Study of Inhibitory Effects on Aerobic Biomass: Interaction Between Per-/Polyfluoroalkyl Substances (PFAS) and Traditional Toxic Compounds
Abstract
:1. Introduction
2. Materials and Methods
- Evaluation of the Potential Inhibitory Effects of Aqueous Waste with High PFAS Concentrations Compared to Traditional Inhibitors;
- Evaluation of the Potential Inhibitory Effects of Substrates Combining Aqueous Waste with High PFAS Concentrations and Traditional Inhibitors:
- (a)
- Effects at short term
- (b)
- Effects at medium-long term
2.1. Equipment Used for the OUR Test
2.2. Execution and Processing of OUR Tests
2.3. Tested Biomass
2.4. Tested Substrates
2.5. Experimental Tests
3. Results and Discussion
3.1. Evaluation of the Potential Inhibitory Effects of Aqueous Waste with High PFAS Concentrations Compared to Traditional Inhibitors
3.2. Evaluation of the Potential Inhibitory Effects of Substrates Combining Aqueous Waste with High PFAS Concentrations and Traditional Inhibitors
3.2.1. Effects at Short Term
3.2.2. Effects at Medium-Long Term
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Buck, R.C.; Franklin, J.; Berger, U.; Conder, J.M.; Cousins, I.T.; de Voogt, P.; Jensen, A.A.; Kannan, K.; Mabury, S.A.; van Leeuwen, S.P. Perfluoroalkyl and Polyfluoroalkyl Substances in the Environment: Terminology, Classification, and Origins. Integr. Environ. Assess. Manag. 2011, 7, 513–541. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Buser, A.M.; Cousins, I.T.; Demattio, S.; Drost, W.; Johansson, O.; Ohno, K.; Patlewicz, G.; Richard, A.M.; Walker, G.W.; et al. A New OECD Definition for Per- and Polyfluoroalkyl Substances. Environ. Sci. Technol. 2021, 55, 15575–15578. [Google Scholar] [CrossRef]
- Panieri, E.; Baralic, K.; Djukic-Cosic, D.; Buha Djordjevic, A.; Saso, L. PFAS Molecules: A Major Concern for the Human Health and the Environment. Toxics 2022, 10, 44. [Google Scholar] [CrossRef]
- Sinclair, G.M.; Long, S.M.; Jones, O.A.H. What Are the Effects of PFAS Exposure at Environmentally Relevant Concentrations? Chemosphere 2020, 258, 127340. [Google Scholar] [CrossRef] [PubMed]
- Wee, S.Y.; Aris, A.Z. Environmental Impacts, Exposure Pathways, and Health Effects of PFOA and PFOS. Ecotoxicol. Environ. Saf. 2023, 267, 115663. [Google Scholar] [CrossRef]
- Pizzurro, D.M.; Seeley, M.; Kerper, L.E.; Beck, B.D. Interspecies Differences in Perfluoroalkyl Substances (PFAS) Toxicokinetics and Application to Health-Based Criteria. Regul. Toxicol. Pharmacol. 2019, 106, 239–250. [Google Scholar] [CrossRef] [PubMed]
- Lau, C.; Butenhoff, J.L.; Rogers, J.M. The Developmental Toxicity of Perfluoroalkyl Acids and Their Derivatives. Toxicol. Appl. Pharmacol. 2004, 198, 231–241. [Google Scholar] [CrossRef]
- Gong, X.; Yang, C.; Hong, Y.; Chung, A.C.K.; Cai, Z. PFOA and PFOS Promote Diabetic Renal Injury in Vitro by Impairing the Metabolisms of Amino Acids and Purines. Sci. Total Environ. 2019, 676, 72–86. [Google Scholar] [CrossRef]
- Collivignarelli, M.C.; Caccamo, F.M.; Bellazzi, S.; Abbà, A.; Bertanza, G. Assessment of the Impact of a New Industrial Discharge on an Urban Wastewater Treatment Plant: Proposal for an Experimental Protocol. Environments 2023, 10, 108. [Google Scholar] [CrossRef]
