Sublethal Impacts of Polyethylene Microplastics on Freshwater Amphipods: Genotoxic and Metabolic Responses in Echinogammarus veneris and Cryptorchestia garbinii (Crustacea, Amphipoda)
Abstract
1. Introduction
2. Methods
2.1. Echinogammarus veneris Sampling and Lab Maintaining
2.2. Cryptorchestia garbinii Sampling and Lab Maintaining
2.3. Water Exposures
2.4. Food Exposures
2.5. Extraction of Digestive Tracts for Ingested Microplastic Detection and Measurement
2.6. Glucose, Glycogen, and Lipid Concentration Measures
2.7. Genotoxicity Assay
2.8. Statistical Analysis
3. Results and Discussion
3.1. Microplastics Ingestion and Fragmentation
3.2. Genotoxic Effects
3.3. Metabolic Biomarkers and Energy Reserves
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Plastics Europe. Plastics the Fast Facts 2025 Global and European Plastics Production and Economic Indicators. 2025. Available online: https://plasticseurope.org/knowledge-hub/ (accessed on 10 August 2025).
- Thompson, R.C.; Courtene-Jones, W.; Boucher, J.; Pahl, S.; Raubenheimer, K.; Koelmans, A.A. Twenty Years of Microplastic Pollution Research—What Have We Learned? Science 2024, 386, eadl2746. [Google Scholar] [CrossRef]
- Pastorino, P.; Barceló, D. Bioindicators Selection in the Strategies for Monitoring Microplastic Pollution. Ecol. Indic. 2024, 166, 1112337. [Google Scholar] [CrossRef]
- Cincinelli, A.; Scopetani, C.; Chelazzi, D.; Lombardini, E.; Martellini, T.; Katsoyiannis, A.; Fossi, M.C.; Corsolini, S. Microplastic in the Surface Waters of the Ross Sea (Antarctica): Occurrence, Distribution and Characterization by FTIR. Chemosphere 2017, 175, 391–400. [Google Scholar] [CrossRef]
- Iannilli, V.; Corami, F.; Grasso, P.; Lecce, F.; Buttinelli, M.; Setini, A. Plastic Abundance and Seasonal Variation on the Shorelines of Three Volcanic Lakes in Central Italy: Can Amphipods Help Detect Contamination? Environ. Sci. Pollut. Res. 2020, 27, 14711–14722. [Google Scholar] [CrossRef]
- Zhu, L.; Wang, H.; Chen, B.; Sun, X.; Qu, K.; Xia, B. Microplastic Ingestion in Deep-Sea Fish from the South China Sea. Sci. Total Environ. 2019, 677, 493–501. [Google Scholar] [CrossRef]
- Thompson, R.C.; Olsen, Y.; Mitchell, R.P.; Davis, A.; Rowland, S.J.; John, A.W.G.; McGonigle, D.; Russell, A.E. Lost at Sea: Where Is All the Plastic? Science 2004, 304, 838. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, A.S.S.; Billah, M.M.; Ali, M.M.; Bhuiyan, M.K.A.; Guo, L.; Mohinuzzaman, M.; Hossain, M.B.; Rahman, M.S.; Islam, M.S.; Yan, M.; et al. Microplastics in Aquatic Environments: A Comprehensive Review of Toxicity, Removal, and Remediation Strategies. Sci. Total Environ. 2023, 876, 162414. [Google Scholar] [CrossRef] [PubMed]
- Yang, Z.; DeLoid, G.M.; Zarbl, H.; Baw, J.; Demokritou, P. Micro- and Nanoplastics (MNPs) and Their Potential Toxicological Outcomes: State of Science, Knowledge Gaps and Research Needs. NanoImpact 2023, 32, 100481. [Google Scholar] [CrossRef]
