Short-Term Associations of Road Density and Road Features with In-Vehicle PM2.5 during Daily Trips in the Washington, D.C. Metro Area
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Trip Data
2.2. Ambient PM2.5 and Meteorological Data
2.3. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
References
- Environmental Protection Agency. Integrated Science Assessment for Particulate Matter; Environmental Protection Agency: Research Triangle Park, NC, USA, 2019.
- Stafoggia, M.; Samoli, E.; Alessandrini, E.; Cadum, E.; Ostro, B.; Berti, G.; Faustini, A.; Jacquemin, B.; Linares, C.; Pascal, M.; et al. Short-term associations between fine and coarse particulate matter and hospitalizations in Southern Europe: Results from the MED-PARTICLES project. Environ. Health Perspect. 2013, 121, 1026–1033. [Google Scholar] [CrossRef] [PubMed]
- Strickland, M.J.; Darrow, L.A.; Klein, M.; Flanders, W.D.; Sarnat, J.A.; Waller, L.A.; Sarnat, S.E.; Mulholland, J.A.; Tolbert, P.E. Short-term associations between ambient air pollutants and pediatric asthma emergency department visits. Am. J. Respir. Crit. Care Med. 2010, 182, 307–316. [Google Scholar] [CrossRef] [PubMed]
- Tian, Y.; Liu, H.; Wu, Y.; Si, Y.; Song, J.; Cao, Y.; Li, M.; Wu, Y.; Wang, X.; Chen, L.; et al. Association between ambient fine particulate pollution and hospital admissions for cause specific cardiovascular disease: Time series study in 184 major Chinese cities. BMJ 2019, 367, l6572. [Google Scholar] [CrossRef] [PubMed]
- Tolbert, P.E.; Klein, M.; Peel, J.L.; Sarnat, S.E.; Sarnat, J.A. Multipollutant modeling issues in a study of ambient air quality and emergency department visits in Atlanta. J. Expo. Sci. Environ. Epidemiol. 2007, 17, S29–S35. [Google Scholar] [CrossRef] [PubMed]
- Zanobetti, A.; Franklin, M.; Koutrakis, P.; Schwartz, J. Fine particulate air pollution and its components in association with cause-specific emergency admissions. Environ. Health 2009, 8, 58. [Google Scholar] [CrossRef] [PubMed]
- Chen, R.; Yin, P.; Meng, X.; Liu, C.; Wang, L.; Xu, X.; Ross, J.A.; Tse, L.A.; Zhao, Z.; Kan, H.; et al. Fine particulate air pollution and daily mortality. A nationwide analysis in 272 Chinese cities. Am. J. Respir. Crit. Care Med. 2017, 196, 73–81. [Google Scholar] [CrossRef] [PubMed]
- Dominici, F.; Peng, R.D.; Bell, M.L.; Pham, L.; McDermott, A.; Zeger, S.L.; Samet, J.M. Fine particulate air pollution and hospital admission for cardiovascular and respiratory diseases. JAMA 2006, 295, 1127–1134. [Google Scholar] [CrossRef] [PubMed]
- Golan, R.; Ladva, C.; Greenwald, R.; Krall, J.R.; Raysoni, A.U.; Kewada, P.; Winquist, A.; Flanders, W.D.; Liang, D.; Sarnat, J.A. Acute pulmonary and inflammatory response in young adults following a scripted car commute. Air Qual. Atmos. Health 2018, 11, 123–136. [Google Scholar] [CrossRef]
- Rabinovitch, N.; Adams, C.D.; Strand, M.; Koehler, K.; Volckens, J. Within-microenvironment exposure to particulate matter and health effects in children with asthma: A pilot study utilizing real-time personal monitoring with GPS interface. Environ. Health 2016, 15, 96. [Google Scholar] [CrossRef]
