pavements as a potential practice for heat island mitigation and stormwater management. Environ. Res. Lett. 2013, 8, 015023. [Google Scholar] [CrossRef]
- Kevern, J.T.; Schaefer, V.R.; Wang, K.J. Temperature behavior of pervious concrete systems. Transp. Res. Rec. 2009, 2098, 94–101. [Google Scholar] [CrossRef]
- Zhang, R.; Jiang, G.; Liang, J. The albedo of pervious cement concrete linearly decreases with porosity. Adv. Mater. Sci. Eng. 2015, 2015, 746592. [Google Scholar] [CrossRef]
- Efthymiou, C.; Santamouris, M.; Kolokotsa, D.; Koras, A. Development and testing of photovoltaic pavement for heat island mitigation. Sol. Energy 2016, 130, 148–160. [Google Scholar] [CrossRef]
- Price, A.; Jones, E.C.; Jefferson, F. Vertical greenery systems as a strategy in urban heat island mitigation. Water Air Soil Pollut. 2015, 226, 247. [Google Scholar] [CrossRef]
- Qin, Y. A review on the development of cool pavements to mitigate urban heat island effect. Renew. Sustain. Energy Rev. 2015, 52, 445–459. [Google Scholar] [CrossRef]
- Rossi, F.; Castellani, B.; Presciutti, A.; Morini, E.; Anderini, E.; Filipponi, M.; Nicolini, A. Experimental evaluation of urban heat island mitigation potential of retro-reflective pavement in urban canyons. Energy Build. 2016, 126, 340–352. [Google Scholar] [CrossRef]
- Santamouris, M.; Synnefa, A.; Karlessi, T. Using advanced cool materials in the urban built environment to mitigate heat islands and improve thermal comfort conditions. Sol. Energy 2011, 85, 3085–3102. [Google Scholar] [CrossRef]
- Weidenfeller, B.; Höfer, M.; Schilling, F.R. Thermal conductivity, thermal diffusivity, and specific heat capacity of particle filled polypropylene. Compos. Part A Appl. Sci. Manuf. 2004, 35, 423–429. [Google Scholar] [CrossRef]
- Guidetti, G.P.; Rigosi, G.L.; Marzola, R. The use of polypropylene in pipeline coatings. Prog. Org. Coat. 1996, 27, 79–85. [Google Scholar] [CrossRef]
- Hongyu Chen, H.; Ginzburg, V.V.; Yang, J.; Yang, Y.; Liu, W.; Huang, Y.; Du, L.; Chen, B. Thermal conductivity of polymer-based composites: Fundamentals and applications. Prog. Polym. Sci. 2016, 59, 41–85. [Google Scholar] [CrossRef]
Temperature (°C) | 2022 | 2023 | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Annual | Max | Min | Summer | Winter | Annual | Max | Min | Summer | Winter | ||
IC | Surface | 14.8 | 50.4 | −22.4 | 29.7 | 1.4 | 15.1 | 47.3 | −14.7 | 29.4 | 2.7 |
Air | 11.8 | 42.1 | −22.9 | 23.8 | 1.1 | 12.8 | 38.2 | −15.3 | 23.5 | 1.9 | |
PC | Surface | 14.6 | 54.3 | −20.8 | 29.8 | 1.6 | 15.8 | 51.7 | −12.9 | 29.2 | 2.1 |
Air | 11.7 | 39.6 | −22.9 | 24.3 | 1.0 | 13.1 | 37.4 | −14.3 | 23.6 | 1.7 | |
JW | Surface | 14.8 | 50.6 | −18.8 | 29.6 | 1.8 | 15.7 | 48.7 | −11.8 | 30.0 | 2.3 |
Air | 11.8 | 40.1 | −23.1 | 23.9 | 1.4 | 13.6 | 37.9 | −14.5 | 23.4 | 1.5 | |
Near-site weather station (Air) | 10.8 | 37.7 | −23.4 | 23.3 | 0.7 | 12.3 | 34.9 | −15.3 | 22.7 | 1.2 |
2022 Summer | 2023 Summer | ||||||||
---|---|---|---|---|---|---|---|---|---|
Pavement | Time | Surface | Air | Surface | Air | ||||
Mean | p-Value | Mean | p-Value | Mean | p-Value | Mean | p-Value | ||
IC PC JW | 24 h | 29.6 29.8 29.6 | 0.995 | 23.8 24.3 23.9 | 0.924 | 29.4 29.2 30.0 | 0.906 | 23.5 23.6 23.4 | 0.986 |
IC PC JW | 21:00–5:00 | 24.3 23.1 24.4 | 0.378 | 19.8 19.9 19.9 | 0.973 | 24.5 23.2 25.5 | 0.135 | 19.6 19.7 19.5 | 0.972 |
IC PC JW | 12:00–16:00 | 38.9 41.1 38.5 | 0.015 PC, IC PC, JW | 29.2 30.1 29.0 | 0.006 PC, IC PC, JW | 37.9 39.5 38.0 | 0.050 | 28.8 29.0 28.8 | 0.573 |
P-22a | P-22b | ||||||||
Pavement | Time | Surface | Air | Surface | Air | ||||
Mean | p-Value | Mean | p-Value | Mean | p-Value | Mean | p-Value | ||