- Saud, S.; Yang, A.; Jiang, Z.; Ning, D.; Fahad, S. New Insights in to the Environmental Behavior and Ecological Toxicity of Microplastics. J. Hazard. Mater. Adv. 2023, 10, 100298. [Google Scholar] [CrossRef]
- Jewett, E.; Arnott, G.; Connolly, L.; Vasudevan, N.; Kevei, E. Microplastics and Their Impact on Reproduction—Can We Learn From the C. Elegans Model? Front. Toxicol. 2022, 4, 748912. [Google Scholar] [CrossRef] [PubMed]
- Hasan, A.K.M.M.; Hossain, M.F.; Uddin, M.; Khan, M.T.; Saif, U.M.; Hamed, M.; Martyniuk, C.J.; Chivers, D.P. Mechanistic Insights into Microplastic-Induced Reproductive Toxicity in Aquatic Organisms: A Comprehensive Review. Aquat. Toxicol. 2025, 286, 107478. [Google Scholar] [CrossRef]
- Pannetier, P.; Morin, B.; Clérandeau, C.; Laurent, J.; Chapelle, C.; Cachot, J. Toxicity Assessment of Pollutants Sorbed on Environmental Microplastics Collected on Beaches: Part II-Adverse Effects on Japanese Medaka Early Life Stages. Environ. Pollut. 2019, 248, 1098–1107. [Google Scholar] [CrossRef] [PubMed]
- Rossatto, A.; Arlindo, M.Z.F.; de Morais, M.S.; de Souza, T.D.; Ogrodowski, C.S. Microplastics in Aquatic Systems: A Review of Occurrence, Monitoring and Potential Environmental Risks. Environ. Adv. 2023, 13, 100396. [Google Scholar] [CrossRef]
- Banaee, M.; Multisanti, C.R.; Impellitteri, F.; Piccione, G.; Faggio, C. Environmental Toxicology of Microplastic Particles on Fish: A Review. Comp. Biochem. Physiol. Part C Toxicol. Pharmacol. 2025, 287, 110042. [Google Scholar] [CrossRef]
- Wright, S.; Cassee, F.R.; Erdely, A.; Campen, M.J. Micro- and Nanoplastics Concepts for Particle and Fibre Toxicologists. Part. Fibre Toxicol. 2024, 21, 18. [Google Scholar] [CrossRef] [PubMed]
- Zaghloul, A.; Saber, M.; Gadow, S.; Awad, F. Biological Indicators for Pollution Detection in Terrestrial and Aquatic Ecosystems. Bull. Natl. Res. Cent. 2020, 44, 127. [Google Scholar] [CrossRef]
- Besseling, E.; Wegner, A.; Foekema, E.M.; Van Den Heuvel-Greve, M.J.; Koelmans, A.A. Effects of Microplastic on Fitness and PCB Bioaccumulation by the Lugworm Arenicola marina (L.). Environ. Sci. Technol. 2013, 47, 593–600. [Google Scholar] [CrossRef] [PubMed]
- Au, S.Y.; Bruce, T.F.; Bridges, W.C.; Klaine, S.J. Responses of Hyalella azteca to Acute and Chronic Microplastic Exposures. Environ. Toxicol. Chem. 2015, 34, 2564–2572. [Google Scholar] [CrossRef]
- Devriese, L.I.; van der Meulen, M.D.; Maes, T.; Bekaert, K.; Paul-Pont, I.; Frère, L.; Robbens, J.; Vethaak, A.D. Microplastic Contamination in Brown Shrimp (Crangon crangon, Linnaeus 1758) from Coastal Waters of the Southern North Sea and Channel Area. Mar. Pollut. Bull. 2015, 98, 179–187. [Google Scholar] [CrossRef]
- Foley, C.J.; Feiner, Z.S.; Malinich, T.D.; Höök, T.O. A Meta-Analysis of the Effects of Exposure to Microplastics on Fish and Aquatic Invertebrates. Sci. Total Environ. 2018, 631, 550–559. [Google Scholar] [CrossRef]
- D’Costa, A.H. Microplastics in Decapod Crustaceans: Accumulation, Toxicity and Impacts, a Review. Sci. Total Environ. 2022, 832, 154963. [Google Scholar] [CrossRef] [PubMed]
