Geography of Sustainability Transitions: Mapping Spatial Dynamics and Research Trends Between 1995 and 2024
Abstract
:1. Introduction
2. Literature Review—From Sustainability Transitions to Geography of Sustainability Transitions
3. Methods and Data
3.1. PRISMA Model to Conduct Literature Review in Geography of Sustainability Transitions
3.2. Contextualization of the Various Studies: Bibliometric Analysis
3.3. Variables for Analysis and Classification
4. Results and Discussion
4.1. Background—Authors and Spatialisation of the Research
4.2. Types of Geography of Sustainability Transitions
4.2.1. Domains and Gaps in the Geography of Sustainability Transitions
- i.
- Agri-food transitions
- ii.
- Industrial transitions
- iii.
- Economy transitions
- iv.
- Energy transitions
- v.
- Transport transitions
- vi.
- Urban transitions
- Socio-Cultural
- −
- Ensuring equal access to municipal services.
- −
- Engaging citizens through participatory implementation (citizen science).
- −
- Encouraging civic and private sector involvement at the local level.
- −
- Promoting social innovation by supporting inclusion.
- −
- Cultivating a shared economy.
- Socio-Economic
- −
- Capitalizing on local economies and production.
- −
- Creating and closing local value chains.
- −
- Applying innovative financing approaches.
- −
- Implementing sustainable procurement principles.
- −
- Advancing the transition to a circular economy.
- Technological
- −
- Wisely selecting and applying smart technologies.
- −
- Accelerating sustainability and innovation through public procurement.
- −
- Ensuring equal access to digital information/services.
- −
- Supporting open data standards.
- −
- Preparing policies for socio-cultural changes driven by innovation.
- −
- Challenges in Urban Transitions to Sustainability.
4.2.2. Evolution and Diversification of Sustainability Transitions Studies Considering the Sustainable Development Goals
- i.
- Access to clean and affordable energy is a central priority of the 2030 Agenda, enshrined in SDG 7. This has led to a significant mobilization of resources, policies, and scientific attention at the global level, particularly directed toward areas where energy access remains limited or unequal.
- ii.
- Energy transitions are frequently operationalized through technologies adapted to local realities, such as off-grid solar systems, bioenergy, and mini-grids, which are widely implemented in Global South countries. These represent sustainable energy alternatives and serve as living laboratories for experimentation and scientific analysis of ongoing transitions.
5. Conclusions
- (i)
- Agri-Food Transitions—in agriculture, balancing productivity and sustainability is a central challenge. Alternative food networks are emerging as important practices that promote ecological sustainability. Sustainable management of natural resources is essential for transitioning to resilient and sustainable food systems.
- (ii)
- Industrial Transitions—industry plays a central role in the global economy but is also a major GHG emitter. Industrial decarbonization is crucial to achieving net-zero emissions, requiring radical changes in production and consumption systems as well as investment in clean technologies. Examples from countries like Germany and the UK demonstrate significant progress in reducing industrial emissions.
- (iii)
- Economic Transitions—the transition to a sustainable economy, particularly circular economy models, addresses the challenges posed by conventional economic rationality. The circular economy seeks to retain resource value through recycling and reuse, promoting sustainability without depleting natural resources. This approach requires deep changes in industrial operations and consumer practices.
- (iv)
- Energy Transitions—involves the development of new energy production and consumption systems with low carbon emissions. A fundamental transition to reduce global CO2 emissions and promote access to sustainable energy services. Specific geographic policies and initiatives, such as those in the UK, are essential to achieving these goals.
- (v)
- Transport Transitions—vital for mitigating climate change and promoting sustainable mobility. Creating accessible urban environments, investing in public transport, and promoting active mobility, such as cycling and walking, are essential for reducing car dependency and associated carbon emissions.