IC PC JW | 24 h | 32.8 33.1 32.8 | 0.900 | 27.2 27.9 27.3 | 0.344 | 32.8 33.1 32.8 | 0.900 | 26.3 26.9 26.3 | 0.580 |
IC PC JW | 21:00–5:00 | 26.4 25.0 26.5 | 0.006 PC, IC PC, JW | 22.4 22.6 22.5 | 0.956 | 26.4 25.0 26.5 | 0.006 PC, IC PC, JW | 21.3 21.5 21.4 | 0.979 |
IC PC JW | 12:00–16:00 | 43.8 46.5 43.2 | 0.0005 PC, IC PC, JW | 33.3 35.1 33.3 | 0.009 PC, IC PC, JW | 43.8 46.5 43.2 | 0.004 PC, IC PC, JW | 31.6 32.9 31.5 | 0.075 |
P-23a | P-23b | ||||||||
Pavement | Time | Surface | Air | Surface | Air | ||||
Mean | p-Value | Mean | p-Value | Mean | p-Value | Mean | p-Value | ||
IC PC JW | 24 h | 33.0 33.0 33.9 | 0.491 | 25.8 25.9 25.6 | 0.900 | 33.0 33.7 34.1 | 0.438 | 27.8 28.0 27.8 | 0.889 |
IC PC JW | 21:00–5:00 | 27.6 26.6 29.0 | 0.005 PC, JW | 21.3 21.5 21.5 | 0.966 | 28.3 27.9 29.7 | 0.004 IC, JW PC, JW | 24.2 24.3 24.2 | 0.979 |
IC PC JW | 12:00–16:00 | 42.8 45.1 43.6 | 0.017 PC, IC | 31.0 32.1 31.5 | 0.713 | 41.7 44.3 42.3 | 0.003 PC, IC PC, JW | 33.1 33.8 33.3 | 0.362 |
Period | P-22a and P-22b | P-23a and P-23b | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
IC | PC | JW | IC | PC | JW | |||||||
Surface | Air | Surface | Air | Surface | Air | Surface | Air | Surface | Air | Surface | Air | |
Air * | 0.911 | 1.000 | 0.936 | 1.000 | 0.927 | 1.000 | 0.925 | 1.000 | 0.936 | 1.000 | 0.921 | 1.000 |
SR | 0.821 | 0.679 | 0.850 | 0.732 | 0.815 | 0.682 | 0.786 | 0.711 | 0.770 | 0.711 | 0.730 | 0.681 |
RH | −0.778 | −0.647 | −0.761 | −0.676 | −0.757 | −0.651 | −0.722 | −0.585 | −0.706 | −0.577 | −0.698 | −0.562 |
Air ** | 0.890 | 0.991 | 0.886 | 0.980 | 0.905 | 0.990 | 0.913 | 0.981 | 0.921 | 0.985 | 0.913 | 0.989 |
WS | 0.621 | 0.739 | 0.610 | 0.736 | 0.621 | 0.736 | 0.515 | 0.520 | 0.503 | 0.523 | 0.499 | 0.515 |
P-22a | P-22b | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Pavement | JW | IC | PC | JW | IC | PC | ||||||
Time (h) | No Shade | Shade | No Shade | Shade | No Shade | Shade | No Shade | Shade | No Shade | Shade | No Shade | Shade |
24 Avg | 32.8 | 29.4 | 32.8 | 29.0 | 33.1 | 28.1 | 33.2 | 29.6 | 33.2 | 29.1 | 33.6 | 28.1 |
12–16 Avg | 43.2 | 33.1 | 43.8 | 33.8 | 46.5 | 32.2 | 42.9 | 32.1 | 43.7 | 32.4 | 46.2 | 30.4 |
12–16 MD | 47.7 | 32.9 | 47.9 | 32.9 | 52.1 | 32.1 | 44.9 | 29.5 | 48.8 | 34.3 | 52.7 | 31.7 |
12–16 MT | 48.4 | 35.7 | 49.3 | 38.2 | 52.9 | 36.4 | 49.4 | 36.3 | 50.1 | 36.2 | 53.9 | 33.9 |
21–5 Avg | 26.5 | 27.1 | 26.4 | 25.8 | 25.0 | 25.2 | 27.4 | 28.4 | 27.2 | 27.0 | 25.9 | 26.7 |
MaxT | 48.4 | 38.1 | 49.3 | 38.3 | 52.9 | 37.1 | 49.4 | 37.3 | 50.1 | 36.6 | 53.9 | 36.1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, L.-M.; Chen, J.-W.; Lecher, T.J.; Davidson, P.C. A Field-Scale Assessment of the Impact of Conventional and Permeable Concrete Pavements on Surface and Air Temperatures. Environments 2025, 12, 192. https://doi.org/10.3390/environments12060192
Chen L-M, Chen J-W, Lecher TJ, Davidson PC. A Field-Scale Assessment of the Impact of Conventional and Permeable Concrete Pavements on Surface and Air Temperatures. Environments. 2025; 12(6):192. https://doi.org/10.3390/environments12060192
Chicago/Turabian StyleChen, Lu-Ming, Jui-Wen Chen, Timothy J. Lecher, and Paul C. Davidson. 2025. "A Field-Scale Assessment of the Impact of Conventional and Permeable Concrete Pavements on Surface and Air Temperatures" Environments 12, no. 6: 192. https://doi.org/10.3390/environments12060192
APA StyleChen, L.-M., Chen, J.-W., Lecher, T. J., & Davidson, P. C. (2025). A Field-Scale Assessment of the Impact of Conventional and Permeable Concrete Pavements on Surface and Air Temperatures. Environments, 12(6), 192. https://doi.org/10.3390/environments12060192