- Hammond, M.; Brown, L.; Struger, J.; Grapentine, L.; Palace, V.; Bartlett, A.J. Overcoming Water Quality Effects in Biological Monitoring: A Case Study of Amphipod in Situ Exposures in Ontario Agricultural Streams. Environ. Monit. Assess 2025, 197, 239. [Google Scholar] [CrossRef]
- Mehennaoui, K.; Georgantzopoulou, A.; Felten, V.; Andreï, J.; Garaud, M.; Cambier, S.; Serchi, T.; Pain-Devin, S.; Guérold, F.; Audinot, J.N.; et al. Gammarus fossarum (Crustacea, Amphipoda) as a Model Organism to Study the Effects of Silver Nanoparticles. Sci. Total Environ. 2016, 566, 1649–1659. [Google Scholar] [CrossRef] [PubMed]
- Battistin, G.; Latella, L.; Iannilli, V. Microplastic Pollution in the Food Web: Observation of Ingestion by the Talitrid Amphipod Cryptorchestia garbinii on the Shores of Lake Garda. Eur. Zool. J. 2023, 90, 73–82. [Google Scholar] [CrossRef]
- Ugolini, A.; Ungherese, G.; Ciofini, M.; Lapucci, A.; Camaiti, M. Microplastic Debris in Sandhoppers. Estuar. Coast. Shelf Sci. 2013, 129, 19–22. [Google Scholar] [CrossRef]
- Iannilli, V.; Passatore, L.; Carloni, S.; Lecce, F.; Sciacca, G.; Zacchini, M.; Pietrini, F. Microplastic Toxicity and Trophic Transfer in Freshwater Organisms: Ecotoxicological and Genotoxic Assessment in Spirodela polyrhiza (L.) Schleid. and Echinogammarus veneris (Heller, 1865) Treated with Polyethylene Microparticles. Water 2023, 15, 921. [Google Scholar] [CrossRef]
- Environment and Climate Change Canada. Biological Test Method: Test for Survival, Growth and Reproduction in Sediment and Water Using the Freshwater Amphipod Hyalella azteca; Environment and Climate Change Canada: Ottawa, ON, Canada, 2018; ISBN 9780660098739. [Google Scholar]
- Marcoccia, M.; Ronci, L.; De Matthaeis, E.; Setini, A.; Perrino, C.; Canepari, S. In-Vivo Assesment of the Genotoxic and Oxidative Stress Effects of Particulate Matter on Echinogammarus Veneris. Chemosphere 2017, 173, 124–134. [Google Scholar] [CrossRef]
- Cosentino, S.; Aureli, F.; Iannilli, V. Bisphenols A and Its Analogues Induce Genotoxic Damage in Marine and Freshwater Amphipods. Environ. Adv. 2022, 7, 100183. [Google Scholar] [CrossRef]
- Fanini, L.; Coleman, C.O.; Lowry, J.K. Insights into the Ecology of Cryptorchestia Garbinii on the Shores of the Urban Lake Tegel (Berlin, Germany). Vie Et Milieu-Life Environ. 2019, 69, 187–191. [Google Scholar]
- Ciotti, C.; Setini, A.; Lecce, F.; Iannilli, V. Uncovering the Hidden Dangers of Microplastic Pollution in Lake Ecosystems: Effects of Ingestion on Talitrid Amphipods. Environments 2023, 10, 115. [Google Scholar] [CrossRef]
- Fiore, L.; Serranti, S.; Mazziotti, C.; Riccardi, E.; Benzi, M.; Bonifazi, G. Classification and Distribution of Freshwater Microplastics along the Italian Po River by Hyperspectral Imaging. Environ. Sci. Pollut. Res. 2022, 29, 48588–48606. [Google Scholar] [CrossRef]
