The Occurrence and Distribution of Neonicotinoids in Sediments, Soil, and Other Environmental Media in China: A Review
Abstract
:1. Introduction
NEOs | Chemical Structure | Generation | CAS No. | Molecular Mass (g moL−1) | PKa | LogKow | Water Solubility (mg L−1) | Water–Sediment Photolysis (DT50 in Days) | Water Photolysis (DT50 in Days) | Water Hydrolysis (DT50 in Days) | Reference |
---|---|---|---|---|---|---|---|---|---|---|---|
Acetamiprid | First | 135410-20-7 | 222.678 | 0.7 | 0.8 | 2950 | 4.7 (moderately fast) | 34 (stable) | 420 (stable) | [21,23] | |
Clothianidin | Second | 210880-82-5 | 249.67 | 11.1 | 0.905 | 327 | 41–56 (stable) | <1; 0.1 (fast) | 14.4 (moderately fast) | [21,23] | |
Dinotefuran | First | 165252-70-0 | 202.214 | 12.6 | −0.549 | 39,830 | n.a. | 0.2 (fast) | n.a. (stable) | [21,23] | |
Imidacloprid | First | 80-09-1 | 255.661 | 8.00 | 0.57 | 0.58–0.61 | 30–129 (slow to stable) | <1, 0.2 (fast) | >365 (stable) | [21,23] | |
Imidaclothiz | Third | 105843-36-5 | 261.69 | n.a. | −0.23 | 500 | n.a. | n.a. | n.a. | [13,24] | |
Nitenpyram | First | 150824-47-8 | 270.72 | 3.1 | −0.66 | 570,000 | n.a. | n.a. | Stable at pH 3–7 Fast at pH 9 | [21,23] | |
Thiacloprid | First | 111988-49-9 | 252.72 | n.a. | 1.26 | 184 | 8–28 (stable) | 10–63 (stable) | n.a. (stable) | [21,23] | |
Thiamethoxam | Second | 153719-23-4 | 291.71 | n.a. | 0.8 | 4.1 | 31–40 (stable) | 2.7–39.5 (moderately fast) | 11.5 (stable) | [21,23] | |
Cycloxaprid | Fourth | 1203791-41-6 | 322.75 | 3.42 | n.a. | 1616.19 | n.a. | n.a. | n.a. | [25] |
Countries | RTL | Acetamiprid | Clothianidin | Dinotefuran | Imidacloprid | Thiacloprid | Thiamethoxam | References |
---|---|---|---|---|---|---|---|---|
(μg L−1) | ||||||||
EU | Short-term | 0.3667 | 3.1 | n.a. 1 | 0.098 | 0.0912 | 0.14 | [26] |
Long-term | 0.3667 | 3.1 | n.a. | 0.009 | 0.45 | 1 | ||
USA | Short-term | 1.6555 | 1.77 | 4.915 | 0.0385 | 18.9 | 3.535 | [26] |
Long-term | 0.36 | 0.05 | 3.1 | 0.01 | 0.97 | 0.74 | ||
Canada | Short-term | 12 | 1.3 | n.a. | 0.54 | 20.35 | 9 | [26] |
Long-term | 5000 | 0.12 | n.a. | 0.16 | 0.68 | 3 | ||
Netherland | Short-term | n.a. | n.a. | n.a. | 0.067 | n.a. | n.a. | [27] |
Long-term | n.a. | n.a. | n.a. | 0.2 | n.a. | n.a. | ||
Germany | Short-term | n.a. | n.a. | n.a. | 0.0024 | n.a. | n.a. | [28] |
Long-term | n.a. | n.a. | n.a. | 0.1 | n.a. | n.a. | ||
Other countries | Long term short term | n.a | 2.056 | n.a. | 0.341 0.06 | 13.114 0.7 | 4.225 0.68 | [26] |
Sediments | RTLSED 1 | n.a. | 16 | n.a. | 0.95 | 0.063 | 10 | [26] |
2. Occurrence and Distribution of Neonicotinoids (NEOs) in the Sediments
2.1. Sediments in Pearl River
2.2. Sediments in Songhua River
2.3. Sediments in Urban Runoff, Guangdong
2.4. Sediments in Drainage Ditch of Poyang Lake, Jiangxi Province
2.5. Sediments in the Northern Part of Hainan Province
2.6. Sediments in Qixing River, Heilong Jiang Province
2.7. Sediments in Eastern China Sea
2.8. Overall Discussion on Section 2
3. Occurrence and Distribution of NEOs in the Soil
3.1. In Provinces of Southern China
3.2. In Arable Land of Tianjin
Location (China) | NEOs | Detection Frequency (%) | Conc Range (ng g−1 dw) | Median (ng g−1 dw) | ECo-Risk Assess Method | References |
---|---|---|---|---|---|---|
Pearl River Delta, South China (n = 351) | Acetamiprid Clothianidin Dinotefuran Flonicamid Imidacloprid Imidaclothiz | 49 46 5 9 94 3 | 0.25–20 0.25–70 0.26–0.48 0.26–0.27 0.26–370 0.26–7 | 1.1 2.9 0.38 0.26 10 0.45 | Hazard Quotient (average scenario):
| [40] |
Zhejiang (n = 25) | Acetamiprid Clothianidin Dinotefuran Imidacloprid Imidaclothiz Nitenpyram Thiacloprid Thiamethoxam | 25 40 10 100 0 10 10 40 | n.d. 1 n.d.–16.77 n.d.–0.53 n.d.–7.27 n.d.–0.24 n.d.–0.58 n.d. n.d.–22.68 | n.d. 0.74 n.d. 1.59 n.d. n.d. n.d. n.d. | Mean IMIRPF of ∑NEO of four regions (RPF method)
| [51] |
Jiangsu (n = 25) | Acetamiprid Clothianidin Dinotefuran Imidacloprid Imidaclothiz Nitenpyram Thiacloprid Thiamethoxam | 0 50 15 90 10 10 0 40 | n.d.–1.49 n.d.–14.29 n.d.–9.33 0.49–29.88 n.d. n.d.–0.27 n.d.–0.22 n.d.–6.37 | n.d. n.d. n.d. 4.34 n.d. n.d. n.d. n.d. | ||
Jiangxi (n = 25) | Acetamiprid Clothianidin Dinotefuran Imidacloprid Imidaclothiz Nitenpyram Thiacloprid Thiamethoxam | 25 60 5 90 0 15 0 60 | n.d.–3.01 n.d.–4.43 n.d.–1.34 n.d.–16.40 n.d. n.d.–0.36 n.d. n.d.–16.97 | n.d. 0.73 n.d. 1.12 n.d. n.d. n.d. 0.4 | ||
