Effect of California’s 2020 Chlorpyrifos Ban on Urinary Biomarkers of Pesticide Exposure in Agricultural Communities
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population and Participants
2.2. Sampling Periods
2.3. Biomarkers of Exposure: Urinary Metabolites
2.4. Survey Data
2.5. Data Management and Statistical Analysis
3. Results
3.1. Study Sample Overview
3.2. Urinary Metabolite Results
4. Discussion
4.1. Overview
4.2. Key Findings
4.3. Pesticide Use Registry
4.4. Ongoing Exposure of Chlorpyrifos
4.5. Limitations and Strengths
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
CCEJN | Central California Environmental Justice Network |
CI | Confidence interval |
CSU | Colorado State University |
DAPs | Dialkyl phosphates |
DEDTP | Diethyldithiophosphate |
DEP | Diethylphosphate |
DETP | Diethylthiophosphate |
DMDTP | Dimethyldithiophosphate |
DMP | Dimethylphosphate |
DMTP | Dimethylthiophosphate |
LMER | Linear mixed effects regression |
Ln | Natural log-transformed |
LOQ | Limit of quantification |
OP | Organophosphate pesticide |
PUR | California Pesticide Use Registry |
REDCap | Research Electronic Data Capture |
TCPy | 3,4,6-trichloro-2-pyridinol |
Total DE | Total diethyl alkylphosphate |
Total DM | Total dimethyl alkylphosphate |
References
- Franco Bernardes, M.F.; Pazin, M.; Pereira, L.C.; Dorta, D.J. Chapter 8: Impact of Pesticides on Environmental and Human Health. In Toxicology Studies: Cells, Drugs and Environment; Andreazza, A.C., Scola, G., Eds.; BoD—Books on Demand: Norderstedt, Germany, 2015. [Google Scholar]
- Tudi, M.; Daniel Ruan, H.; Wang, L.; Lyu, J.; Sadler, R.; Connell, D.; Chu, C.; Phung, D.T. Agriculture Development, Pesticide Application and Its Impact on the Environment. Int. J. Environ. Res. Public Health 2021, 18, 1112. [Google Scholar] [CrossRef] [PubMed]
- Statista Research Department. Pesticide Consumption Worldwide 2021. Statista. 20 September 2023. Available online: https://www.statista.com/statistics/1263069/global-pesticide-use-by-country/ (accessed on 1 May 2024).
- Nandi, N.K.; Vyas, A.; Akhtar, M.J.; Kumar, B. The growing concern of chlorpyrifos exposures on human and environmental health. Pestic. Biochem. Physiol. 2022, 185, 105138. [Google Scholar] [CrossRef]
- Sudakin, D.L.; Stone, D.L. Dialkyl phosphates as biomarkers of organophosphates: The current divide between epidemiology and clinical toxicology. Clin. Toxicol. 2011, 49, 771–781. [Google Scholar] [CrossRef]
- Kalyabina, V.P.; Esimbekova, E.N.; Kopylova, K.V.; Kratasyuk, V.A. Pesticides: Formulants, distribution pathways and effects on human health—A review. Toxicol. Rep. 2021, 8, 1179–1192. [Google Scholar] [CrossRef] [PubMed]
- Koutros, S.; Harris, S.A.; Spinelli, J.J.; Blair, A.; McLaughlin, J.R.; Zahm, S.H.; Kim, S.; Albert, P.S.; Kachuri, L.; Pahwa, M.; et al. Non-Hodgkin lymphoma risk and organophosphate and carbamate insecticide use in the north American pooled project. Environ. Int. 2019, 127, 199–205. [Google Scholar] [CrossRef] [PubMed]
- Lerro, C.C.; Koutros, S.; Andreotti, G.; Friesen, M.C.; Alavanja, M.C.; Blair, A.; Hoppin, J.A.; Sandler, D.P.; Lubin, J.H.; Ma, X.; et al. Organophosphate insecticide use and cancer incidence among spouses of pesticide applicators in the Agricultural Health Study. Occup. Environ. Med. 2015, 72, 736–744. [Google Scholar] [CrossRef] [PubMed]