- Andreottola, G.; Foladori, P.; Ziglio, G.; Cantaloni, C.; Bruni, L.; Cadonna, M. Methods for Toxicity Testing of Xenobiotics in Wastewater Treatment Plants and in Receiving Water Bodies. In Dangerous Pollutants (Xenobiotics) in Urban Water Cycle; Hlavinek, P., Bonacci, O., Marsalek, J., Mahrikova, I., Eds.; Springer: Dordrecht, The Netherlands, 2008. [Google Scholar]
- Bajaj, M.; Gallert, C.; Winter, J. Biodegradation of High Phenol Containing Synthetic Wastewater by an Aerobic Fixed Bed Reactor. Bioresour. Technol. 2008, 99, 8376–8381. [Google Scholar] [CrossRef]
- Peyton, B.M.; Wilson, T.; Yonge, D.R. Kinetics of Phenol Biodegradation in High Salt Solutions. Water Res. 2002, 36, 4811–4820. [Google Scholar] [CrossRef] [PubMed]
- Rongsayamanont, C.; Khongkhaem, P.; Luepromchai, E.; Khan, E. Inhibitory Effect of Phenol on Wastewater Ammonification. Bioresour. Technol. 2020, 309, 123312. [Google Scholar] [CrossRef]
- Zou, S.; Zhang, Y.; Chen, F.; Yu, X.; Wu, X.; Zhang, C.; Rittmann, B.E. Nitrifying Biomass Can Retain Its Acclimation to 2,4,6-Trichlorophenol. Water Res. 2020, 185, 116285. [Google Scholar] [CrossRef]
- Nalbur, B.E.; Eleren, S.Ç.; Şahin, S.; Alkan, U. Toxic Effects of Copper-Based and Synthetic Organic Pesticides on Activated Sludge. CLEAN Soil Air Water 2012, 40, 39–44. [Google Scholar] [CrossRef]
- Leung, S.C.E.; Shukla, P.; Chen, D.; Eftekhari, E.; An, H.; Zare, F.; Ghasemi, N.; Zhang, D.; Nguyen, N.-T.; Li, Q. Emerging Technologies for PFOS/PFOA Degradation and Removal: A Review. Sci. Total Environ. 2022, 827, 153669. [Google Scholar] [CrossRef]
- Wanninayake, D.M. Comparison of Currently Available PFAS Remediation Technologies in Water: A Review. J. Environ. Manag. 2021, 283, 111977. [Google Scholar] [CrossRef] [PubMed]
- Bellazzi, S.; Collivignarelli, M.C.; Baldi, M.; Abbà, A. An Approach to Compute Respirometric Parameters from Continuous-Time Oxygen Uptake Rate Curves. SSRN 2024. [Google Scholar] [CrossRef]
- Freeman, H.; Harten, T.; Springer, J.; Randall, P.; Curran, M.A.; Stone, K. Industrial Pollution Prevention! A Critical Review. J. Air Waste Manag. Assoc. 1992, 42, 618–656. [Google Scholar] [CrossRef]
- Contreras, E.M.; Albertario, M.E.; Bertola, N.C.; Zaritzky, N.E. Modelling Phenol Biodegradation by Activated Sludges Evaluated through Respirometric Techniques. J. Hazard. Mater. 2008, 158, 366–374. [Google Scholar] [CrossRef]
- Dib, A.; Makhloufi, L. Cementation Treatment of Copper in Wastewater: Mass Transfer in a Fixed Bed of Iron Spheres. Chem. Eng. Process. Process Intensif. 2004, 43, 1265–1273. [Google Scholar] [CrossRef]
- Plósz, B.G.; Leknes, H.; Thomas, K.V. Impacts of Competitive Inhibition, Parent Compound Formation and Partitioning Behavior on the Removal of Antibiotics in Municipal Wastewater Treatment. Environ. Sci. Technol. 2010, 44, 734–742. [Google Scholar] [CrossRef] [PubMed]
- Le Jeune, A.-H.; Charpin, M.; Deluchat, V.; Briand, J.-F.; Lenain, J.-F.; Baudu, M.; Amblard, C. Effect of Copper Sulphate Treatment on Natural Phytoplanktonic Communities. Aquat. Toxicol. 2006, 80, 267–280. [Google Scholar] [CrossRef]