Guangdong (n = 25) | Acetamiprid Clothianidin Dinotefuran Imidacloprid Imidaclothiz Nitenpyram Thiacloprid Thiamethoxam | 60 60 <10 90 0 <5 0 60 | n.d.–1.49 n.d.–14.29 n.d.–9.33 n.d.–21. n.d. n.d.–1.20 n.d.–14.29 n.d.–18.02 | 0.19 0.41 n.d. 3.67 n.d. n.d. n.d. 0.54 | ||
Tianjin (spring, n = 61) | Acetamiprid Clothianidin Dinotefuran Imidacloprid Thiacloprid Thiamethoxam | 100 52.5 1.64 100 14.8 96.7 | 0.19–440 n.d.–74.6 n.d.–3.28 0.74–1060 n.d.–18.2 n.d.–1560 | 1.64 0.17 n.d. 37.5 n.d. 1.08 | n.a. 1 | [55] |
Tianjin (fall, n = 158) | Acetamiprid Clothianidin Dinotefuran Imidacloprid Thiacloprid Thiamethoxam | 66.5 32.3 1.27 93 0.63 58.9 | n.d.–31.9 n.d.–132 n.d.–1.35 n.d.–2610 n.d.–0.14 n.d.–31.9 | 0.27 n.d. n.d. 11.6 n.d. 0.2 | ||
Shouguang, Shandong (tomato soil, n = 9) | Acetamiprid Clothianidin Dinotefuran Imidacloprid Imidaclothiz Nitenpyram Thiamethoxam | 100 100 66 85 100 22 96 | 0.10–7.13 0.08–1.36 n.d.–1.22 n.d.–6.017 0.067–0.27 n.d.–0.58 n.d.–4.865 | 0.46 0.18 0.27 1.90 0.11 0.27 0.67 | SSD modelling method:
| [56] |
Shouguang, Shandong (cucumber soil, n = 9) | Acetamiprid Clothianidin Dinotefuran Imidacloprid Imidaclothiz Nitenpyram Thiamethoxam | 100 96 11 100 100 0 55 | 0.035–2.134 n.d.–1.28 n.d.–0.31 0.15–8.51 0.04–0.05 n.d. n.d.–7.472 | 0.08 0.71 0.3 0.46 0.08 n.d. 0.124 | ||
Zhejiang (n = 195) | Acetamiprid Clothianidin Dinotefuran Flonicamid Imidacloprid Imidaclothiz Nitenpyram Thiacloprid Thiamethoxam | 64.1 86.2 94.4 32.3 99.5 47.7 80.5 65.1 81 | 0.16–2.55 0.4–8.91 0.64–9.28 0.21–0.96 3.9–82 0.11–0.46 0.28–4.49 0.1–0.75 0.27–8.97 | 0.76 2 0.96 0.47 25 0.22 0.43 0.21 1.01 | n.a. | [54] |
Shanbei Shanxi (n = 18) | Acetamiprid Clothianidin Imidacloprid Thiamethoxam | 11 94 11 39 | n.d.–8.69 n.d.–14.9 n.d.–16.9 n.d.–14.32 | n.d. 4.45 n.d. n.d. | Risk Quotient:
| [37] |
Guanzhong Shanxi (n = 20) | Acetamiprid Clothianidin Imidacloprid Thiamethoxam | 15 30 85 20 | n.d.–11.54 n.d.–26.69 n.d.–113.71 n.d.–145.04 | 0.15 0.3 0.85 0.2 | Risk Quotient:
| |
Shannan Shanxi (n = 32) | Acetamiprid Clothianidin Imidacloprid Thiamethoxam | 0 31 38 6 | n.d.–184.32 n.d. n.d.–27.1 n.d.–60.33 | n.d. n.d. n.d. n.d. | Risk Quotient:
| |
Beijing, suburban wheatfield (n = 206) | Acetamiprid Imidacloprid | 10.4 98.5 | n.d.–121,500 n.d.–98,500 | n.d. 12,700 | n.a. | [57] |
Hainan, Crop field of Changmai County (n = 112) | Acetamiprid Clothianidin Dinotefuran Imidacloprid Imidaclothiz Nitenpyram Thiacloprid Thiamethoxam | 100 98.2 100 100 73.2 35.4 76.8 98.2 | 0.28–1196.5 0.08–7502.9 0.09–154.2 0.63–3173.9 0.05–190.3 0.01–0.28 0.05–11.9 0.05–716.3 | 2.69 5.52 1.61 95.72 1.35 0.08 0.29 4.1 | Risk Quotient:
| [13] |
Heilong Jiang, Farmland-rivermarsh, Qixing River (n = 22) | Acetamiprid Clothianidin Imidacloprid Imidaclothiz Nitenpyram Thiamethoxam | 4.55 100 100 4.55 0 100 | n.d.–0.08 0.08–14.8 1.28–133 n.d.–0.01 n.d. 0.52–29.3 | 0.08 0.55 7.035 0.01 n.a. 1.295 | Risk Quotients of each individual NEOs in the water and soils were lower than 0.1, which indicates the low ecological risk. | [35] |
3.3. In Shouguang of Shandong Province
3.4. In Three Districts of Shanxi Province
3.5. In the Northern Part of Hainan Province
3.6. Overall Discussion on Section 3
4. Occurrence and Distribution of Neonicotinoids in Various Environmental Media
4.1. Neonicotinoids in the Indoor Dust
4.2. Neonicotinoids in Wheat Grains Collected from Suburban Wheat Field
4.3. Neonicotinoids Levels in Tea Leaves
4.4. Bee Colony Collapse Disorder Due to Neonicotinoids
5. Conclusions and Further Work
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Wang, T.; Zhong, M.; Lu, M.; Xu, D.; Xue, Y.; Huang, J.; Blaney, L.; Yu, G. Occurrence, spatiotemporal distribution, and risk assessment of current-use pesticides in surface water: A case study near Taihu Lake, China. Sci. Total Environ. 2021, 782, 146826. [Google Scholar] [CrossRef] [PubMed]
- Kamalesh, T.; Kumar, P.S.; Rangasamy, G. An insights of organochlorine pesticides categories, properties, eco-toxicity and new developments in bioremediation process. Environ. Pollut. 2023, 333, 122114. [Google Scholar]
- Sadaria, A.M. Fate of Six Neonicotinoids During Full-Scale Wastewater Treatment and Passage Through an Engineered Wetland; Arizona State University: Tempe, AZ, USA, 2015. [Google Scholar]
- Kundoo, A.A.; Dar, S.A.; Mushtaq, M.; Bashir, Z.; Dar, M.S.; Gul, S.; Ali, M.T.; Gulzar, S. Role of neonicotinoids in insect pest management: A review. J. Entomol. Zool. Stud. 2018, 6, 333–339. [Google Scholar]