- Hayden, K.M.; Norton, M.C.; Darcey, D.; Østbye, T.; Zandi, P.P.; Breitner, J.C.S.; Welsh-Bohmer, K.A. Occupational exposure to pesticides increases the risk of incident AD. Neurology 2010, 74, 1524–1530. [Google Scholar] [CrossRef]
- Tanner Caroline, M.; Freya, K.; Webster, R.G.; Hoppin Jane, A.; Goldman Samuel, M.; Monica, K.; Connie, M.; Bhudhikanok Grace, S.; Meike, K.; Chade Anabel, R.; et al. Rotenone, Paraquat, and Parkinson’s Disease. Environ. Health Perspect. 2011, 119, 866–872. [Google Scholar] [CrossRef]
- Wang, A.; Cockburn, M.; Ly, T.T.; Bronstein, J.; Ritz, B. The Association Between Ambient Exposure to Organophosphates and Parkinson’s Disease Risk. Occup. Environ. Med. 2014, 71, 275–281. [Google Scholar] [CrossRef]
- Bouchard, M.F.; Chevrier, J.; Harley, K.G.; Kogut, K.; Vedar, M.; Calderon, N.; Trujillo, C.; Johnson, C.; Bradman, A.; Barr, D.B.; et al. Prenatal Exposure to Organophosphate Pesticides and IQ in 7-Year-Old Children. Environ. Health Perspect 2011, 119, 1189–1195. [Google Scholar] [CrossRef]
- Marks, A.R.; Harley, K.; Bradman, A.; Kogut, K.; Barr, D.B.; Johnson, C.; Calderon, N.; Eskenazi, B. Organophosphate Pesticide Exposure and Attention in Young Mexican-American Children: The CHAMACOS Study. Environ. Health Perspect. 2010, 118, 1768. [Google Scholar] [CrossRef] [PubMed]
- Benka-Coker, W.; Loftus, C.; Karr, C.; Magzamen, S. Association of Organophosphate Pesticide Exposure and a Marker of Asthma Morbidity in an Agricultural Community. J. Agromed. 2020, 25, 106–114. [Google Scholar] [CrossRef]
- Benka-Coker, W.O.; Loftus, C.; Karr, C.; Magzamen, S. Characterizing the joint effects of pesticide exposure and criteria ambient air pollutants on pediatric asthma morbidity in an agricultural community. Environ. Epidemiol 2019, 3, e046. [Google Scholar] [CrossRef] [PubMed]
- Raanan, R.; Harley, K.G.; Balmes, J.R.; Bradman, A.; Lipsett, M.; Eskenazi, B. Early-life Exposure to Organophosphate Pesticides and Pediatric Respiratory Symptoms in the CHAMACOS Cohort. Environ. Health Perspect. 2015, 123, 179–185. [Google Scholar] [CrossRef]
- Slager, R.E.; Simpson, S.L.; LeVan, T.D.; Poole, J.A.; Sandler, D.P.; Hoppin, J.A. Rhinitis Associated with Pesticide Use Among Private Pesticide Applicators in the Agricultural Health Study. J. Toxicol. Environ. Health Part A 2010, 73, 1382–1393. [Google Scholar] [CrossRef] [PubMed]
- Echeverri-Jaramillo, G.; Jaramillo-Colorado, B.; Sabater-Marco, C.; Castillo-López, M.Á. Cytotoxic and estrogenic activity of chlorpyrifos and its metabolite 3,5,6-trichloro-2-pyridinol. Study of marine yeasts as potential toxicity indicators. Ecotoxicology 2021, 30, 104–117. [Google Scholar] [CrossRef]
- Hites, R.A. The Rise and Fall of Chlorpyrifos in the United States. Environ. Sci Technol 2021, 55, 1354–1358. [Google Scholar] [CrossRef]
- Burke, R.D.; Todd, S.W.; Lumsden, E.; Mullins, R.J.; Mamczarz, J.; Fawcett, W.P.; Gullapalli, R.P.; Randall, W.R.; Pereira, E.F.R.; Albuquerque, E.X. Developmental neurotoxicity of the organophosphorus insecticide chlorpyrifos: From clinical findings to preclinical models and potential mechanisms. J. Neurochem. 2017, 142 (Suppl. 2), 162–177. [Google Scholar] [CrossRef]