- Sarnat, J.A.; Golan, R.; Greenwald, R.; Raysoni, A.U.; Kewada, P.; Winquist, A.; Sarnat, S.E.; Flanders, W.D.; Mirabelli, M.C.; Zora, J.E.; et al. Exposure to traffic pollution, acute inflammation and autonomic response in a panel of car commuters. Environ. Res. 2014, 133, 66–76. [Google Scholar] [CrossRef]
- Baccarelli, A.A.; Zheng, Y.; Zhang, X.; Chang, D.; Liu, L.; Wolf, K.R.; Zhang, Z.; McCracken, J.P.; Díaz, A.; Bertazzi, P.A.; et al. Air pollution exposure and lung function in highly exposed subjects in Beijing, China: A repeated-measure study. Part. Fibre Toxicol. 2014, 11, 51. [Google Scholar] [CrossRef] [PubMed]
- Riediker, M.; Cascio, W.E.; Griggs, T.R.; Herbst, M.C.; Bromberg, P.A.; Neas, L.; Williams, R.W.; Devlin, R.B. Particulate matter exposure in cars is associated with cardiovascular effects in healthy young men. Am. J. Respir. Crit. Care Med. 2004, 169, 934–940. [Google Scholar] [CrossRef] [PubMed]
- Meier, R.; Cascio, W.E.; Ghio, A.J.; Wild, P.; Danuser, B.; Riediker, M. Associations of short-term particle and noise exposures with markers of cardiovascular and respiratory health among highway maintenance workers. Environ. Health Perspect. 2014, 122, 726–732. [Google Scholar] [CrossRef] [PubMed]
- Mirabelli, M.C.; Golan, R.; Greenwald, R.; Raysoni, A.U.; Holguin, F.; Kewada, P.; Winquist, A.; Flanders, W.D.; Sarnat, J.A. Modification of traffic-related respiratory response by asthma control in a population of car commuters. Epidemiology 2015, 26, 546–555. [Google Scholar] [CrossRef] [PubMed]
- Mallach, G.; Shutt, R.; Thomson, E.M.; Valcin, F.; Kulka, R.; Weichenthal, S. Randomized cross-over study of in-vehicle cabin air filtration, air pollution exposure, and acute changes to heart rate variability, saliva cortisol, and cognitive function. Environ. Sci. Technol. 2023, 57, 3238–3247. [Google Scholar] [CrossRef] [PubMed]
- Huang, J.; Deng, F.; Wu, S.; Zhao, Y.; Shima, M.; Guo, B.; Liu, Q.; Guo, X. Acute effects on pulmonary function in young healthy adults exposed to traffic-related air pollution in semi-closed transport hub in Beijing. Environ. Health Prev. Med. 2016, 21, 312–320. [Google Scholar] [CrossRef] [PubMed]
- Mirowsky, J.E.; Peltier, R.E.; Lippmann, M.; Thurston, G.; Chen, L.-C.; Neas, L.; Diaz-Sanchez, D.; Laumbach, R.; Carter, J.D.; Gordon, T. Repeated measures of inflammation, blood pressure, and heart rate variability associated with traffic exposures in healthy adults. Environ. Health 2015, 14, 66. [Google Scholar] [CrossRef] [PubMed]
- Dons, E.; Panis, L.I.; Van Poppel, M.; Theunis, J.; Willems, H.; Torfs, R.; Wets, G. Impact of time–activity patterns on personal exposure to black carbon. Atmos. Environ. 2011, 45, 3594–3602. [Google Scholar] [CrossRef]
- Dons, E.; Panis, L.I.; Van Poppel, M.; Theunis, J.; Wets, G. Personal exposure to Black Carbon in transport microenvironments. Atmos. Environ. 2012, 55, 392–398. [Google Scholar] [CrossRef]