- Goulson, D. An overview of the environmental risks posed by neonicotinoid insecticides. J. Appl. Ecol. 2013, 50, 977–987. [Google Scholar] [CrossRef]
- Ensley, S.M. (Ed.) Neonicotinoids, 3rd ed.; Academic Press Elsevier: London, UK, 2018; pp. 521–524. [Google Scholar]
- Thompson, D.A.; Lehmler, H.-J.; Kolpin, D.W.; Hladik, M.L.; Vargo, J.D.; Schilling, K.E.; LeFevre, G.H.; Peeples, T.L.; Poch, M.C.; LaDuca, L.E. A critical review on the potential impacts of neonicotinoid insecticide use: Current knowledge of environmental fate, toxicity, and implications for human health. Environ. Sci. Process. Impacts 2020, 22, 1315–1346. [Google Scholar] [CrossRef]
- Thunnissen, N.; Geurts, K.; Hoeks, S.; Hendriks, A. The impact of imidacloprid and thiacloprid on the mean species abundance in aquatic ecosystems. Sci. Total Environ. 2022, 822, 153626. [Google Scholar] [CrossRef]
- Dhuldhaj, U.P.; Singh, R.; Singh, V.K. Pesticide contamination in agro-ecosystems: Toxicity, impacts, and bio-based management strategies. Environ. Sci. Pollut. Res. 2023, 30, 9243–9270. [Google Scholar] [CrossRef]
- Zhang, X.; Huang, Y.; Chen, W.-J.; Wu, S.; Lei, Q.; Zhou, Z.; Zhang, W.; Mishra, S.; Bhatt, P.; Chen, S. Environmental occurrence, toxicity concerns, and biodegradation of neonicotinoid insecticides. Environ. Res. 2023, 218, 114953. [Google Scholar] [CrossRef]
- Craddock, H.A.; Huang, D.; Turner, P.C.; Quirós-Alcalá, L.; Payne-Sturges, D.C. Trends in neonicotinoid pesticide residues in food and water in the United States, 1999–2015. Environ. Health 2019, 18, 7. [Google Scholar] [CrossRef]
- Khatkar, S.; Dubey, S.K. Neonicotinoids: A potential insecticide of the decade. In Hazardous Chemicals; Academic Press: Cambridge, MA, USA, 2025; pp. 73–83. [Google Scholar]
- Tan, H.; Wang, C.; Zhu, S.; Liang, Y.; He, X.; Li, Y.; Wu, C.; Li, Q.; Cui, Y.; Deng, X. Neonicotinoids in draining micro-watersheds dominated by rice-vegetable rotations in tropical China: Multimedia occurrence, influencing factors, transport, and associated ecological risks. J. Hazard. Mater. 2023, 446, 130716. [Google Scholar] [CrossRef]
- Wei, J.; Wang, X.; Tu, C.; Long, T.; Bu, Y.; Wang, H.; Jeyakumar, P.; Jiang, J.; Deng, S. Remediation technologies for neonicotinoids in contaminated environments: Current state and future prospects. Environ. Int. 2023, 178, 108044. [Google Scholar] [CrossRef] [PubMed]
- Xiong, J.; Wang, Z.; Ma, X.; Li, H.; You, J. Occurrence and risk of neonicotinoid insecticides in surface water in a rapidly developing region: Application of polar organic chemical integrative samplers. Sci. Total Environ. 2019, 648, 1305–1312. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Zang, L.; Liu, M.; Zhang, C.; Shen, G.; Du, W.; Sun, Z.; Fei, J.; Yang, L.; Wang, Y. Ecological risk assessment of the increasing use of the neonicotinoid insecticides along the east coast of China. Environ. Int. 2019, 127, 550–557. [Google Scholar] [CrossRef] [PubMed]
- Borsuah, J.F.; Messer, T.L.; Snow, D.D.; Comfort, S.D.; Mittelstet, A.R. Literature review: Global neonicotinoid insecticide occurrence in aquatic environments. Water 2020, 12, 3388. [Google Scholar] [CrossRef]
- Pietrzak, D.; Kania, J.; Kmiecik, E.; Malina, G.; Wątor, K. Fate of selected neonicotinoid insecticides in soil–water systems: Current state of the art and knowledge gaps. Chemosphere 2020, 255, 126981. [Google Scholar] [CrossRef]
- Johnson, J.; Pettis, J. A survey of imidacloprid levels in water sources potentially frequented by honeybees (Apis mellifera) in the eastern USA. Water Air Soil Pollut. 2014, 225, 2127. [Google Scholar] [CrossRef]
- Mahai, G.; Wan, Y.; Xia, W.; Yang, S.; He, Z.; Xu, S. Neonicotinoid insecticides in surface water from the central Yangtze River, China. Chemosphere 2019, 229, 452–460. [Google Scholar] [CrossRef]
- Yi, X.; Zhang, C.; Liu, H.; Wu, R.; Tian, D.; Ruan, J.; Zhang, T.; Huang, M.; Ying, G. Occurrence and distribution of neonicotinoid insecticides in surface water and sediment of the Guangzhou section of the Pearl River, South China. Environ. Pollut. 2019, 251, 892–900. [Google Scholar] [CrossRef]
- Zhou, Y.; Wu, J.; Wang, B.; Duan, L.; Zhang, Y.; Zhao, W.; Wang, F.; Sui, Q.; Chen, Z.; Xu, D. Occurrence, source and ecotoxicological risk assessment of pesticides in surface water of Wujin District (northwest of Taihu Lake), China. Environ. Pollut. 2020, 265, 114953. [Google Scholar] [CrossRef]
- PPDB: Pesticide Properties DataBase; University of Hertfordshire: Hatfield, UK, 2023.