- (vi)
- Urban Transitions—cities are crucial hubs for STs due to their complexity and concentration of resources. Initiatives such as ULL and UTL demonstrate how social and technical innovations can be implemented in urban environments to promote sustainability. However, institutional barriers and complexity remain significant challenges.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Markard, J.; Raven, R.; Truffer, B. Sustainability transitions: An emerging field of research and its prospects. Res. Policy 2012, 41, 955–967. [Google Scholar] [CrossRef]
- Smith, A.; Voß, J.P.; Grin, J. Innovation studies and sustainability transitions: The allure of the multi-level perspective and its challenges. Res. Policy 2010, 39, 435–448. [Google Scholar] [CrossRef]
- Coenen, L.; Benneworth, P.; Truffer, B. Toward a spatial perspective on sustainability transitions. Res. Policy 2012, 41, 968–979. [Google Scholar] [CrossRef]
- Köhler, J.; Geels, F.W.; Kern, F.; Markard, J.; Onsongo, E.; Wieczorek, A.; Alkemade, F.; Avelino, F.; Bergek, A.; Boons, F.; et al. An agenda for sustainability transitions research: State of the art and future directions. Environ. Innov. Soc. Transit. 2019, 31, 1–32. [Google Scholar] [CrossRef]
- Dinis, M.A.P.; Neto, B.; Begum, H.; Vidal, D.G. Editorial: Waste Challenges in the Context of Broad Sustainability Challenges [Editorial]. Front. Environ. Sci. 2022, 10, 964366. [Google Scholar] [CrossRef]
- Boschma, R.; Coenen, L.; Frenken, K.; Truffer, B. Towards a theory of regional diversification: Combining insights from evolutionary economic geography and transition studies. In Transitions in Regional Economic Development, 1st ed.; Turok, I., Bailey, D., Clark, J., Du, J., Fratesi, U., Fritsch, M., Harrison, J., Kemeny, T., Kogler, D., Lagendijk, A., Eds.; Routledge: New York, NY, USA, 2018; pp. 55–81. [Google Scholar]
- Coenen, L.; Truffer, B. Places and Spaces of Sustainability Transitions: Geographical Contributions to an Emerging Research and Policy Field. Eur. Plan. Stud. 2012, 20, 367–374. [Google Scholar] [CrossRef]
- Binz, C.; Coenen, L.; Murphy, J.T.; Truffer, B. Geographies of transition—From topical concerns to theoretical engagement: A comment on the transitions research agenda. Environ. Innov. Soc. Transit. 2020, 34, 1–3. [Google Scholar] [CrossRef]
- Hodson, M.; Marvin, S. Cities mediating technological transitions: Understanding visions, intermediation and consequences. Technol. Anal. Strateg. Manag. 2009, 21, 515–534. [Google Scholar] [CrossRef]
- Hansen, T.; Coenen, L. The geography of sustainability transitions: Review, synthesis and reflections on an emergent research field. Environ. Innov. Soc. Transit. 2015, 17, 92–109. [Google Scholar] [CrossRef]
- Loorbach, D.; Frantzeskaki, N.; Avelino, F. Sustainability Transitions Research: Transforming Science and Practice for Societal Change. Annu. Rev. Environ. Resour. 2017, 42, 599–626. [Google Scholar] [CrossRef]
- Grin, J.; Rotmans, J.; Schot, J. Transitions to Sustainable Development: New Directions in the Study of Long Term Transformative Change, 1st ed.; Routledge: New York, NY, USA, 2010; pp. 1–418. [Google Scholar] [CrossRef]
- Wittmayer, J.M.; Hielscher, S.; Rogge, K.S.; Weber, K.M. Advancing the understanding of social innovation in sustainability transitions: Exploring processes, politics, and policies for accelerating transitions. Environ. Innov. Soc. Transit. 2024, 50, 100805. [Google Scholar] [CrossRef]
- Scordato, L.; Gulbrandsen, M. Resilience perspectives in sustainability transitions research: A systematic literature review. Environ. Innov. Soc. Transit. 2024, 52, 100887. [Google Scholar] [CrossRef]
- Moher, D.; Liberati, A.; Tetzlaff, J.; Altman, D.; Group PRISMA. Preferred Reporting Items for Systematic Reviews and Meta-Analyses: The PRISMA Statement. Ann. Intern. Med. 2009, 151, 264–270. [Google Scholar] [CrossRef] [PubMed]
- Dhiman, S.; Singh, R.; Arjune, V.; Yadav, R.S.; Yadav, M.S.; Bansala, A. Mapping the Evolution of Sustainability Transitions Research: A Bibliometric Analysis. J. Scientometr. Res. 2023, 12, 522–533. [Google Scholar] [CrossRef]
- Kemp, R. Technology and the transition to environmental sustainability: The problem of technological regime shifts. Futures 1994, 26, 1023–1046. [Google Scholar] [CrossRef]
- Leff, E. ¿De quien es la naturaleza? Sobre la reapropiación social de los Recursos Naturales. Los Costos Ambientales y el Valor de la Naturaleza. Gac. Ecológica 1995, 37, 28–35. [Google Scholar]
- Lewis, E.; Edwards, R.; Howe, J. Delivering the Industrial Decarbonisation Challenge: Geographical considerations for decarbonisation. Geography 2023, 108, 86–94. [Google Scholar] [CrossRef]
- Sovacool, B.K.; Iskandarova, M.; Hall, J. Industrializing theories: A thematic analysis of conceptual frameworks and typologies for industrial sociotechnical change in a low-carbon future. Energy Res. Soc. Sci. 2023, 97, 102954. [Google Scholar] [CrossRef]
- Banos, V. Which resource geography to which transition? Analytical insights from the “new” forest-based products. Ann. De Géographie 2023, 754, 84–107. [Google Scholar] [CrossRef]