- Hachem, M.; Bensefa-Colas, L.; Lahoud, N.; Akel, M.; Momas, I.; Saleh, N. Cross-sectional study of in-vehicle exposure to ultrafine particles and black carbon inside Lebanese taxicabs. Indoor Air 2020, 30, 1308–1316. [Google Scholar] [CrossRef]
- Koehler, K.; Good, N.; Wilson, A.; Mölter, A.; Moore, B.F.; Carpenter, T.; Peel, J.L.; Volckens, J. The Fort Collins commuter study: Variability in personal exposure to air pollutants by microenvironment. Indoor Air 2019, 29, 231–241. [Google Scholar] [CrossRef]
- Zuurbier, M.; Hoek, G.; Oldenwening, M.; Lenters, V.; Meliefste, K.; Hazel, P.v.D.; Brunekreef, B. Commuters’ exposure to particulate matter air pollution is affected by mode of transport, fuel type, and route. Environ. Health Perspect. 2010, 118, 783–789. [Google Scholar] [CrossRef]
- Jung, K.H.; Goodwin, K.E.; Ross, J.M.; Cai, J.; Chillrud, S.N.; Perzanowski, M.; Perera, F.P.; Miller, R.L.; Lovinsky-Desir, S. Characteristics of peak exposure to black carbon pollution in school, commute and home environments among school children in an urban community. Environ. Pollut. 2023, 319, 120991. [Google Scholar] [CrossRef]
- Dons, E.; Temmerman, P.; Van Poppel, M.; Bellemans, T.; Wets, G.; Panis, L.I. Street characteristics and traffic factors determining road users’ exposure to black carbon. Sci. Total Environ. 2013, 447, 72–79. [Google Scholar] [CrossRef]
- Fruin, S.A.; Winer, A.M.; Rodes, C.E. Black carbon concentrations in California vehicles and estimation of in-vehicle diesel exhaust particulate matter exposures. Atmos. Environ. 2004, 38, 4123–4133. [Google Scholar] [CrossRef]
- Campagnolo, D.; Borghi, F.; Fanti, G.; Keller, M.; Rovelli, S.; Spinazzè, A.; Cattaneo, A.; Cavallo, D.M. Factors affecting in-vehicle exposure to traffic-related air pollutants: A review. Atmos. Environ. 2023, 295, 119560. [Google Scholar] [CrossRef]
- Patton, A.P.; Laumbach, R.; Ohman-Strickland, P.; Black, K.; Alimokhtari, S.; Lioy, P.J.; Kipen, H.M. Scripted drives: A robust protocol for generating exposures to traffic-related air pollution. Atmos. Environ. 2016, 143, 290–299. [Google Scholar] [CrossRef] [PubMed]
- Matthaios, V.N.; Kramer, L.J.; Crilley, L.R.; Sommariva, R.; Pope, F.D.; Bloss, W.J. Quantification of within-vehicle exposure to NOx and particles: Variation with outside air quality, route choice and ventilation options. Atmos. Environ. 2020, 240, 117810. [Google Scholar] [CrossRef]
- Krall, J.R.; Adibah, N.; Babin, L.M.; Lee, Y.-C.; Motti, V.G.; McCombs, M.; McWilliams, A.; Thornburg, J.; Pollack, A.Z. Estimating exposure to traffic-related PM2.5 for women commuters using vehicle and personal monitoring. Environ. Res. 2020, 187, 109644. [Google Scholar] [CrossRef]
- Sabin, L.D.; Behrentz, E.; Winer, A.M.; Jeong, S.; Fitz, D.R.; Pankratz, D.V.; Colome, S.D.; Fruin, S.A. Characterizing the range of children’s air pollutant exposure during school bus commutes. J. Expo. Sci. Environ. Epidemiol. 2005, 15, 377–387. [Google Scholar] [CrossRef]