- Kampfraath, A.A.; Hunting, E.R.; Mulder, C.; Breure, A.M.; Gessner, M.O.; Kraak, M.H.S.; Admiraal, W. DECOTAB: A Multipurpose Standard Substrate to Assess Effects of Litter Quality on Microbial Decomposition and Invertebrate Consumption. Freshw. Sci. 2012, 31, 1156–1162. [Google Scholar] [CrossRef]
- Götz, A.; Imhof, H.K.; Geist, J.; Beggel, S. Moving Toward Standardized Toxicity Testing Procedures with Particulates by Dietary Exposure of Gammarids. Environ. Toxicol. Chem. 2021, 40, 1463–1476. [Google Scholar] [CrossRef]
- Mateos-Cárdenas, A.; Scott, D.T.; Seitmaganbetova, G.; van Pelt, F.N.A.M.; O’Halloran, J.; Jansen, M.A.K. Polyethylene Microplastics Adhere to Lemna minor (L.), yet Have No Effects on Plant Growth or Feeding by Gammarus duebeni (Lillj.). Sci. Total Environ. 2019, 689, 413–421. [Google Scholar] [CrossRef] [PubMed]
- Rani-Borges, B.; Queiroz, L.G.; Prado, C.C.A.; de Melo, E.C.; de Moraes, B.R.; Ando, R.A.; de Paiva, T.C.B.; Pompêo, M. Exposure of the Amphipod Hyalella azteca to Microplastics. A Study on Subtoxic Responses and Particle Biofragmentation. Aquat. Toxicol. 2023, 258, 106516. [Google Scholar] [CrossRef]
- He, B.; Goonetilleke, A.; Ayoko, G.A.; Rintoul, L. Abundance, Distribution Patterns, and Identification of Microplastics in Brisbane River Sediments, Australia. Sci. Total Environ. 2020, 700, 134467. [Google Scholar] [CrossRef]
- Kowalczyk, N.; Blake, N.; Charko, F.; Quek, Y. Litter Hotspots Program—’Turn off the Tap’ Microplastics Report, Microplastics in the Maribyrnong and Yarra Rivers, Melbourne, Australia; Port Phillip EcoCentre: St Kilda, VIC, Australia, 2017. [Google Scholar]
- Adhikari, P.L.; Bam, W.; Campbell, P.L.; Oberhaensli, F.; Metian, M.; Besson, M.; Jacob, H.; Swarzenski, P.W. Evaluating Microplastic Experimental Design and Exposure Studies in Aquatic Organisms. In Microplastic in the Environment: Pattern and Process; Bank, M.S., Ed.; Springer International Publishing: Cham, Switzerland, 2022; pp. 69–85. ISBN 978-3-030-78627-4. [Google Scholar]
- Renzi, M.; Grazioli, E.; Blašković, A. Effects of Different Microplastic Types and Surfactant-Microplastic Mixtures Under Fasting and Feeding Conditions: A Case Study on Daphnia magna. Bull. Environ. Contam. Toxicol. 2019, 103, 367–373. [Google Scholar] [CrossRef]
- Bonfanti, P.; Colombo, A.; Saibene, M.; Motta, G.; Saliu, F.; Catelani, T.; Mehn, D.; La Spina, R.; Ponti, J.; Cella, C.; et al. Microplastics from Miscellaneous Plastic Wastes: Physico-Chemical Characterization and Impact on Fish and Amphibian Development. Ecotoxicol. Environ. Saf. 2021, 225, 112775. [Google Scholar] [CrossRef] [PubMed]
- Foray, V.; Pelisson, P.F.; Bel-Venner, M.C.; Desouhant, E.; Venner, S.; Menu, F.; Giron, D.; Rey, B. A Handbook for Uncovering the Complete Energetic Budget in Insects: The van Handel’s Method (1985) Revisited. Physiol. Entomol. 2012, 37, 295–302. [Google Scholar] [CrossRef]
- Roudkenar, M.H.; Bouzari, S.; Kuwahara, Y.; Roushandeh, A.M.; Baba, T.; Oloomi, M.; Fukumoto, M. Induction of Apoptosis on K562 Cell Line and Double Strand Breaks on Colon Cancer Cell Line Expressing High Affinity Receptor for Granulocyte Macrophage-Colony Stimulating Factor (GM-CSF). Iran. Biomed. J. 2008, 12, 1–6. [Google Scholar]