- Laddha, C. Biocatalysis Approach for Affordable and Sustainable Green Hydrogen Production. In Proceedings of the SPE Offshore Europe Conference & Exhibition, Aberdeen, UK, 5 September 2023; p. D021S004R005. [Google Scholar] [CrossRef]
- Lesch, D.; Miörner, J.; Binz, C. The Role of Global Actors in Sustainability Transitions—Tracing the Emergence of a Novel Infrastructure Paradigm in the Sanitation Sector. Environ. Innov. Soc. Transit. 2023, 49, 100787. [Google Scholar] [CrossRef]
- Nevens, F.; Frantzeskaki, N.; Gorissen, L.; Loorbach, D. Urban Transition Labs: Co-creating transformative action for sustainable cities. J. Clean. Prod. 2013, 50, 111–122. [Google Scholar] [CrossRef]
- van Vulpen, B. The ‘right’ policy for regional development: Seeking spatial justice in the Dutch case of the region deals. Eur. Plan. Stud. 2022, 31, 1823–1841. [Google Scholar] [CrossRef]
- Alessi, L.; Battiston, S.; Kvedaras, V. Over with carbon? Investors’ reaction to the Paris Agreement and the US withdrawal. J. Financ. Stab. 2024, 71, 101232. [Google Scholar] [CrossRef]
- Ernstson, H.; van der Leeuw, S.E.; Redman, C.L.; Meffert, D.J.; Davis, G.; Alfsen, C.; Elmqvist, T. Urban transitions: On urban resilience and human-dominated ecosystems. Ambio 2010, 39, 531–545. [Google Scholar] [CrossRef]
- Fuenfschilling, L.; Frantzeskaki, N.; Coenen, L. Urban experimentation & sustainability transitions. Eur. Plan. Stud. 2018, 27, 219–228. [Google Scholar] [CrossRef]
- Smith, A.; Stirling, A.; Berkhout, F. The governance of sustainable socio-technical transitions. Res. Policy 2005, 34, 1491–1510. [Google Scholar] [CrossRef]
- Liang, Y.; Galiano, J.C.; Zhou, H. The environmental impact of stock market capitalization and energy transition: Natural resource dynamics and international trade. Util. Policy 2023, 82, 101517. [Google Scholar] [CrossRef]
- Nkwunonwo, U.C.; Ebinne, E.S. Sustainability Transitions of Cities in the Global South Experiencing Severe Plastic Pollution: A Geospatial Perspective BT. In Selected Studies in Geotechnics, Geo-Informatics and Remote Sensing, 3rd ed.; Ergüler, Z.R., Chaminé, H.I., Rodrigo-Comino, J., Kallel, A., Merkel, B., Eshagh, A., Hadji, M., Chenchouni, H., Grab, S., Karakus, M., et al., Eds.; Springer Nature: Cham, Switzerland, 2023; pp. 91–93. [Google Scholar]
- Verbong, G.; Geels, F. The ongoing energy transition: Lessons from a socio-technical, multi-level analysis of the Dutch electricity system (1960–2004). Energy Policy 2007, 35, 1025–1037. [Google Scholar] [CrossRef]
- Banister, D. Cities, mobility and climate change. J. Transp. Geogr. 2011, 19, 1538–1546. [Google Scholar] [CrossRef]
- Nordt, A.; Raven, R.; Malekpour, S.; Sharp, D. Actors, agency, and institutional contexts: Transition intermediation for low-carbon mobility transition. Environ. Sci. Policy 2024, 154, 103707. [Google Scholar] [CrossRef]
- Leal Filho, W.; Mbah, M.F.; Dinis, M.A.P.; Trevisan, L.V.; de Lange, D.; Mishra, A.; Rebelatto, B.; Ben Hassen, T.; Aina, Y.A. The role of artificial intelligence in the implementation of the UN Sustainable Development Goal 11: Fostering sustainable cities and communities. Cities 2024, 150, 105021. [Google Scholar] [CrossRef]
- Sneddon, C.; Howarth, R.B.; Norgaard, R.B. Sustainable development in a post-Brundtland world. Ecol. Econ. 2006, 57, 253–268. [Google Scholar] [CrossRef]
- Kangmin, W.; Yuyao, Y.; Xiangyu, W.; Zhengqian, L.; Hong’ou, Z. New infrastructure-lead development and green-technologies: Evidence from the Pearl River Delta, China. Sustain. Cities Soc. 2023, 99, 104864. [Google Scholar] [CrossRef]
- Reiß, K.; Artmann, M. The role of spatial and relative proximity while transforming towards an edible city—The case of the City of the Future Dresden (Germany). Environ. Innov. Soc. Transit. 2023, 49, 100778. [Google Scholar] [CrossRef]
- Truffer, B.; Coenen, L. Environmental Innovation and Sustainability Transitions in Regional Studies. Reg. Stud. 2012, 46, 1–21. [Google Scholar] [CrossRef]
- Frantzeskaki, N.; Broto, V.C.; Coenen, L.; Loorbach, D. Urban Sustainability Transitions, 5th ed.; Routledge: New York, NY, USA, 2017; pp. 1–88. [Google Scholar]
- Hoogma, R.; Kemp, R.; Schot, J.; Truffer, B. Experimenting for Sustainable Transport, 2nd ed.; Taylor & Francis: New York, NY, USA, 2002; pp. 1–228. [Google Scholar]
- Berkhout, F.; Verbong, G.; Wieczorek, A.J.; Raven, R.; Lebel, L.; Bai, X. Sustainability experiments in Asia: Innovations shaping alternative development pathways? Environ. Sci. Policy 2010, 13, 261–271. [Google Scholar] [CrossRef]
- Bulkeley, H.; Castán-Broto, V.; Hodson, M.; Marvin, S. Cities and Low Carbon Transitions, 1st ed.; Routledge: London, UK, 2010; pp. 1–61. [Google Scholar]
- Jolly, S.; Steen, M.; Hansen, T.; Afewerki, S. Renewable energy and industrial development in pioneering and lagging regions: The offshore wind industry in southern Denmark and Normandy. Oxf. Open Energy 2023, 2, oiad010. [Google Scholar] [CrossRef]
- Hacker, M.E.; Binz, C. Hybrid Governance Arrangements for Urban Infrastructure Transitions: Comparing the Adoption of Onsite Water Reuse in San Francisco and New York City. ACS EST Water 2023, 3, 3916–3928. [Google Scholar] [CrossRef]