- Moutinho, J.L.; Liang, D.; Golan, R.; Sarnat, S.E.; Weber, R.; Sarnat, J.A.; Russell, A.G. Near-road vehicle emissions air quality monitoring for exposure modeling. Atmos. Environ. 2020, 224, 117318. [Google Scholar] [CrossRef] [PubMed]
- Good, N.; Mölter, A.; Ackerson, C.; Bachand, A.; Carpenter, T.; Clark, M.L.; Fedak, K.M.; Kayne, A.; Koehler, K.; Moore, B.; et al. The Fort Collins Commuter Study: Impact of route type and transport mode on personal exposure to multiple air pollutants. J. Expo. Sci. Environ. Epidemiol. 2016, 26, 397–404. [Google Scholar] [CrossRef] [PubMed]
- HEI Panel on the Health Effects of Traffic-Related Air Pollution. Traffic-Related Air Pollution: A Critical Review of the Literature on Emissions, Exposure, and Health Effects; HEI Special Report 17; Health Effects Institute: Boston, MA, USA, 2010. [Google Scholar]
- Zhou, Y.; Levy, J.I. Factors influencing the spatial extent of mobile source air pollution impacts: A meta-analysis. BMC Public Health 2007, 7, 89. [Google Scholar] [CrossRef] [PubMed]
- Roorda-Knape, M.C.; Janssen, N.A.; De Hartog, J.J.; Van Vliet, P.H.; Harssema, H.; Brunekreef, B. Air pollution from traffic in city districts near major motorways. Atmos. Environ. 1998, 32, 1921–1930. [Google Scholar] [CrossRef]
- Zhu, Y.; Kuhn, T.; Mayo, P.; Hinds, W.C. Comparison of Daytime and Nighttime Concentration Profiles and Size Distributions of Ultrafine Particles near a Major Highway. Environ. Sci. Technol. 2006, 40, 2531–2536. [Google Scholar] [CrossRef] [PubMed]
- Henneman, L.R.F.; Shen, H.; Hogrefe, C.; Russell, A.G.; Zigler, C.M. Four decades of United States mobile source pollutants: Spatial–temporal trends assessed by ground-based monitors, air quality models, and satellites. Environ. Sci. Technol. 2021, 55, 882–892. [Google Scholar] [CrossRef] [PubMed]
- McGuckin, N.; Murakami, E. Examining trip-chaining behavior: Comparison of travel by men and women. Transp. Res. Rec. J. Transp. Res. Board 1999, 1693, 79–85. [Google Scholar] [CrossRef]
- Taylor, B.D.; Ralph, K.; Smart, M. What Explains the gender gap in schlepping? Testing various explanations for gender differences in household-serving travel. Soc. Sci. Q. 2015, 96, 1493–1510. [Google Scholar] [CrossRef]
- U.S. Department of Transportation, Bureau of Transportation Statistics. Transportation Statistics Annual Report; U.S. Department of Transportation, Bureau of Transportation Statistics: Washington, DC, USA, 2018. [CrossRef]
- USGS National Transportation Dataset (NTD) Downloadable Data Collection—Data.gov. Available online: https://data.usgs.gov/datacatalog/data/USGS:ad3d631d-f51f-4b6a-91a3-e617d6a58b4e (accessed on 1 June 2024).
- Chamberlain, S. rnoaa: “NOAA” Weather Data from R. 2021. Available online: https://CRAN.R-project.org/package=rnoaa (accessed on 21 October 2021).
- Local Climatological Data (LCD)|Data Tools|Climate Data Online (CDO)|National Climatic Data Center (NCDC). Available online: https://www.ncdc.noaa.gov/cdo-web/datatools/lcd (accessed on 1 June 2024).
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2024; Available online: https://www.R-project.org/ (accessed on 1 June 2024).