- Tao, Y.; Jia, C.; Jing, J.; Zhao, M.; Yu, P.; He, M.; Chen, L.; Zhao, E. Uptake, translocation, and biotransformation of neonicotinoid imidaclothiz in hydroponic vegetables: Implications for potential intake risks. J. Agric. Food Chem. 2021, 69, 4064–4073. [Google Scholar] [CrossRef]
- Deng, Y.; Zhuang, Y.; Feng, Y.; Lu, S.; Cheng, J.; Xu, X. Photodegradation of cis-configuration neonicotinoid cycloxaprid in water. China Environ. Sci. 2016, 36, 1112–1118. [Google Scholar]
- Stehle, S.; Ovcharova, V.; Wolfram, J.; Bub, S.; Herrmann, L.Z.; Petschick, L.L.; Schulz, R. Neonicotinoid insecticides in global agricultural surface waters–Exposure, risks and regulatory challenges. Sci. Total Environ. 2023, 867, 161383. [Google Scholar] [CrossRef] [PubMed]
- Smit, C. Water Quality Standards for Imidacloprid: Proposal for an Update According to the Water Framework Directive; National Institute for Public Health and the Environment: Bilthoven, The Netherlands, 2014. [Google Scholar]
- Wenzel, A.; Shemotyuk, L. EQS Datasheet Environmental Quality Standard Imidacloprid; Fraunhofer Institute for Molecular Biology and Applied Ecology IME: Schmallenberg, Germany, 2014. [Google Scholar]
- Zhang, C.; Tian, D.; Yi, X.; Zhang, T.; Ruan, J.; Wu, R.; Chen, C.; Huang, M.; Ying, G. Occurrence, distribution and seasonal variation of five neonicotinoid insecticides in surface water and sediment of the Pearl Rivers, South China. Chemosphere 2019, 217, 437–446. [Google Scholar] [CrossRef]
- Ensminger, M.P.; Budd, R.; Kelley, K.C.; Goh, K.S. Pesticide occurrence and aquatic benchmark exceedances in urban surface waters and sediments in three urban areas of California, USA, 2008–2011. Environ. Monit. Assess. 2013, 185, 3697–3710. [Google Scholar] [CrossRef]
- Ke, Y.; Zheng, W.; Tian, D.; Ke, S.; Fu, S.; Zhang, Z.; Xie, Y.; Zhu, J.; Ren, B.; Zhang, C. Occurrence and Fate of five representative neonicotinoid insecticides across different wastewater treatment plants and the impact on receiving water bodies. Environ. Res. 2024, 263, 120025. [Google Scholar] [CrossRef]
- Liu, Z.; Cui, S.; Zhang, L.; Zhang, Z.; Hough, R.; Fu, Q.; Li, Y.-F.; An, L.; Huang, M.; Li, K. Occurrence, variations, and risk assessment of neonicotinoid insecticides in Harbin section of the Songhua River, northeast China. Environ. Sci. Ecotechnol. 2021, 8, 100128. [Google Scholar] [CrossRef]
- Huang, Z.; Li, H.; Wei, Y.; Xiong, J.; You, J. Distribution and ecological risk of neonicotinoid insecticides in sediment in South China: Impact of regional characteristics and chemical properties. Sci. Total Environ. 2020, 714, 136878. [Google Scholar] [CrossRef]
- Gong, Y.; Xiong, J.; Tan, B.; Li, H.; Ma, X.; Yi, H.; Wang, L.; You, J. Occurrence and water-sediment exchange of systemic insecticides and their transformation products in an agriculture-dominated basin. J. Hazard. Mater. 2023, 458, 131851. [Google Scholar] [CrossRef]
- Liu, Z.; Cui, S.; Fu, Q.; Zhang, F.; Zhang, Z.; Hough, R.; An, L.; Li, Y.-F.; Zhang, L. Transport of neonicotinoid insecticides in a wetland ecosystem: Has the cultivation of different crops become the major sources? J. Environ. Manag. 2023, 339, 117838. [Google Scholar] [CrossRef]
- Morrissey, C.A.; Mineau, P.; Devries, J.H.; Sanchez-Bayo, F.; Liess, M.; Cavallaro, M.C.; Liber, K. Neonicotinoid contamination of global surface waters and associated risk to aquatic invertebrates: A review. Environ. Int. 2015, 74, 291–303. [Google Scholar] [CrossRef] [PubMed]
- Hua, L.; Chang, J.; Ma, Q. Pollution status and risk assessment of nicotine pesticides in farmland soil in Shanxi, Environmental pollution and control. Environ. Pollut. Control 2022, 44, 1632–1638. [Google Scholar]
- Hua, L.; Zhao, D.; Wang, H.; Wei, T. Residues and Bioavailability of Neonicotinoid Pesticide in Shaanxi Agricultural Soil. Water Air Soil Pollut. 2023, 234, 129. [Google Scholar] [CrossRef]
- Chen, Y.; Zhang, L.; Hu, H.; Wu, R.; Ling, J.; Yue, S.; Yang, D.; Yu, W.; Du, W.; Shen, G.; et al. Neonicotinoid pollution in marine sediments of the East China Sea. Sci. Total Environ. 2022, 842, 156658. [Google Scholar] [CrossRef]