- Hodson, M.; Marvin, S. Can cities shape socio-technical transitions and how would we know if they were? Res. Policy 2010, 39, 477–485. [Google Scholar] [CrossRef]
- Rohe, S.; Schmidt-Scheele, R.; Mattes, J. The embeddedness of companies in regional energy transitions. Eur. Plan. Stud. 2023, 31, 2590–2613. [Google Scholar] [CrossRef]
- Friedrich, C.; Feser, D. Combining knowledge bases for small wins in peripheral regions. An analysis of the role of innovation intermediaries in sustainability transitions. Rev. Reg. Res. 2024, 44, 211–236. [Google Scholar] [CrossRef]
- Zhou, Z.; Chung, C.K.L.; Xu, J. Geographies of green industries: The interplay of firms, technologies, and the environment. Prog. Hum. Geogr. 2023, 47, 680–698. [Google Scholar] [CrossRef]
- Meili, R.; Stucki, T. Money matters: The role of money as a regional and corporate financial resource for circular economy transition at firm-level. Res. Policy 2023, 52, 104884. [Google Scholar] [CrossRef]
- Lybæk, R.; Hauggaard-Nielsen, H. A Qualitative Investigation of European Grain Legume Supply Markets through the Lens of Agroecology in Four Companies. Sustainability 2023, 15, 6103. [Google Scholar] [CrossRef]
- Shubalyi, O.; Stakhiv, O.; Tsaruk, D. The Ukrainian milk processing enterprises export orientations development in the martial law conditions and under the migration processes influence. IOP Conf. Ser. Earth Environ. Sci. 2023, 1269, 12027. [Google Scholar] [CrossRef]
- Murphy, J.T. Human geography and socio-technical transition studies: Promising intersections. Environ. Innov. Soc. Transit. 2015, 17, 73–91. [Google Scholar] [CrossRef]
- Shove, E.; Walker, G. Caution! Transitions Ahead: Politics, Practice, and Sustainable Transition Management. Environ. Plan. A Econ. Space 2007, 39, 763–770. [Google Scholar] [CrossRef]
- Lawhon, M.; Murphy, J.T. Socio-technical regimes and sustainability transitions: Insights from political ecology. Prog. Hum. Geogr. 2011, 36, 354–378. [Google Scholar] [CrossRef]
- Tartaruga, I.G.P.; Sperotto, F.Q. Geografia das Transições de Sustentabilidade. In Dicionário de Desenvolvimento Regional e Temas Correlatos, 2nd ed.; Griebeler, M.P.D., Santos, V., Eds.; Editora Conceito: São Paulo, RS, Brasil, 2021; pp. 404–407. [Google Scholar] [CrossRef]
- Kristensen, D.K.; Kjeldsen, C.; Thorsøe, M.H. Enabling Sustainable Agro-Food Futures: Exploring Fault Lines and Synergies Between the Integrated Territorial Paradigm, Rural Eco-Economy and Circular Economy. J. Agric. Environ. Ethics 2016, 29, 749–765. [Google Scholar] [CrossRef]
- Niggli, U. Sustainability of organic food production: Challenges and innovations. Proc. Nutr. Soc. 2015, 74, 83–88. [Google Scholar] [CrossRef]
- Gerbens-Leenes, P.W.; Moll, H.C.; Schoot Uiterkamp, A.J.M. Design and development of a measuring method for environmental sustainability in food production systems. Ecol. Econ. 2003, 46, 231–248. [Google Scholar] [CrossRef]
- Bale, J.S.; van Lenteren, J.C.; Bigler, F. Biological control and sustainable food production. Philos. Trans. R. Soc. B 2008, 363, 761–776. [Google Scholar] [CrossRef]
- Grunert, K.G.; Hieke, S.; Wills, J. Sustainability labels on food products: Consumer motivation, understanding and use. Food Policy 2014, 44, 177–189. [Google Scholar] [CrossRef]
- Grunert, K.G. Sustainability in the Food Sector: A Consumer Behaviour Perspective. Int. J. Food Syst. Dyn. 2011, 2, 207–218. [Google Scholar] [CrossRef]
- Cvijanović, D.; Ignjatijević, S.; Vapa Tankosić, J.; Cvijanović, V. Do Local Food Products Contribute to Sustainable Economic Development? Sustainability 2020, 12, 2847. [Google Scholar] [CrossRef]
- Maysels, R.; Figueroa Casas, A.; Otero Sarmiento, J.D.; Zuñiga Meneses, S.M. Conceptualization of alternative food networks in Latin America: A case study of a local food system in Southwestern Colombia. Front. Sustain. Food Syst. 2023, 7, 1216116. [Google Scholar] [CrossRef]
- Smith, P.; Gregory, P.J. Climate change and sustainable food production. Proc. Nutr. Soc. 2013, 72, 21–28. [Google Scholar] [CrossRef]
- Garcia, S.N.; Osburn, B.I.; Jay-Russell, M.T. One Health for Food Safety, Food Security, and Sustainable Food Production. Front. Sustain. Food Syst. 2020, 4, 1. [Google Scholar] [CrossRef]
- Green, A.; Nemecek, T.; Chaudhary, A.; Mathys, A. Assessing nutritional, health, and environmental sustainability dimensions of agri-food production. Glob. Food Secur. 2020, 26, 100406. [Google Scholar] [CrossRef]
- Maye, D. Agri-food sustainability transitions: Food geographies, governance and ethical foodscapes. In Rural-Urban Linkages for Sustainable Development, 1st ed.; Kratzer, A., Kister, J., Eds.; Routledge: London, UK, 2020; pp. 30–48. [Google Scholar]
- Ridgway, E.M.; Lawrence, M.A.; Woods, J. Integrating Environmental Sustainability Considerations into Food and Nutrition Policies: Insights from Australia’s National Food Plan. Front. Nutr. 2015, 2, 29. [Google Scholar] [CrossRef]
- Halloran, A.; Clement, J.; Kornum, N.; Bucatariu, C.; Magid, J. Addressing food waste reduction in Denmark. Food Policy 2014, 49, 294–301. [Google Scholar] [CrossRef]
- Stop Wasting Food. Available online: https://stopwastingfoodmovement.org/ (accessed on 8 March 2025).