- Wickham, H.; Averick, M.; Bryan, J.; Chang, W.; McGowan, L.D.A.; François, R.; Grolemund, G.; Hayes, A.; Henry, L.; Hester, J.; et al. Welcome to the Tidyverse. J. Open Source Softw. 2019, 4, 1686. [Google Scholar] [CrossRef]
- Weichenthal, S.; Van Ryswyk, K.; Kulka, R.; Sun, L.; Wallace, L.; Joseph, L. In-vehicle exposures to particulate air pollution in Canadian metropolitan areas: The urban transportation exposure study. Environ. Sci. Technol. 2015, 49, 597–605. [Google Scholar] [CrossRef]
- Xu, Y.; Yi, L.; Cabison, J.; Rosales, M.; O’Sharkey, K.; Chavez, T.A.; Johnson, M.; Lurmann, F.; Pavlovic, N.; Bastain, T.M.; et al. The impact of GPS-derived activity spaces on personal PM2.5 exposures in the MADRES cohort. Environ. Res. 2022, 214, 114029. [Google Scholar] [CrossRef] [PubMed]
- Brokamp, C.; Jandarov, R.; Rao, M.B.; LeMasters, G.; Ryan, P. Exposure assessment models for elemental components of particulate matter in an urban environment: A comparison of regression and random forest approaches. Atmos. Environ. 2017, 151, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Dons, E.; Van Poppel, M.; Kochan, B.; Wets, G.; Panis, L.I. Modeling temporal and spatial variability of traffic-related air pollution: Hourly land use regression models for black carbon. Atmos. Environ. 2013, 74, 237–246. [Google Scholar] [CrossRef]
- Liu, W.; Li, X.; Chen, Z.; Zeng, G.; León, T.; Liang, J.; Huang, G.; Gao, Z.; Jiao, S.; He, X.; et al. Land use regression models coupled with meteorology to model spatial and temporal variability of NO2 and PM10 in Changsha, China. Atmos. Environ. 2015, 116, 272–280. [Google Scholar] [CrossRef]
- Henderson, S.B.; Beckerman, B.; Jerrett, M.; Brauer, M. Application of land use regression to estimate long-term concentrations of traffic-related nitrogen oxides and fine particulate matter. Environ. Sci. Technol. 2007, 41, 2422–2428. [Google Scholar] [CrossRef] [PubMed]
- Zheng, J.; Che, W.; Wang, X.; Louie, P.; Zhong, L. Road-network-Based spatial allocation of on-road mobile source emissions in the Pearl River Delta region, China, and comparisons with population-based approach. J. Air Waste Manag. Assoc. 2009, 59, 1405–1416. [Google Scholar] [CrossRef] [PubMed]
- Saide, P.; Zah, R.; Osses, M.; de Eicker, M.O. Spatial disaggregation of traffic emission inventories in large cities using simplified top-down methods. Atmos. Environ. 2009, 43, 4914–4923. [Google Scholar] [CrossRef]
- Riediker, M.; Williams, R.; Devlin, R.; Griggs, T.; Bromberg, P. Exposure to particulate matter, volatile organic compounds, and other air pollutants inside patrol cars. Environ. Sci. Technol. 2003, 37, 2084–2093. [Google Scholar] [CrossRef] [PubMed]
- Westerdahl, D.; Wang, X.; Pan, X.; Zhang, K.M. Characterization of on-road vehicle emission factors and microenvironmental air quality in Beijing, China. Atmos. Environ. 2009, 43, 697–705. [Google Scholar] [CrossRef]
- Bista, S.; Dureau, C.; Chaix, B. Personal exposure to concentrations and inhalation of black carbon according to transport mode use: The MobiliSense sensor-based study. Environ. Int. 2022, 158, 106990. [Google Scholar] [CrossRef]
- Cepeda, M.; Schoufour, J.; Freak-Poli, R.; Koolhaas, C.M.; Dhana, K.; Bramer, W.M.; Franco, O.H. Levels of ambient air pollution according to mode of transport: A systematic review. Lancet Public Health 2017, 2, e23–e34. [Google Scholar] [CrossRef]
- Burd, C.; Burrows, M.; McKenzie, B. Travel Time to Work in the United States: 2019; U.S. Census Bureau: Washington, DC, USA, 2021; Volume ACS-47.