- Watling, L. Functional Morphology of the Amphipod Mandible. J. Nat. Hist. 1993, 27, 837–849. [Google Scholar] [CrossRef]
- Iannilli, V.; Lecce, F.; Latella, L. Genotoxic Effects Induced by Glyphosate-Based Herbicide on Two Gammarid Species: The Invasive Dikerogammarus villosus (Sowinsky, 1894) (Crustacea, Amphipoda) and the Native Echinogammarus veneris (Heller, 1865). Fundam. Appl. Limnol. 2019, 193, 143–153. [Google Scholar] [CrossRef]
- Iannilli, V.; Passatore, L.; Carloni, S.; Massimi, L.; Giusto, C.; Zacchini, M.; Pietrini, F. Bismuth Accumulation and Toxicity in Freshwater Biota: A Study on the Bioindicator Species Lemna minor and Echinogammarus veneris. Sci. Total Environ. 2025, 975, 179263. [Google Scholar] [CrossRef]
- Mateos-Cárdenas, A.; O’Halloran, J.; van Pelt, F.N.A.M.; Jansen, M.A.K. Rapid Fragmentation of Microplastics by the Freshwater Amphipod Gammarus duebeni (Lillj.). Sci. Rep. 2020, 10, 12799. [Google Scholar] [CrossRef]
- Queiroz, L.G.; do Prado, C.C.A.; de Oliveira, P.F.M.; Valezi, D.F.; Portes, M.C.; de Moraes, B.R.; Ando, R.A.; Vicente, E.; de Paiva, T.C.B.; Pompêo, M.; et al. The Toxicity of Poly(Acrylonitrile-Styrene-Butadiene) Microplastics toward Hyalella azteca Is Associated with Biofragmentation and Oxidative Stress. Chem. Res. Toxicol. 2025, 38, 91–101. [Google Scholar] [CrossRef] [PubMed]
- Rani-Borges, B.; Pompêo, M.; Queiroz, L.G. Are Daphnia similis Playing a Significant Role in Microplastic Biofragmentation? Water Air Soil. Pollut. 2023, 234, 371. [Google Scholar] [CrossRef]
- Queiroz, L.G.; Prado, C.C.A.; Melo, E.C.; Moraes, B.R.; de Oliveira, P.F.M.; Ando, R.A.; Paiva, T.C.B.; Pompêo, M.; Rani-Borges, B. Biofragmentation of Polystyrene Microplastics: A Silent Process Performed by Chironomus sancticaroli Larvae. Environ. Sci. Technol. 2024, 58, 4510–4521. [Google Scholar] [CrossRef]
- Ribeiro, F.; Garcia, A.R.; Pereira, B.P.; Fonseca, M.; Mestre, N.C.; Fonseca, T.G.; Ilharco, L.M.; Bebianno, M.J. Microplastics Effects in Scrobicularia Plana. Mar. Pollut. Bull. 2017, 122, 379–391. [Google Scholar] [CrossRef]
- Pannetier, P.; Morin, B.; Le Bihanic, F.; Dubreil, L.; Clérandeau, C.; Chouvellon, F.; Van Arkel, K.; Danion, M.; Cachot, J. Environmental Samples of Microplastics Induce Significant Toxic Effects in Fish Larvae. Environ. Int. 2020, 134, 105047. [Google Scholar] [CrossRef]
- Tagorti, G.; Kaya, B. Genotoxic Effect of Microplastics and COVID-19: The Hidden Threat. Chemosphere 2022, 286, 131898. [Google Scholar] [CrossRef]
- Diogo, B.S.; Rebelo, D.; Antunes, S.C.; Rodrigues, S. Metabolic Costs of Emerging Contaminants: Cellular Energy Allocation in Zebrafish Embryos. J. Xenobiot. 2025, 15, 99. [Google Scholar] [CrossRef]
- Wang, X.; Li, E.; Chen, L. A Review of Carbohydrate Nutrition and Metabolism in Crustaceans. N. Am. J. Aquac. 2016, 78, 178–187. [Google Scholar] [CrossRef]