- IPCC. Climate Change 2014 Mitigation of Climate Change Working Group III Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Edenhofer, O., Pichs-Madruga, R., Sokona, Y., Farahani, E., Kadner, S., Seyboth, K., Adler, A., Baum, I., Brunner, S., Eickemeier, P., et al., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2014. [Google Scholar]
- Koasidis, K.; Nikas, A.; Neofytou, H.; Karamaneas, A.; Gambhir, A.; Wachsmuth, J.; Doukas, H. The UK and German Low-Carbon Industry Transitions from a Sectoral Innovation and System Failures Perspective. Energies 2020, 13, 4994. [Google Scholar] [CrossRef]
- Geels, F.W.; Hekkert, M.P.; Jacobsson, S. (Eds.) The dynamics of sustainable innovation journeys. In The Dynamics of Sustainable Innovation Journeys, 1st ed.; Routledge: London, UK, 2013; pp. 1–16. [Google Scholar]
- Rostow, W.W. The stages of economic growth. In Sociological Worlds, 1st ed.; Sanderson, S.K., Ed.; Routledge: New York, NY, USA, 2013; pp. 130–134. [Google Scholar]
- Berkhout, F.; Angel, D.; Wieczorek, A.J. Asian development pathways and sustainable socio-technical regimes. Technol. Forecast. Soc. Change 2009, 76, 218–228. [Google Scholar] [CrossRef]
- Bernardini, O.; Galli, R. Dematerialization: Long-term trends in the intensity of use of materials and energy. Futures 1993, 25, 431–448. [Google Scholar] [CrossRef]
- Marcotullio, P.J.; Williams, E.; Marshall, J.D. Faster, Sooner, and More Simultaneously: How Recent Road and Air Transportation CO2 Emission Trends in Developing Countries Differ From Historic Trends in the United States. J. Environ. Dev. 2005, 14, 125–148. [Google Scholar] [CrossRef]
- Sovacool, B.K.; Geels, F.W.; Iskandarova, M. Industrial clusters for deep decarbonization. Science 2022, 378, 601–604. [Google Scholar] [CrossRef]
- Hayashi, D. Harnessing innovation policy for industrial decarbonization: Capabilities and manufacturing in the wind and solar power sectors of China and India. Energy Res. Soc. Sci. 2020, 70, 101644. [Google Scholar] [CrossRef]
- Rissman, J.; Bataille, C.; Masanet, E.; Aden, N.; Morrow, W.R.; Zhou, N.; Elliott, N.; Dell, R.; Heeren, N.; Huckestein, B.; et al. Technologies and policies to decarbonize global industry: Review and assessment of mitigation drivers through 2070. Appl. Energy 2020, 266, 114848. [Google Scholar] [CrossRef]
- Meckling, J.; Sterner, T.; Wagner, G. Policy sequencing toward decarbonization. Nat. Energy 2017, 2, 918–922. [Google Scholar] [CrossRef]
- Meckling, J. Making Industrial Policy Work for Decarbonization. Glob. Environ. Politics 2021, 21, 134–147. [Google Scholar] [CrossRef]
- IEA. World Energy Outlook 2008; International Energy Agency: Paris, France, 2008. [Google Scholar]
- Åhman, M.; Nilsson, L.J. Decarbonizing Industry in the EU: Climate, Trade and Industrial Policy Strategies. In Decarbonization in the European Union: Internal Policies and External Strategies, 1st ed.; Dupont, C., Oberthür, S., Eds.; Palgrave Macmillan: London UK, 2015; pp. 92–114. [Google Scholar] [CrossRef]
- Gerres, T.; Chaves Ávila, J.P.; Llamas, P.L.; San Román, T.G. A review of cross-sector decarbonisation potentials in the European energy intensive industry. J. Clean. Prod. 2019, 210, 585–601. [Google Scholar] [CrossRef]
- Minx, J.C.; Lamb, W.F.; Andrew, R.M.; Canadell, J.G.; Crippa, M.; Döbbeling, N.; Forster, P.M.; Guizzardi, D.; Olivier, J.; Peters, G.P.; et al. A comprehensive and synthetic dataset for global, regional, and national greenhouse gas emissions by sector 1970–2018 with an extension to 2019. Earth Syst. Sci. Data 2021, 13, 5213–5252. [Google Scholar] [CrossRef]
- Zeng, B.; Zhu, L. Market Power and Technology Diffusion in an Energy-Intensive Sector Covered by an Emissions Trading Scheme. Sustainability 2019, 11, 3870. [Google Scholar] [CrossRef]