- Yu, Z.; Li, X.-F.; Wang, S.; Liu, L.-Y.; Zeng, E.Y. The human and ecological risks of neonicotinoid insecticides in soils of an agricultural zone within the Pearl River Delta, South China. Environ. Pollut. 2021, 284, 117358. [Google Scholar] [CrossRef]
- Liao, L.; Sun, T.; Gao, Z.; Lin, J.; Gao, M.; Li, A.; Gao, T.; Gao, Z. Neonicotinoids as emerging contaminants in China’s environment: A review of current data. Environ. Sci. Pollut. Res. 2024, 31, 51098–51113. [Google Scholar] [CrossRef]
- Bonmatin, J.-M.; Noome, D.A.; Moreno, H.; Mitchell, E.A.; Glauser, G.; Soumana, O.S.; van Lexmond, M.B.; Sánchez-Bayo, F. A survey and risk assessment of neonicotinoids in water, soil and sediments of Belize. Environ. Pollut. 2019, 249, 949–958. [Google Scholar] [CrossRef]
- Kuechle, K.J.; Webb, E.B.; Mengel, D.; Main, A.R. Factors influencing neonicotinoid insecticide concentrations in floodplain wetland sediments across Missouri. Environ. Sci. Technol. 2019, 53, 10591–10600. [Google Scholar] [CrossRef]
- Main, A.R.; Headley, J.V.; Peru, K.M.; Michel, N.L.; Cessna, A.J.; Morrissey, C.A. Widespread use and frequent detection of neonicotinoid insecticides in wetlands of Canada’s Prairie Pothole Region. PLoS ONE 2014, 9, e92821. [Google Scholar] [CrossRef]
- Peris, A.; Barbieri, M.V.; Postigo, C.; Rambla-Alegre, M.; De Alda, M.L.; Eljarrat, E. Pesticides in sediments of the Ebro River Delta cultivated area (NE Spain): Occurrence and risk assessment for aquatic organisms. Environ. Pollut. 2022, 305, 119239. [Google Scholar] [CrossRef]
- Pizzini, S.; Giubilato, E.; Morabito, E.; Barbaro, E.; Bonetto, A.; Calgaro, L.; Feltracco, M.; Semenzin, E.; Vecchiato, M.; Zangrando, R. Contaminants of emerging concern in water and sediment of the Venice Lagoon, Italy. Environ. Res. 2024, 249, 118401. [Google Scholar] [CrossRef] [PubMed]
- Zhang, T.; Song, S.; Bai, X.; He, Y.; Zhang, B.; Gui, M.; Kannan, K.; Lu, S.; Huang, Y.; Sun, H. A nationwide survey of urinary concentrations of neonicotinoid insecticides in China. Environ. Int. 2019, 132, 105114. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Zhang, L.; Zhang, Z.; An, L.; Hough, R.; Hu, P.; Li, Y.-F.; Zhang, F.; Wang, S.; Zhao, Y. A review of spatiotemporal patterns of neonicotinoid insecticides in water, sediment, and soil across China. Environ. Sci. Pollut. Res. 2022, 29, 55336–55347. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Jiang, J.-Q. Occurrence and Distribution of Neonicotinoid Pesticides in Chinese Waterways: A Review. Environments 2023, 10, 206. [Google Scholar] [CrossRef]
- Klingelhöfer, D.; Braun, M.; Brüggmann, D.; Groneberg, D.A. Neonicotinoids: A critical assessment of the global research landscape of the most extensively used insecticide. Environ. Res. 2022, 213, 113727. [Google Scholar] [CrossRef]
- Gu, S.; Li, Z.; Yang, L.; Bao, X.; Ying, C.; Zhang, Q. The distribution and human health risk assessment of eight neonicotinoid residues in agricultural soils from four provinces, south China. Chemosphere 2023, 322, 138143. [Google Scholar] [CrossRef]
- Niu, L.; Xu, C.; Yao, Y.; Liu, K.; Yang, F.; Tang, M.; Liu, W. Status, influences and risk assessment of hexachlorocyclohexanes in agricultural soils across China. Environ. Sci. Technol. 2013, 47, 12140–12147. [Google Scholar] [CrossRef]
- Zhang, R.; Chen, T.; Zhang, Y.; Hou, Y.; Chang, Q. Health risk assessment of heavy metals in agricultural soils and identification of main influencing factors in a typical industrial park in northwest China. Chemosphere 2020, 252, 126591. [Google Scholar] [CrossRef]
- Chen, Y.; Wu, R.; Zhang, L.; Ling, J.; Yu, W.; Shen, G.; Du, W.; Zhao, M. High spatial resolved cropland coverage and cultivation category determine neonicotinoid distribution in agricultural soil at the provincial scale. J. Hazard. Mater. 2022, 430, 128476. [Google Scholar] [CrossRef]