- El-Ghamry, A.M.; Subhani, A.; Mohd, W.; Changyong, H.; Zhengmiao, X. Effects of Copper Toxicity on Soil Microbial Biomass. Pak. J. Biol. Sci. 2000, 3, 907–910. [Google Scholar] [CrossRef]
- Busca, G.; Berardinelli, S.; Resini, C.; Arrighi, L. Technologies for the Removal of Phenol from Fluid Streams: A Short Review of Recent Developments. J. Hazard. Mater. 2008, 160, 265–288. [Google Scholar] [CrossRef]
- Burken, J.G. Uptake and Metabolism of Organic Compounds: Green-Liver Model. In Phytoremediation; John Wiley & Sons: Hoboken, NJ, USA, 2003; pp. 59–84. [Google Scholar]
- Jordan, M.A.; Welsh, D.T.; John, R.; Catterall, K.; Teasdale, P.R. A Sensitive Ferricyanide-Mediated Biochemical Oxygen Demand Assay for Analysis of Wastewater Treatment Plant Influents and Treated Effluents. Water Res. 2013, 47, 841–849. [Google Scholar] [CrossRef] [PubMed]
- Tran, N.H.; Ngo, H.H.; Urase, T.; Gin, K.Y.-H. A Critical Review on Characterization Strategies of Organic Matter for Wastewater and Water Treatment Processes. Bioresour. Technol. 2015, 193, 523–533. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, H.; Cui, Y.; Chen, N. Removal of Copper Ions from Wastewater: A Review. Int. J. Environ. Res. Public Health 2023, 20, 3885. [Google Scholar] [CrossRef]
- Toet, S.; Logtestijn, R.S.P.; Kampf, R.; Schreijer, M.; Verhoeven, J.T.A. The Effect of Hydraulic Retention Time on the Removal of Pollutants from Sewage Treatment Plant Effluent in a Surface-Flow Wetland System. Wetlands 2005, 25, 375–391. [Google Scholar] [CrossRef]
- Tas, D.O.; Karahan, Ö.; I˙nsel, G.; Övez, S.; Orhon, D.; Spanjers, H. Biodegradability and Denitrification Potential of Settleable Chemical Oxygen Demand in Domestic Wastewater. Water Environ. Res. 2009, 81, 715–727. [Google Scholar] [CrossRef]
- Chong, N.-M. Modeling the Acclimation of Activated Sludge to a Xenobiotic. Bioresour. Technol. 2009, 100, 5750–5756. [Google Scholar] [CrossRef]
- Mumtaz, F.; Li, B.; Al Shehhi, M.R.; Feng, X.; Wang, K. Treatment of Phenolic-Wastewater by Hybrid Technologies: A Review. J. Water Process Eng. 2024, 57, 104695. [Google Scholar] [CrossRef]
- Henriques, I.D.S.; Kelly, R.T.; Dauphinais, J.L.; Love, N.G. Activated Sludge Inhibition by Chemical Stressors—A Comprehensive Study. Water Environ. Res. 2007, 79, 940–951. [Google Scholar] [CrossRef] [PubMed]
- Murat Hocaoglu, S.; Insel, G.; Ubay Cokgor, E.; Baban, A.; Orhon, D. COD Fractionation and Biodegradation Kinetics of Segregated Domestic Wastewater: Black and Grey Water Fractions. J. Chem. Technol. Biotechnol. 2010, 85, 1241–1249. [Google Scholar] [CrossRef]
Parameter | U.M. | R1 | R2 | R3 |
---|---|---|---|---|
COD | mg L−1 | 2333 | 3300 | 1350 |
BOD5 | mg L−1 | 400 | 1730 | 460 |
pH | - | 8.00 | 7.80 | 8.09 |
PFBS | μg L−1 | 21.908 | 37.570 | 15.868 |
PFOA | μg L−1 | 2870.060 | 24.142 | 2.340 |
PFOS | μg L−1 | 148.380 | 0.788 | 0.084 |
Sum of PFAS | μg L−1 | 3267.641 | 78.703 | 26.381 |
Test Type | Tested Substrate | Concentration of Pollutants | Step | |||
---|---|---|---|---|---|---|
Sum of PFAS [µg L−1] | PH [mg L−1] | TCP [mg L−1] | CuSO4 [mg L−1] | |||
Batch | R1 | 3267.641 | 1—Comparison between PFAS and traditional inhibitors | |||
R2 | 78.703 | |||||
R3 | 26.381 | |||||
PH | 47.62 | |||||
90.9 | ||||||
200 | ||||||
TCP | 47.62 | |||||
90.9 | ||||||