- Min, S.; Roath, A.S.; Daugherty, P.J.; Genchev, S.E.; Chen, H.; Arndt, A.D.; Glenn Richey, R. Supply chain collaboration: What’s happening? Int. J. Logist. Manag. 2005, 16, 237–256. [Google Scholar] [CrossRef]
- Georgescu-Roegen, N. The Entropy Law and the Economic Process; Harvard University Press: Cambridge, MA, USA; London, UK, 1971; pp. 365–438. [Google Scholar] [CrossRef]
- Singh, S.K.; Singh, A.P. Interplay of organizational justice, psychological empowerment, organizational citizenship behavior, and job satisfaction in the context of circular economy. Manag. Decis. 2019, 57, 937–952. [Google Scholar] [CrossRef]
- Joensuu, T.; Edelman, H.; Saari, A. Circular economy practices in the built environment. J. Clean. Prod. 2020, 276, 124215. [Google Scholar] [CrossRef]
- Rajala, R.; Hakanen, E.; Mattila, J.; Seppälä, T.; Westerlund, M. How Do Intelligent Goods Shape Closed-Loop Systems? Calif. Manag. Rev. 2018, 60, 20–44. [Google Scholar] [CrossRef]
- Kristoffersen, E.; Mikalef, P.; Blomsma, F.; Li, J. The effects of business analytics capability on circular economy implementation, resource orchestration capability, and firm performance. Int. J. Prod. Econ. 2021, 239, 108205. [Google Scholar] [CrossRef]
- European Commission (EC). Closing the Loop—An EU Action Plan for the Circular Economy; European Comission: Brussels, Belgium, 2015; 21p.
- Lacy, P.; Long, J.; Spindler, W. Disruptive technologies. In The Circular Economy Handbook: Realizing the Circular Advantage, 1st ed.; Lacy, P., Long, J., Spindler, W., Eds.; Palgrave Macmillan: London, UK, 2020; pp. 43–71. [Google Scholar]
- Shi, L.; Xing, L.; Bi, J.; Zhang, B. Circular economy: A new development strategy for sustainable development in China. In Proceedings of the 3rd World Congress of Environmental and Resource Economists, Kyoto, Japan, 3–7 July 2006. [Google Scholar]
- Bridge, G.; Bouzarovski, S.; Bradshaw, M.; Eyre, N. Geographies of energy transition: Space, place and the low-carbon economy. Energy Policy 2013, 53, 331–340. [Google Scholar] [CrossRef]
- Jiusto, S. Energy transformations and geographic research. In A companion to Environmental Geography, 1st ed.; Castree, N., Demeritt, D., Liverman, D., Rhoads, B., Eds.; Blackwell Publishing Ltd.: Hoboken, NJ, USA, 2009; pp. 533–551. [Google Scholar]
- Heubaum, H.; Biermann, F. Integrating global energy and climate governance: The changing role of the International Energy Agency. Energy Policy 2015, 87, 229–239. [Google Scholar] [CrossRef]
- Watson, J. Co-provision in sustainable energy systems: The case of micro-generation. Energy Policy 2004, 32, 1981–1990. [Google Scholar] [CrossRef]
- Bradshaw, M.J. Global energy dilemmas: A geographical perspective. Geogr. J. 2010, 176, 275–290. [Google Scholar] [CrossRef]
- Bouzarovski, S. East-Central Europe’s changing energy landscapes: A place for geography. Area 2009, 41, 452–463. [Google Scholar] [CrossRef]
- Emmerson, C.; Stevens, P. Maritime Choke Points and the Global Energy System: Charting a Way Forward; Chatham House Briefing Paper; Chatham House: London, UK, 2012. [Google Scholar]
- Dicken, P. Global Shift: Mapping the Changing Contours of the World Economy; SAGE Publications Ltd.: Thousand Oaks, CA, USA, 2007. [Google Scholar]
- Foxon, T.; Hammond, G.P.; Pearson, P.J. Transition pathways for a low carbon energy system in the UK: Assessing the compatibility of large-scale and small-scale options. In Proceedings of the 7th BIEE Academic Conference, Oxford, UK, 24–25 September 2008. [Google Scholar]
- Chilvers, J.; Foxon, T.J.; Galloway, S. Realising transition pathways for a more electric, low-carbon energy system in the United Kingdom: Challenges, insights, and opportunities. Proc. Inst. Mech. Eng. Part A J. Power Energy 2017, 231, 440–477. [Google Scholar] [CrossRef]
- Howard, D.C.; Wadsworth, R.A.; Whitaker, J.W.; Hughes, N.; Bunce, R.G.H. The impact of sustainable energy production on land use in Britain through to 2050. Land Use Policy 2009, 26 (Suppl. S1), S284–S292. [Google Scholar] [CrossRef]