- Whyatt, R.M.; Rauh, V.; Barr, D.B.; Camann, D.E.; Andrews, H.F.; Garfinkel, R.; Hoepner, L.A.; Diaz, D.; Dietrich, J.; Reyes, A.; et al. Prenatal insecticide exposures and birth weight and length among an urban minority cohort. Environ. Health Perspect. 2004, 112, 1125–1132. [Google Scholar] [CrossRef]
- Rauh, V.A.; Garfinkel, R.; Perera, F.P.; Andrews, H.F.; Hoepner, L.; Barr, D.B.; Whitehead, R.; Tang, D.; Whyatt, R.W. Impact of prenatal chlorpyrifos exposure on neurodevelopment in the first 3 years of life among inner-city children. Pediatrics 2006, 118, e1845–e1859. [Google Scholar] [CrossRef]
- Rauh, V.A.; Perera, F.P.; Horton, M.K.; Whyatt, R.M.; Bansal, R.; Hao, X.; Liu, J.; Barr, D.B.; Slotkin, T.A.; Peterson, B.S. Brain anomalies in children exposed prenatally to a common organophosphate pesticide. Proc. Natl. Acad. Sci. USA 2012, 109, 7871–7876. [Google Scholar] [CrossRef]
- Steenland, K.; Dick, R.B.; Howell, R.J.; Chrislip, D.W.; Hines, C.J.; Reid, T.M.; Lehman, E.; Laber, P.; Krieg, E.F.; Knott, C. Neurologic function among termiticide applicators exposed to chlorpyrifos. Environ. Health Perspect. 2000, 108, 293–300. [Google Scholar] [CrossRef]
- Engel, L.S.; Werder, E.; Satagopan, J.; Blair, A.; Hoppin, J.A.; Koutros, S.; Lerro, C.C.; Sandler, D.P.; Alavanja, M.C.; Beane, F.L.E. Insecticide Use and Breast Cancer Risk among Farmers’ Wives in the Agricultural Health Study. Environ. Health Perspect. 2017, 125, 097002. [Google Scholar] [CrossRef] [PubMed]
- USEPAO EPA Update on the Use of the Pesticide Chlorpyrifos on Food. 2025. Available online: https://www.epa.gov/pesticide-worker-safety/epa-update-use-pesticide-chlorpyrifos-food (accessed on 13 March 2025).
- Federal Register, The Daily Journal of the United States Government. Chlorpyrifos; Reinstatement of Tolerances. Federal Register. 5 February 2024. Available online: https://www.federalregister.gov/documents/2024/02/05/2024-02153/chlorpyrifos-reinstatement-of-tolerances (accessed on 13 March 2025).
- Price, A. California Bans Poisonous Agricultural Pesticide. In UC Berkeley Public Health; Published Online 18 October 2019; Available online: https://publichealth.berkeley.edu/news-media/school-news/california-bans-poisonous-agricultural-pesticide#:~:text=Last%20week%2C%20the%20California%20Environmental,the%20end%20of%20the%20year (accessed on 10 June 2024).
- Gillezeau, C.; Alpert, N.; Joshi, P.; Taioli, E. Urinary Dialkylphosphate Metabolite Levels in US Adults—National Health and Nutrition Examination Survey 1999–2008. Int. J. Environ. Res. Public Health 2019, 16, 4605. [Google Scholar] [CrossRef] [PubMed]
- National Agricultural Statistics Service. 2017 Census of Agriculture County Profile; Department of Agriculture: Fresno County, CA, USA, 2019.
- National Agricultural Statistics Service. 2017 Census of Agriculture County Profile; Department of Agriculture: Tulare County, CA, USA, 2019.
- Cha, P. Health Care Access among California’s Farmworkers; Public Policy Institute of California: San Francisco, CA, USA, 2022; Available online: https://www.ppic.org/publication/health-care-access-among-californias-farmworkers/ (accessed on 17 August 2022).