200 | ||||||
CuSO4 | 47.62 | |||||
90.9 | ||||||
166.7 | ||||||
200 | ||||||
Batch | R1 + PH | 3267.641 | 2a—Combination of PFAS and traditional inhibitors: effects at short term | |||
2189.319 | 66.67 | |||||
1633.821 | 100 | |||||
1110.998 | 133.34 | |||||
R1 + TCP | 3267.641 | |||||
2189.319 | 66.67 | |||||
1633.821 | 100 | |||||
1110.998 | 133.34 | |||||
R1 + CuSO4 | 3267.641 | |||||
2189.319 | 66.67 | |||||
1633.821 | 100 | |||||
1110.998 | 133.34 | |||||
R2 + PH | 78.703 | |||||
52.731 | 66.67 | |||||
39.352 | 100 | |||||
26.759 | 133.34 | |||||
R2 + TCP | 78.703 | |||||
52.731 | 66.67 | |||||
39.352 | 100 | |||||
26.759 | 133.34 | |||||
R2 + CuSO4 | 78.703 | |||||
52.731 | 66.67 | |||||
39.352 | 100 | |||||
26.759 | 133.34 | |||||
R3 + PH | 26.381 | |||||
17.675 | 66.67 | |||||
13.191 | 100 | |||||
8.97 | 133.34 | |||||
R3 + TCP | 26.381 | |||||
17.675 | 66.67 | |||||
13.191 | 100 | |||||
8.97 | 133.34 | |||||
R3 + CuSO4 | 26.381 | |||||
17.675 | 66.67 | |||||
13.191 | 100 | |||||
8.97 | 133.34 | |||||
Continuous | R1 + PH | 3267.641 | 200 | 2b—Combination of PFAS and traditional inhibitors: effects at medium-long term | ||
R1 + TCP | 3267.641 | 200 | ||||
R1 + CuSO4 | 3267.641 | 200 | ||||
R2 + PH | 78.703 | 200 | ||||
R2 + TCP | 78.703 | 200 | ||||
R2 + CuSO4 | 78.703 | 200 | ||||
R3 + PH | 26.381 | 200 | ||||
R3 + TCP | 26.381 | 200 | ||||
R3 + CuSO4 | 26.381 | 200 |
Substrate | Oxygen Consumption [mgDO gVSS–1] | Maximum Value [mgDO gVSS−1 h−1] |
---|---|---|
R1 + PH | 22.93 | 11.38 |
R2 + PH | 22.17 | 9.10 |
R3 + PH | 35.95 | 15.12 |
Substrate | Oxygen Consumption [mgDO gVSS–1] | Maximum Value [mgDO gVSS−1 h−1] |
---|---|---|
R1 + TCP | 35.54 | 12.3694 |
R2 + TCP | 13.88 | 4.3411 |
R3 + TCP | 35.95 | 14.4589 |
Substrate | Oxygen Consumption [mgDO gVSS–1] | Maximum Value [mgDO gVSS−1 h−1] |
---|---|---|
R1 + CuSO4 | 15.41 | 11.3749 |
R2 + CuSO4 | 20.03 | 9.0753 |
R3 + CuSO4 | 47.1 | 16.4071 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Collivignarelli, M.C.; Bellazzi, S.; Calabria, L.M.R.; Baldi, M.; Abbà, A. Study of Inhibitory Effects on Aerobic Biomass: Interaction Between Per-/Polyfluoroalkyl Substances (PFAS) and Traditional Toxic Compounds. Environments 2025, 12, 139. https://doi.org/10.3390/environments12050139
Collivignarelli MC, Bellazzi S, Calabria LMR, Baldi M, Abbà A. Study of Inhibitory Effects on Aerobic Biomass: Interaction Between Per-/Polyfluoroalkyl Substances (PFAS) and Traditional Toxic Compounds. Environments. 2025; 12(5):139. https://doi.org/10.3390/environments12050139
Chicago/Turabian StyleCollivignarelli, Maria Cristina, Stefano Bellazzi, Laura Maria Rita Calabria, Marco Baldi, and Alessandro Abbà. 2025. "Study of Inhibitory Effects on Aerobic Biomass: Interaction Between Per-/Polyfluoroalkyl Substances (PFAS) and Traditional Toxic Compounds" Environments 12, no. 5: 139. https://doi.org/10.3390/environments12050139
APA StyleCollivignarelli, M. C., Bellazzi, S., Calabria, L. M. R., Baldi, M., & Abbà, A. (2025). Study of Inhibitory Effects on Aerobic Biomass: Interaction Between Per-/Polyfluoroalkyl Substances (PFAS) and Traditional Toxic Compounds. Environments, 12(5), 139. https://doi.org/10.3390/environments12050139