- Ahmed, Z.; Le, H.P. Linking Information Communication Technology, trade globalization index, and CO2 emissions: Evidence from advanced panel techniques. Environ. Sci. Pollut. Res. 2021, 28, 8770–8781. [Google Scholar] [CrossRef]
- Banister, D. Unsustainable Transport: City Transport in the New Century, 1st ed.; Routledge: Abingdon, UK, 2005. [Google Scholar] [CrossRef]
- Banister, D. The sustainable mobility paradigm. Transp. Policy 2008, 15, 73–80. [Google Scholar] [CrossRef]
- Kennedy, C.; Miller, E.; Shalaby, A.; Maclean, H.; Coleman, J. The Four Pillars of Sustainable Urban Transportation. Transp. Rev. 2005, 25, 393–414. [Google Scholar] [CrossRef]
- Banister, D.; Stead, D. Impact of information and communications technology on transport. Transp. Rev. 2004, 24, 611–632. [Google Scholar] [CrossRef]
- McCormick, K.; Anderberg, S.; Coenen, L.; Neij, L. Advancing sustainable urban transformation. J. Clean. Prod. 2013, 50, 1–11. [Google Scholar] [CrossRef]
- Lyons, G.; Kenyon, S. Social participation, personal travel and Internet use. In Proceedings of the 10th International Conference on Travel Behaviour Research, Lucerne, Switzerland, 10–14 August 2003. [Google Scholar]
- Bulkeley, H.; Castán Broto, V.; Hodson, M.; Marvin, S. (Eds.) Cities and Low Carbon Transitions; Routledge: Abingdon, VA, USA, 2011. [Google Scholar]
- Loorbach, D.; Wittmayer, J.M.; Shiroyama, H.; Fujino, J.; Mizuguchi, S. Governance of Urban Sustainability Transitions; Springer: Berlin/Heidelberg, Germany, 2016. [Google Scholar] [CrossRef]
- Hodson, M.; Geels, F.W.; McMeekin, A. Reconfiguring Urban Sustainability Transitions, Analysing Multiplicity. Sustainability 2017, 9, 299. [Google Scholar] [CrossRef]
- Moore, T.; de Haan, F.; Horne, R.; Gleeson, B. Urban Sustainability Transitions: Australian Cases-International Perspectives; Springer: Singapore, 2018. [Google Scholar]
- Wolfram, M.; Frantzeskaki, N. Cities and Systemic Change for Sustainability: Prevailing Epistemologies and an Emerging Research Agenda. Sustainability 2016, 8, 144. [Google Scholar] [CrossRef]
- UN DESA. World Urbanization Prospects: The 2018 Revision; United Nations: New York, NY, USA, 2019. [Google Scholar]
- Marvin, S.; Bulkeley, H.; Mai, L.; McCormick, K.; Palgan, Y.V. Urban Living Labs: Experimenting with City Futures; Routledge: London, UK, 2018. [Google Scholar]
- Evans, J.; Karvonen, A.; Raven, R. The Experimental City; Routledge: London, UK, 2016. [Google Scholar]
- Voytenko, Y.; McCormick, K.; Evans, J.; Schliwa, G. Urban Living Labs for Sustainability and Low Carbon Cities in Europe: Towards a Research Agenda. J. Clean. Prod. 2016, 123, 45–54. [Google Scholar] [CrossRef]
- Von Hippel, E. Lead users: A source of novel product concepts. Manag. Sci. 1986, 32, 791–805. [Google Scholar] [CrossRef]
- Chesbrough, H.W. Open Innovation: The New Imperative for Creating and Profiting from Technology; Harvard Business School Press: Boston, MA, USA, 2003. [Google Scholar]
- Bilgram, V.; Brem, A.; Voigt, K.-I. User-Centric Innovations in New Product Development—Systematic Indentification of Lead Users Harnessing Interactive and Collaborative Online-Tools. Int. J. Innov. Manag. 2008, 12, 419–458. [Google Scholar] [CrossRef]
- Pallot, M. Engaging Users into Research and Innovation: The Living Lab Approach as a User-Centred Open Innovation Ecosystem. Webergence Blog. 2009. Available online: http://www.cwe-projects.eu/pub/bscw.cgi/715404?id=715404_1760838 (accessed on 21 November 2024).
- Fuenfschilling, L.; Binz, C. Global Socio-Technical Regimes. Res. Policy 2018, 47, 735–749. [Google Scholar] [CrossRef]
- Sustainable Cities Platform. Available online: https://sustainablecities.eu/sustainable-cities-platform/ (accessed on 5 February 2025).