- National Agricultural Statistics Service. 2017 Census of Agriculture—County Data, California; Table 7 Hired Farm Labor-Workers and Payroll: 2017; United States Department of Agriculture: Washington, DC, USA, 2019.
- Hughes, M.L.; Kuiper, G.; Hoskovec, L.; WeMott, S.; Young, B.N.; Benka-Coker, W.; Quinn, C.; Erlandson, G.; Martinez, N.; Mendoza, J.; et al. Association of ambient air pollution and pesticide mixtures on respiratory inflammatory markers in agricultural communities. Environ. Res Health 2024, 2, 035007. [Google Scholar] [CrossRef] [PubMed]
- Kuiper, G.; Young, B.N.; WeMott, S.; Erlandson, G.; Martinez, N.; Mendoza, J.; Dooley, G.; Quinn, C.; Benka-Coker, W.O.; Magzamen, S. Factors Associated with Levels of Organophosphate Pesticides in Household Dust in Agricultural Communities. Int. J. Environ. Res. Public Health 2022, 19, 862. [Google Scholar] [CrossRef]
- Kuiper, G.; Young, B.N.; WeMott, S.; Erlandson, G.; Martinez, N.; Mendoza, J.; Dooley, G.; Quinn, C.; Benka-Coker, W.; Magzamen, S. Factors affecting urinary organophosphate pesticide metabolite levels among Californian agricultural community members. Sci. Total Environ. 2023, 881, 163362. [Google Scholar] [CrossRef]
- Harris, P.A.; Taylor, R.; Thielke, R.; Payne, J.; Gonzalez, N.; Conde, J.G. Research electronic data capture (REDCap)--a metadata-driven methodology and workflow process for providing translational research informatics support. J. Biomed. Inform. 2009, 42, 377–381. [Google Scholar] [CrossRef]
- Butler-Dawson, J.; Galvin, K.; Thorne, P.S.; Rohlman, D.S. Organophosphorus pesticide residue levels in homes located near orchards. J. Occup. Environ. Hyg. 2018, 15, 847–856. [Google Scholar] [CrossRef]
- Quirós-Alcalá, L.; Alkon, A.D.; Boyce, W.T.; Lippert, S.; Davis, N.V.; Bradman, A.; Barr, D.B.; Eskenazi, B. Maternal prenatal and child organophosphate pesticide exposures and children’s autonomic function. Neurotoxicology 2011, 32, 646–655. [Google Scholar] [CrossRef]
- Barr, D.B.; Angerer, J. Potential uses of biomonitoring data: A case study using the organophosphorus pesticides chlorpyrifos and malathion. Environ. Health Perspect. 2006, 114, 1763–1769. [Google Scholar] [CrossRef]
- Tobón Marulanda, F.; López Giraldo, L.; Paniagua, E. Water pollution caused by pesticides in an area of Antioquia. Rev. Salud Pública 2010, 12, 300–307. [Google Scholar]
- Foong, S.Y.; Ma, N.L.; Lam, S.S.; Peng, W.; Low, F.; Lee, B.H.K.; Alstrup, A.K.O.; Sonne, C. A recent global review of hazardous chlorpyrifos pesticide in fruit and vegetables: Prevalence, remediation and actions needed. J. Hazard. Mater. 2020, 400, 123006. [Google Scholar] [CrossRef]
- Wołejko, E.; Łozowicka, B.; Jabłońska-Trypuć, A.; Pietruszyńska, M.; Wydro, U. Chlorpyrifos Occurrence and Toxicological Risk Assessment: A Review. Int. J. Environ. Res. Public Health 2022, 19, 12209. [Google Scholar] [CrossRef] [PubMed]
- Krieger, R.I.; Dinoff, T.M.; Williams, R.L.; Zhang, X.; Ross, J.H.; Aston, L.S.; Myers, G. Correspondence: Preformed biomarkers in produce inflate human organophosphate exposure assessments. Environ. Health Perspect 2003, 111, A688–A689, author reply A89-91. [Google Scholar] [CrossRef] [PubMed]
- California Department of Pesticide Regulation. Pesticide Use Reporting Data Homepage. 2022. Available online: https://www.cdpr.ca.gov/docs/pur/purmain.htm (accessed on 10 October 2024).