- Zhou, Y.; Lu, X.; Yu, B.; Wang, D.; Zhao, C.; Yang, Q.; Zhang, Q.; Tan, Y.; Wang, X.; Guo, J. Comparison of neonicotinoid residues in soils of different land use types. Sci. Total Environ. 2021, 782, 146803. [Google Scholar] [CrossRef]
- Wu, R.-L.; He, W.; Li, Y.-L.; Li, Y.-Y.; Qin, Y.-F.; Meng, F.-Q.; Wang, L.-G.; Xu, F.-L. Residual concentrations and ecological risks of neonicotinoid insecticides in the soils of tomato and cucumber greenhouses in Shouguang, Shandong Province, East China. Sci. Total Environ. 2020, 738, 140248. [Google Scholar] [CrossRef] [PubMed]
- Tao, Y.; Jia, C.; Jing, J.; Zhang, J.; Yu, P.; He, M.; Wu, J.; Chen, L.; Zhao, E. Occurrence and dietary risk assessment of 37 pesticides in wheat fields in the suburbs of Beijing, China. Food Chem. 2021, 350, 129245. [Google Scholar] [CrossRef] [PubMed]
- Liu, P.; Zhang, L.; Li, H.; Wei, Y.; Wu, F.; You, J. Reduced concentrations and toxicity of sediment-associated pesticides from vegetable planting field to surrounding waterways: Impacts of chemical properties and intrinsic toxicity. J. Hazard. Mater. 2022, 436, 129292. [Google Scholar] [CrossRef] [PubMed]
- Mulligan, R.A.; Tomco, P.L.; Howard, M.W.; Schempp, T.T.; Stewart, D.J.; Stacey, P.M.; Ball, D.B.; Tjeerdema, R.S. Aerobic versus anaerobic microbial degradation of clothianidin under simulated California rice field conditions. J. Agric. Food Chem. 2016, 64, 7059–7067. [Google Scholar] [CrossRef]
- Yu, X.-Y.; Mu, C.-L.; Gu, C.; Liu, C.; Liu, X.-J. Impact of woodchip biochar amendment on the sorption and dissipation of pesticide acetamiprid in agricultural soils. Chemosphere 2011, 85, 1284–1289. [Google Scholar] [CrossRef]
- Zhang, P.; Ren, C.; Sun, H.; Min, L. Sorption, desorption and degradation of neonicotinoids in four agricultural soils and their effects on soil microorganisms. Sci. Total Environ. 2018, 615, 59–69. [Google Scholar] [CrossRef]
- Li, Y.; Su, P.; Li, Y.; Wen, K.; Bi, G.; Cox, M. Adsorption-desorption and degradation of insecticides clothianidin and thiamethoxam in agricultural soils. Chemosphere 2018, 207, 708–714. [Google Scholar] [CrossRef]
- Wang, A.; Mahai, G.; Wan, Y.; Jiang, Y.; Meng, Q.; Xia, W.; He, Z.; Xu, S. Neonicotinoids and carbendazim in indoor dust from three cities in China: Spatial and temporal variations. Sci. Total Environ. 2019, 695, 133790. [Google Scholar] [CrossRef]
- Zhang, H.; Shen, K.; Wu, R.; Li, Z.; Wang, X.; Wang, D.; Zhan, M.; Xu, W.; Gao, Y.; Lu, L. Occurrence and distribution of neonicotinoids and characteristic metabolites in paired urine and indoor dust from young adults: Implications for human exposure. Environ. Res. 2021, 199, 111175. [Google Scholar] [CrossRef]
- Mu, H.; Zhang, J.; Yang, X.; Wang, K.; Xu, W.; Zhang, H.; Liu, X.; Ritsema, C.J.; Geissen, V. Pesticide screening and health risk assessment of residential dust in a rural region of the North China Plain. Chemosphere 2022, 303, 135115. [Google Scholar] [CrossRef]
- Li, S.; Ren, J.; Li, L.; Chen, R.; Li, J.; Zhao, Y.; Chen, D.; Wu, Y. Temporal variation analysis and risk assessment of neonicotinoid residues from tea in China. Environ. Pollut. 2020, 266, 115119. [Google Scholar] [CrossRef] [PubMed]
- Tao, T.; Wang, C.; Dai, W.; Yu, S.; Lu, Z.; Zhang, Q. An integrated assessment and spatial-temporal variation analysis of neonicotinoids in pollen and honey from noncrop plants in Zhejiang, China. Environ. Pollut. 2019, 250, 397–406. [Google Scholar]
- Wang, F.; Li, S.; Feng, H.; Yang, Y.; Xiao, B.; Chen, D. An enhanced sensitivity and cleanup strategy for the nontargeted screening and targeted determination of pesticides in tea using modified dispersive solid-phase extraction and cold-induced acetonitrile aqueous two-phase systems coupled with liquid chromatography-high resolution mass spectrometry. Food Chem. 2019, 275, 530–538. [Google Scholar] [PubMed]
Site/Location in China | NEOs | Detection Frequency (%) | Conc Range (ng g−1 dw) | Median (ng g−1 dw) | References |
---|---|---|---|---|---|
Pearl River Guangdong (n = 85) | Acetamiprid Clothianidin Imidacloprid Thiacloprid Thiamethoxam | 92 73 98 47 82 | 0.01–5.33 0.01–1.91 0.02–7.16 0.01–1.48 0.01–4.34 | 0.16 0.28 0.55 0.08 0.09 | [29] |