- Bulkeley, H.; Betsill, M. Rethinking sustainable cities: Multilevel governance and the ‘urban’ politics of climate change. Environ. Politics 2005, 14, 42–63. [Google Scholar] [CrossRef]
- Bai, X. Integrating global environmental concerns into urban management: The scale and readiness arguments. J. Ind. Ecol. 2007, 11, 15–29. [Google Scholar] [CrossRef]
- Remoaldo, P.; Freitas, I.; Matos, O.; Lopes, H.S.; Silva, S.; Sánchez Fernández, M.D.; Cadima Ribeiro, J.; Ribeiro, V. The Planning of Tourism on Rural Areas: The Stakeholders’ Perceptions of the Boticas Municipality (Northeastern Portugal). Eur. Countrys. 2017, 9, 504–525. [Google Scholar] [CrossRef]
- Lup, A.N.K.; Soni, V.; Keenan, B.; Son, J.; Taghartapeh, M.R.; Morato, M.M.; Montañés, R.M. Sustainable energy technologies for the Global South: Challenges and solutions toward achieving SDG 7. Environ. Sci. Adv. 2023, 2, 570–585. [Google Scholar] [CrossRef]
- Minas, A.M.; García-Freites, S.; Walsh, C.; Mukoro, V.; Aberilla, J.M.; April, A.; Mander, S. Advancing sustainable development goals through energy access: Lessons from the global south. Renew. Sustain. Energy Rev. 2024, 199, 114457. [Google Scholar] [CrossRef]
Author | Studies’ Number | Institution | Institution’s Country | References |
---|---|---|---|---|
Coenen, L. | 4 | Applied University of Western Norway | Norway | e.g., refs. [10,28,39,40] |
Truffer, B. | 3 | Utrecht University | The Netherlands | e.g., refs. [1,39,41] |
Raven, R. | 3 | Monash Institute for Sustainable Development | Australia | e.g., refs. [1,34,42] |
Frantzeskaki, N. | 3 | Utrecht University | The Netherlands | e.g., refs. [24,28,40] |
Verbong, G. | 2 | Eindhoven University of Technology | The Netherlands | e.g., refs. [32,42] |
Marvin, S. | 2 | University of Sheffield | UK | e.g., refs. [9,43] |
Loorbach, D. | 2 | Erasmus University Rotterdam | The Netherlands | e.g., refs. [24,40] |
Hodson, M. | 2 | University of Manchester | UK | e.g., refs. [9,43] |
Hansen, T. | 2 | University of Copenhagen | Denmark | e.g., refs. [10,44] |
Castán Broto, V. | 2 | University of Sheffield | UK | e.g., refs. [40,43] |
Binz, C. | 2 | Swiss Federal Institute of Aquatic Science and Technology | Switzerland | e.g., refs. [23,45] |
Berkhout, F. | 2 | King’s College London | UK | e.g., refs. [29,42] |
GSTs Type | Studies’ Number | References |
---|---|---|
Urban | 19 | e.g., refs. [28,38,46] |
Energy | 14 | e.g., refs. [19,30,47] |
Industrial | 8 | e.g., refs. [20,48,49] |
Transport | 5 | e.g., refs. [32,33,41] |
Circular Economy | 4 | e.g., refs. [18,50] |
Agri-food | 4 | e.g., refs. [51,52] |
Criteria | 1995–2014 | 2015–2024 |
---|---|---|
Number of identified types | 7 | 11 |
Main types | Economy, Education, Energy, Industrial, Transport, Urban, Water. | Agri-food, Biodiversity and Conservation, Digital, Economy, Energy, Industrial, Tourism, Transport, Urban, Waste, Water. |
Studies with territorial application | 30% | 80% |
Predominant Scale | National | Local |
Presence of the Global South (Countries) | India, South Africa, Thailand | Bangladesh, Cameroon, China, Colombia, Egypt, India, Indonesia, Iran, Kazakhstan, Kenya, Malaysia, Nigeria, Pakistan, Philippines, South Africa, Sri Lanka, Thailand, Vietname |
Theoretical Framework | Mostly conceptual | Theoretical-empirical integration |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ribeiro, I.P.; Lopes, H.S.; Dinis, M.A.P.; Remoaldo, P.C. Geography of Sustainability Transitions: Mapping Spatial Dynamics and Research Trends Between 1995 and 2024. Environments 2025, 12, 148. https://doi.org/10.3390/environments12050148
Ribeiro IP, Lopes HS, Dinis MAP, Remoaldo PC. Geography of Sustainability Transitions: Mapping Spatial Dynamics and Research Trends Between 1995 and 2024. Environments. 2025; 12(5):148. https://doi.org/10.3390/environments12050148
Chicago/Turabian StyleRibeiro, Inácio Pinto, Hélder Silva Lopes, Maria Alzira Pimenta Dinis, and Paula C. Remoaldo. 2025. "Geography of Sustainability Transitions: Mapping Spatial Dynamics and Research Trends Between 1995 and 2024" Environments 12, no. 5: 148. https://doi.org/10.3390/environments12050148
APA StyleRibeiro, I. P., Lopes, H. S., Dinis, M. A. P., & Remoaldo, P. C. (2025). Geography of Sustainability Transitions: Mapping Spatial Dynamics and Research Trends Between 1995 and 2024. Environments, 12(5), 148. https://doi.org/10.3390/environments12050148