- Lee, J.; Jeon, M.J.; Won, E.J.; won Yoo, J.; Lee, Y.M. Effect of Heavy Metals on the Energy Metabolism in the Brackish Water Flea Diaphanosoma celebensis. Ecotoxicol. Environ. Saf. 2023, 262, 115189. [Google Scholar] [CrossRef]
- Weber, A.; Scherer, C.; Brennholt, N.; Reifferscheid, G.; Wagner, M. PET Microplastics Do Not Negatively Affect the Survival, Development, Metabolism and Feeding Activity of the Freshwater Invertebrate Gammarus pulex. Environ. Pollut. 2018, 234, 181–189. [Google Scholar] [CrossRef]
- Pelegrini, K.; Pereira, T.C.B.; Maraschin, T.G.; Teodoro, L.D.S.; Basso, N.R.D.S.; De Galland, G.L.B.; Ligabue, R.A.; Bogo, M.R. Micro- and Nanoplastic Toxicity: A Review on Size, Type, Source, and Test-Organism Implications. Sci. Total Environ. 2023, 878, 162954. [Google Scholar] [CrossRef] [PubMed]
- Cong Vo, H.C.; Pham, M.H. Ecotoxicological Effects of Microplastics on Aquatic Organisms: A Review. Environ. Sci. Pollut. Res. 2021, 28, 44716–44725. [Google Scholar] [CrossRef] [PubMed]
- Wright, S.L.; Rowe, D.; Thompson, R.C.; Galloway, T.S. Microplastic Ingestion Decreases Energy Reserves in Marine Worms. Curr. Biol. 2013, 23, R1031–R1033. [Google Scholar] [CrossRef] [PubMed]
- Berber, A.A. Genotoxic Evaluation of Polystyrene Microplastic. Sak. Univ. J. Sci. 2019, 23, 358–367. [Google Scholar] [CrossRef]




| Habitat | Experimental Treatment | Endpoints | ||
|---|---|---|---|---|
| Cryptorchestia garbinii | Supralittoral | -Trophic exposure (DTs) | DNA damage; Glucose, Glycogen, Lipid concentrations; Ingestion and fragmentation | ![]() |
| Echinogammarus veneris | Aquatic | -Water exposure -Trophic exposure (DTs) | DNA damage; Glucose, Glycogen, Lipid concentrations; Ingestion and fragmentation | ![]() |
| Endpoint | Study/Reference | Species | Polymer/Exposure | Duration | Main Findings in Literature | Comparison with Present Study |
|---|---|---|---|---|---|---|
| Ingestion & fragmentation | Mateos-Cárdenas et al. (2020) [48] | Gammarus duebeni | PE MPs | 24–96 h | Amphipods fragmented MPs during digestion. | Confirms digestive fragmentation in E. veneris and C. garbinii. |
| Iannilli et al. (2023) [27] | E. veneris | PE MPs via Spirodela polyrhiza | 24 h | Ingestion and trophic transfer of MPs. | Comparable ingestion rate and fragmentation evidence. | |
| Ciotti et al. (2023) [32] | C. garbinii | PE MPs via DECOTABs | 24–48 h | MP ingestion and reduction in energy reserves. | Similar ingestion levels and metabolic trends. | |
| Rani-Borges et al. (2023) [37] | Hyalella azteca | PS MPs | 24 h–168 h | Fragmentation and oxidative stress increase. | Supports biofragmentation and metabolic stress. | |
| Rani-Borges et al. (2023) [50] | Daphnia similis | PS MPs | 48 h–144 h | Reduction in MP size and altered surface morphology. | Similar digestive modification of MPs. | |
| Queiroz et al. (2024) [51] | Chironomus sancticaroli | PS MPs | 144 h | MP fragmentation linked to oxidative stress and deformities | Suggests similar biofragmentation mechanisms. | |