- Heudorf, U.; Angerer, J. Metabolites of organophosphorous insecticides in urine specimens from inhabitants of a residential area. Environ. Res. 2001, 86, 80–87. [Google Scholar] [CrossRef] [PubMed]
- Aprea, C.; Sciarra, G.; Orsi, D.; Boccalon, P.; Sartorelli, P.; Sartorelli, E. Urinary excretion of alkylphosphates in the general population (Italy). Sci. Total Environ. 1996, 177, 37–41. [Google Scholar] [CrossRef]
- Heudorf, U.; Angerer, J.; Drexler, H. Current internal exposure to pesticides in children and adolescents in Germany: Urinary levels of metabolites of pyrethroid and organophosphorus insecticides. Int. Arch. Occup. Environ. Health 2004, 77, 67–72. [Google Scholar] [CrossRef]
- Young, B.N.; Wemott, S.; Alvarez, O.; Dooley, G.; Erlandson, G.; Hernandez, L.; Kuiper, G.; Martinez, N.; Mendoza, J.; Quinn, C.; et al. Effect of California’s 2020 chlorpyrifos ban on urinary biomarkers of pesticide exposure in agricultural communities. ISEE Conf. Abstr. 2024, 2024. [Google Scholar] [CrossRef]
Sample Characteristics at Campaign 1 | Original Sample | Sample | Valid Biomarker Sample with Two Time Points (n = 49) |
---|---|---|---|
(n = 110) | with Two Time Points | n (%) or | |
n (%) or | (n = 68) | Mean (SD); Min–Max | |
Mean (SD); Min–Max | n (%) or | ||
Mean (SD); Min–Max | |||
Age in years (as of 2022) | 45.7 (16.5); 20–85 | 46.1 (16.4); 20–79 | 46.8 (16); 21–79 |
Sex | |||
Female | 62 (56%) | 40 (59%) | 30 (61%) |
Male | 48 (44%) | 28 (41%) | 19 (39%) |
Primary language | |||
English | 39 (35%) | 22 (32%) | 16 (33%) |
Spanish | 71 (65%) | 46 (68%) | 33 (67%) |
Hispanic or Latino(a) ethnicity | 108 (98%) | 68 (100%) | 49 (100%) |
Racial categories | |||
American Indian/Alaska Native | 1 (1%) | 0 (0%) | 0 (0%) |
Asian | 0 (0%) | 0 (0%) | 0 (0%) |
Native Hawaiian/Other Pacific Islander | 0 (0%) | 0 (0%) | 0 (0%) |
Black or African American | 0 (0%) | 0 (0%) | 0 (0%) |
White | 3 (3%) | 2 (3%) | 2 (4%) |
Other or no selection for racial group | 106 (96%) | 66 (97%) | 47 (96%) |
Education | |||
Less than 8th grade to 11th grade | 53 (48%) | 36 (53%) | 23 (47%) |
High school or higher | 57 (52%) | 32 (47%) | 26 (53%) |
Household location | |||
Agricultural area | 98 (89%) | 62 (91%) | 45 (92%) |
Urban area | 12 (11%) | 6 (9%) | 4 (8%) |
Works in agriculture | |||
Yes | 37 (34%) | 22 (32%) | 19 (39%) |
No | 73 (66%) | 46 (68%) | 30 (61%) |
Any household pesticide use (insects, rodents, weeds, outdoor pests, fleas/ticks) | |||
Yes | 60 (55%) | 38 (60%) | 29 (62%) |
No | 50 (45%) | 25 (40%) | 18 (38%) |
Biomarker | Campaign 1: Pre-Ban | Campaign 2: Post-Ban | p-Value |
---|---|---|---|
Median (Q1, Q3) (ng/mL) | Median (Q1, Q3) (ng/mL) | ||
TCPy | (n = 49) | (n = 49) | <0.0001 |
0.170 (0.023, 0.394) | 0.462 (0.296, 0.806) | ||
DEP | (n = 48) | (n = 48) | 0.41 |