Pearl River Guangdong (n = 9) | Acetamiprid Clothianidin Imidacloprid Thiacloprid Thiamethoxam | 100 89 0 10 78 | n.d. 0.08–0.02 0.02–0.23 0.16–2.07 0.03–0.38 | n.d. 0.09 0.05 0.85 0.09 | [21] |
Receiving rivers of WWTP 1 (Ronggui waterway), Guangdong (n = 10) | Acetamiprid Clothianidin Imidacloprid Thiacloprid Thiamethoxam | 100 80 n.d. 60 100 | 0.05–0.28 0.08–0.21 n.a. 0.02–0.05 0.05–0.32 | 0.07 0.2 n.a. 0.03 0.11 | [31] |
Receiving rivers upstream of WWTP 2 (Modemen waterways), Guangdong (n = 12) | Acetamiprid Clothianidin Imidacloprid Thiacloprid Thiamethoxam | 83.3 83.3 n.d. n.d. n.d. | 0.02–0.84 0.04–0.10 n.a. n.a. n.a. | 0.16 0.06 n.a. 0.06 n.a. | [31] |
Receiving river of WWTP (Huangpu waterway), Guangdong (n = 12) | Acetamiprid Clothianidin Imidacloprid Thiacloprid Thiamethoxam | 100 100 83.3 66.7 100 | 0.05–0.20 0.18–0.41 0.28–0.81 0.02–0.06 0.12–0.38 | 0.24 0.295 0.38 0.055 0.03 | [31] |
Songhua River, Harbin (n = 11) | Acetamiprid Clothianidin Dinotefuran Imidacloprid Imidaclothiz Thiacloprid Thiamethoxam | 9 100 0 100 0 0 100 | n.d.–0.75 0.07–0.22 n.d 0.34–12.6 n.d. n.d. 0.12–1.58 | n.d. 0.11 n.d. 0.94 n.d. n.d. 0.51 | [32] |
Urban runoff, Guangdong and Fujian (n = 58) | Acetamiprid Clothianidin Dinotefuran Imidacloprid Thiacloprid Thiamethoxam | 64 98 64 86 74 64 | 0.25–9.23 0.64–6.17 0–3.25 0.25–19.1 0–1.83 0–0.78 | <0.5 <0.5 <0.5 0.91 <0.5 <0.5 | [33] |
Drainage ditch near a rice paddy field and receiving rivers in the Poyang Lake basin, Jiangxi (n = 16) | Acetamiprid Clothianidin Dinotefuran Imidacloprid Thiacloprid Thiamethoxam Sulfoxaflor | 100 88 0 31 75 0 0 | 0.008–0.087 n.d–0.041 n.d. n.d.–0.701 n.d.–0.038 n.d. n.d. | 0.034 0.028 n.d. n.d. 0.010 n.d. n.d. | [34] |
Crop field of Changmai County, Hainan (n = 112) | Acetamiprid Clothianidin Dinotefuran Imidacloprid Imidaclothiz Nitenpyram Thiacloprid Thiamethoxam | 99.1 99.1 93.8 99.1 92.5 8.9 63.4 99.1 | 0.07–106.7 0.05–12.7 0.04–32.6 0.08–116.5 0.03–3.3 0.02–0.03 0.02–1.2 0.18–56.8 | 0.69 0.44 0.2 4.0 0.25 0.02 0.04 0.61 | [13] |
Farmland river marsh, Qixing River, Heilong Jiang (n = 20) | Acetamiprid Clothianidin Imidacloprid Imidaclothiz Nitenpyram Thiamethoxam | 15 100 100 n.d. n.d. 100 | n.d.–0.19 0.08–0.73 0.57–6.36 0 0 0.49–2.85 | 0.06 0.145 1.68 n.a. n.a. 1.33 | [35] |
Site | NEOs | Detection Frequency (%) | Conc Range (ng g−1 dw) | Median (ng g−1 dw) | Reference |
---|---|---|---|---|---|
Corozal district, Belize (n = 34) | Acetamiprid Clothianidin Imidacloprid Thiacloprid Thiamethoxam | 3 1 15 0 1 | n.d.–0.014 n.d.–0.053 n.d.–0.175 n.d. 1 n.d. | 0.007 0.053 0.047 n.d. 0.116 | [42] |
Missouri Wetlands, USA (n = 157) | Acetamiprid Clothianidin Dinotefuran Imidacloprid Thiacloprid Thiamethoxam | n.a. 1 43 n.a. 40 n.a. 4 | 0–0.079 0–11.932 0–0.106 0–10.19 0–0.06 0–1.089 | 0 0 0 0 0 0 | [43] |
Prairie Pothole Regions, Canada (n = 134) | Acetamiprid Clothianidin Imidacloprid Thiamethoxam | n.d. n.d. n.d. n.d. | n.a. n.d.–4.4 n.d.–17.5 n.d.–20.0 | n.d. n.d. n.d. n.d. | [44] |
Ebro River Delta, Spain | Acetamiprid Imidacloprid Thiamethoxam | 21 14 7.1 | n.d.–2.35 n.d.–3.76 n.d.–0.46 | 0.81 2.51 0.46 | [45] |
Italy (n = 26) | Acetamiprid Clothianidin Imidacloprid Thiacloprid Thiamethoxam | 15.4 7.7 0 11.5 26.9 | n.d.–51.8 n.d.–60.3 n.d. n.d.–54.3 n.d.–12.7 | 4.35 31.37 n.d. 27.1 8.14 | [46] |
Sample | Site/Location in China | NEOs | Detection Frequency (%) | Conc Range (ng g−1 dw) | Median (ng g−1 dw) | Human Exposure Risk Assessment | References |
---|---|---|---|---|---|---|---|
Dust | Taiyuan Shanxi (2016, n = 86) | Acetamiprid Clothianidin Dinotefuran Imidacloprid Thiacloprid Thiamethoxam | 98.8 0 53.6 98.8 0 2.40 | n.d. 1–177 n.d. n.d.–6.51 n.d.–169 n.d. n.d.–10.1 | 0.58 n.d. 10.4 1.46 n.d. n.d. | EDIdust (median, pg kg−1bw day−1): of IMIeq (estimated daily taken method)
| [63] |