| Genotoxicity | Cosentino et al. (2022) [30] | E. veneris, G. aequicauda | Bisphenols (BPA, BPF, BPS) | 24–48 h | DNA strand breaks in somatic and germ cells. | Confirms E. veneris sensitivity to plastic-related compounds. |
| Iannilli et al. (2023) [27] | E. veneris | PE MPs via Spirodela polyrhiza | 24 h | Genotoxic effects and trophic transfer. | Comparable DNA damage patterns. | |
| Berber (2019) [62] | Neocaridina davidi | PS MPs | 24 h | Significant DNA strand breaks detected by Comet assay. | Consistent with PE-induced DNA damage. | |
| Ribeiro et al. (2017) [52] | Scrobicularia plana | PE MPs | 14 d | DNA damage and ROS increase. | Supports genotoxic potential of PE MPs. | |
| Pannetier et al. (2020) [53] | Oryzias latipes larvae | PS, PET, PE environmental MPs | 30 d | DNA damage. | Confirms strong genotoxic potential of MPs. | |
| Metabolic/Energy biomarkers | Ciotti et al. (2023) [32] | C. garbinii | MPs via DECOTABs | 24–48 h | Decrease in glycogen and lipid reserves. | Similar metabolic stress pattern. |
| Weber et al. (2018) [58] | Gammarus pulex | PET MPs | 48 d | No significant metabolic changes. | Suggests transient acute effects in present study. | |
| Au et al. (2015) [19] | Hyalella azteca | PE, PP MPs | 42 d | Growth and reproduction impairment. | Chronic effects may extend from early responses. | |
| Wright et al. (2013) [61] | Arenicola marina | PVC MPs | 28 d | Depletion of energy reserves (~50%) and reduced feeding. | Comparable trend of energy mobilization. | |
| Cong and Pham (2020) [60] | — | PS, PP, PVC MPs | — | Polymer-specific toxicity due to monomer release. | Supports polymer-dependent effects observed here. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Iannilli, V.; Aboutabit, K.; Lecce, F. Sublethal Impacts of Polyethylene Microplastics on Freshwater Amphipods: Genotoxic and Metabolic Responses in Echinogammarus veneris and Cryptorchestia garbinii (Crustacea, Amphipoda). Environments 2025, 12, 408. https://doi.org/10.3390/environments12110408
Iannilli V, Aboutabit K, Lecce F. Sublethal Impacts of Polyethylene Microplastics on Freshwater Amphipods: Genotoxic and Metabolic Responses in Echinogammarus veneris and Cryptorchestia garbinii (Crustacea, Amphipoda). Environments. 2025; 12(11):408. https://doi.org/10.3390/environments12110408
Chicago/Turabian StyleIannilli, Valentina, Kaoutar Aboutabit, and Francesca Lecce. 2025. "Sublethal Impacts of Polyethylene Microplastics on Freshwater Amphipods: Genotoxic and Metabolic Responses in Echinogammarus veneris and Cryptorchestia garbinii (Crustacea, Amphipoda)" Environments 12, no. 11: 408. https://doi.org/10.3390/environments12110408
APA StyleIannilli, V., Aboutabit, K., & Lecce, F. (2025). Sublethal Impacts of Polyethylene Microplastics on Freshwater Amphipods: Genotoxic and Metabolic Responses in Echinogammarus veneris and Cryptorchestia garbinii (Crustacea, Amphipoda). Environments, 12(11), 408. https://doi.org/10.3390/environments12110408