0.000 (0.000, 1.394) | 0.000 (0.000, 0.828) | ||
DMP | (n = 48) | (n = 48) | 0.03 |
0.000 (0.000, 0.000) | 0.000 (0.000, 3.288) | ||
DMTP | (n = 48) | (n = 48) | 0.59 |
0.000 (0.000, 1.927) | 0.000 (0.000, 0.000) | ||
Total DE | (n = 48) | (n = 48) | 0.46 |
0.000 (0.000, 1.394) | 0.000 (0.000, 0.846) | ||
Total DM | (n = 48) | (n = 48) | 0.05 |
0.000 (0.000, 2.121) | 0.814 (0.000, 4.179) |
Biomarker | n | Estimate (95% CI) | Estimates (95% CI) |
---|---|---|---|
(Natural Log-Transformed Values, ng/mL) | Back-Transformed to Interpret on the Original Scale 1 | ||
(Ln) TCPy pre-ban (ref.) | 49 | Reference | Reference |
(Ln) TCPy post-ban | 49 | 1.51 (0.98, 2.04) | 4.53 (2.66, 7.69) |
(Ln) DEP pre-ban (ref.) | 48 | Reference | Reference |
(Ln) DEP post-ban | 48 | −0.11 (−1.10, 0.88) | 0.90 (0.33, 2.41) |
(Ln) DMP pre-ban (ref.) | 48 | Reference | Reference |
(Ln) DMP post-ban | 48 | 1.98 (0.88, 3.09) | 7.24 (2.41, 21.98) |
(Ln) DMTP pre-ban (ref.) | 48 | Reference | Reference |
(Ln) DMTP post-ban | 48 | −0.73 (−1.75, 0.28) | 0.48 (0.17, 1.32) |
(Ln) Total DE pre-ban (ref.) | 48 | Reference | Reference |
(Ln) Total DE post-ban | 48 | 0.05 (−0.97, 1.06) | 1.05 (0.38, 2.89) |
(Ln) Total DM pre-ban (ref.) | 48 | Reference | Reference |
(Ln) Total DM post-ban | 48 | 1.01 (−0.18, 2.20) | 2.75 (0.84, 9.03) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Young, B.N.; WeMott, S.; Kuiper, G.; Alvarez, O.; Dooley, G.; Erlandson, G.; Hernandez Ramirez, L.; Martinez, N.; Mendoza, J.; Quinn, C.; et al. Effect of California’s 2020 Chlorpyrifos Ban on Urinary Biomarkers of Pesticide Exposure in Agricultural Communities. Environments 2025, 12, 140. https://doi.org/10.3390/environments12050140
Young BN, WeMott S, Kuiper G, Alvarez O, Dooley G, Erlandson G, Hernandez Ramirez L, Martinez N, Mendoza J, Quinn C, et al. Effect of California’s 2020 Chlorpyrifos Ban on Urinary Biomarkers of Pesticide Exposure in Agricultural Communities. Environments. 2025; 12(5):140. https://doi.org/10.3390/environments12050140
Chicago/Turabian StyleYoung, Bonnie N., Sherry WeMott, Grace Kuiper, Olivia Alvarez, Gregory Dooley, Grant Erlandson, Luis Hernandez Ramirez, Nayamin Martinez, Jesus Mendoza, Casey Quinn, and et al. 2025. "Effect of California’s 2020 Chlorpyrifos Ban on Urinary Biomarkers of Pesticide Exposure in Agricultural Communities" Environments 12, no. 5: 140. https://doi.org/10.3390/environments12050140
APA StyleYoung, B. N., WeMott, S., Kuiper, G., Alvarez, O., Dooley, G., Erlandson, G., Hernandez Ramirez, L., Martinez, N., Mendoza, J., Quinn, C., Sanpedro, L., & Magzamen, S. (2025). Effect of California’s 2020 Chlorpyrifos Ban on Urinary Biomarkers of Pesticide Exposure in Agricultural Communities. Environments, 12(5), 140. https://doi.org/10.3390/environments12050140