Wuhan Hubei (2018, n = 110) | Acetamiprid Clothianidin Dinotefuran Imidacloprid Thiacloprid Thiamethoxam | 97.3 309 30 100 74.5 30 | n.d.–4227 n.d.–363 n.d.–141 0.10–2823 n.d.–367 n.d.–92.1 | 4.66 n.d. n.d. 5.26 0.76 n.d. | EDIdust (median, pg kg−1bw day−1) of IMIeq (estimated daily taken method)
| ||
Shenzhen Guangdong (2019, n = 86) | Acetamiprid Clothianidin Dinotefuran Imidacloprid Thiacloprid Thiamethoxam | 100 57.0 29.1 100 10.1 46.8 | 3.82 0.61 n.d. 7.29 n.d. n.d. | 3.82 0.61 n.d. 7.29 n.d. n.d. | EDIdust (median, pg kg−1bw day−1) of IMIeq (estimated daily taken method)
| ||
Guangdong (n = 40) | Acetamiprid Clothianidin Dinotefuran Imidacloprid Thiacloprid Thiamethoxam N-desmethyl acetamiprid UF 5-OH-IMI | 93 90 92 80 80 88 85 95 75 | n.d.–6.97 n.d.–4.60 n.d.–9.65 n.d.–4.96 n.d.–0.23 n.d.–0.81 n.d.–10.7 n.d.–4.56 n.d.–12.5 | 0.53 0.52 0.77 0.59 0.05 0.15 2.74 1.02 0.99 | Total EDIdust (pg kg −1 bw day−1) of parent NEOs, metabolite NEOs, and the sum of all NEOs (parent + metabolite) and IMIeq (estimated daily taken method)
| [64] | |
Quzhou County Hebei (n = 35) | Acetamiprid Clothianidin Imidacloprid Thiamethoxam | 93 87 95 93 | 0.06–2.13 0.01–0.1 0.1–2.18 0.09–1.33 | 0.41 0.07 0.07 0.2 | HI-children based on ingestion (Hazard Quotient method)
| [65] | |
Wheat | Beijing (2019) | Acetamiprid Imidacloprid | 9 3 | n.d.–40.5 n.d.–35.5 | n.d. n.d. | Risk Quotient
| [57] |
Beijing (2018) | Acetamiprid Imidacloprid | 4.3 4.3 | n.d.–11.9 n.d.–15.5 | n.d. n.d. | |||
Tea | Fujian, Yunnan, Anhui, Zhejiang (2011–2013, n = 251) | Acetamiprid Clothianidin Dinotefuran Imidacloprid Nitenpyram Thiacloprid Thiamethoxam | 86.1 0 3.2 82.9 0 26.3 6.8 | n.d.–4,288 n.d. n.d.–38.66 n.d.–4,456.51 n.d. n.d.–157.37 n.d.–14,319 | 97.43 n.d. n.d. n.d. n.d. 27.11 n.d. | HQ%: (probabilistic risk assessment-optimistic model run):Long-term risk assessment:
| [66] |
Fujian, Yunnan, Anhui, Zhejiang (2015–2016, n = 189) | Acetamiprid Clothianidin Dinotefuran Imidacloprid Nitenpyram Thiacloprid Thiamethoxam | 87.3 2.1 5.8 65.6 1.1 50.3 9.0 | n.d.–4435 n.d.–31.58 n.d.–27.95 n.d.–49.36 n.d.–1.54 n.d.–518.99 n.d.–31.58 | 62.94 n.d. n.d. 10.34 n.d. 0.27 n.d. | HQ%: (probabilistic risk assessment-optimistic model run):
| ||
Fujian, Yunnan, Anhui, Zhejiang (2017–2018, n = 286) | Acetamiprid Clothianidin Dinotefuran Imidacloprid Nitenpyram Thiacloprid Thiamethoxam | 51.0 5.6 7.3 57.3 5.9 30.1 8.4 | n.d.–6835.95 n.d.–540.27 n.d.–112.19 n.d.–1217.32 n.d.–6.53 n.d.–279.71 n.d.–5032.27 | 0.53 n.d. n.d. 4.19 n.d. n.d. n.d. | HQ%: (probabilistic risk assessment-optimistic model run):Long-term risk assessment:
| ||
Pollen | Zhejiang (n = 69) | Acetamiprid Clothianidin Dinotefuran Imidacloprid Thiacloprid Thiamethoxam | 41.7 33.3 22.2 50.0 19.4 19.4 | n.d.–1.74 n.d.–3 n.d.–1.65 n.d.–1.6 n.d.–0.78 n.d.–1.7 | n.d. n.d. n.d. n.d. n.d. n.d. | Mean ∑IMIRPF (ng g−1 dw) of 12 sites (RPF assessment)
| [67] |
Honey | Zhejiang (n = 10) | Acetamiprid Clothianidin Dinotefuran Imidacloprid Thiacloprid Thiamethoxam | 0 10 10 20 0 10 | n.d. n.d.– 0.14 n.d.– 1.71 n.d.– 2.59 n.d.– 0.63 n.d. | n.d. n.d. n.d. n.d. n.d. n.d. | Mean ∑IMIRPF (ng g−1 dw) of 12 sites (RPF assessment)
|
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, S.; Jiang, J.-Q. The Occurrence and Distribution of Neonicotinoids in Sediments, Soil, and Other Environmental Media in China: A Review. Environments 2025, 12, 150. https://doi.org/10.3390/environments12050150
Zhang S, Jiang J-Q. The Occurrence and Distribution of Neonicotinoids in Sediments, Soil, and Other Environmental Media in China: A Review. Environments. 2025; 12(5):150. https://doi.org/10.3390/environments12050150
Chicago/Turabian StyleZhang, Shaoqing, and Jia-Qian Jiang. 2025. "The Occurrence and Distribution of Neonicotinoids in Sediments, Soil, and Other Environmental Media in China: A Review" Environments 12, no. 5: 150. https://doi.org/10.3390/environments12050150
APA StyleZhang, S., & Jiang, J.-Q. (2025). The Occurrence and Distribution of Neonicotinoids in Sediments, Soil, and Other Environmental Media in China: A Review. Environments, 12(5), 150. https://doi.org/10.3390/environments12050150