- Ham, W.; Vijayan, A.; Schulte, N.; Herner, J.D. Commuter exposure to PM2.5, BC, and UFP in six common transport microenvironments in Sacramento, California. Atmos. Environ. 2017, 167, 335–345. [Google Scholar] [CrossRef]
- Kumar, P.; Hama, S.; Nogueira, T.; Abbass, R.A.; Brand, V.S.; Andrade, M.d.F.; Asfaw, A.; Aziz, K.H.; Cao, S.-J.; El-Gendy, A.; et al. In-car particulate matter exposure across ten global cities. Sci. Total Environ. 2021, 750, 141395. [Google Scholar] [CrossRef]
- Xu, B.; Chen, X.; Xiong, J. Air quality inside motor vehicles’ cabins: A review. Indoor Built Environ. 2018, 27, 452–465. [Google Scholar] [CrossRef]
- Saha, P.K.; Ashik–Un-Noor, S.; Robinson, A.L.; Presto, A.A. In-vehicle ultrafine and fine particulate matter exposures during commuting in a South Asian megacity: Dhaka, Bangladesh. Atmos. Environ. 2024, 321, 120340. [Google Scholar] [CrossRef]
- Matthaios, V.N.; Harrison, R.M.; Koutrakis, P.; Bloss, W.J. In-vehicle exposure to NO2 and PM2.5: A comprehensive assessment of controlling parameters and reduction strategies to minimise personal exposure. Sci. Total Environ. 2023, 900, 165537. [Google Scholar] [CrossRef]
- Krall, J.R.; Moore, K.D.; Joannidis, C.; Lee, Y.-C.; Pollack, A.Z.; McCombs, M.; Thornburg, J.; Balachandran, S. Commuter types identified using clustering and their associations with source-specific PM2.5. Environ. Res. 2021, 200, 111419. [Google Scholar] [CrossRef] [PubMed]
- Adams, C.; Riggs, P.; Volckens, J. Development of a method for personal, spatiotemporal exposure assessment. J. Environ. Monit. 2009, 11, 1331–1339. [Google Scholar] [CrossRef]
- Dons, E.; Laeremans, M.; Orjuela, J.P.; Avila-Palencia, I.; de Nazelle, A.; Nieuwenhuijsen, M.; Van Poppel, M.; Carrasco-Turigas, G.; Standaert, A.; De Boever, P.; et al. Transport most likely to cause air pollution peak exposures in everyday life: Evidence from over 2000 days of personal monitoring. Atmos. Environ. 2019, 213, 424–432. [Google Scholar] [CrossRef]
Variable | Value | n (%) |
---|---|---|
Race | Asian | 11 (44%) |
White only | 9 (36%) | |
Other/Did not specify | 5 (20%) | |
Ethnicity | Hispanic or Latino | 2 (8%) |
Not Hispanic or Latino | 23 (92%) | |
Employed | Part-time | 7 (28%) |
Full-time | 17 (68%) | |
Education | High school diploma or GED | 6 (24%) |
Some college or technical school | 7 (28%) | |
College degree or technical school degree | 5 (20%) | |
Some graduate school | 2 (8%) | |
Graduate school degree or post-graduate degree | 5 (20%) | |
Student | Yes | 15 (60%) |
No | 9 (36%) | |
Children | None | 18 (72%) |
1+ | 7 (28%) |
Variable | Road | Resolution | Road Density | Speed | ||
---|---|---|---|---|---|---|
Local, 1 km | Highway, 500 m | Local, 500 m | ||||
Road density | Highway | 1 km | 0.2 * | 0.97 * | 0.21 * | 0.13 * |
Road density | Local | 1 km | 0.09 * | 0.99 * | −0.28 * | |
Road density | Highway | 500 m | 0.11 * | 0.12 * | ||
Road density | Local | 500 m | −0.31 * |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Krall, J.R.; Thornburg, J.; Zhang, T.; Pollack, A.Z.; Lee, Y.-C.; McCombs, M.; Henneman, L.R.F. Short-Term Associations of Road Density and Road Features with In-Vehicle PM2.5 during Daily Trips in the Washington, D.C. Metro Area. Environments 2024, 11, 135. https://doi.org/10.3390/environments11070135
Krall JR, Thornburg J, Zhang T, Pollack AZ, Lee Y-C, McCombs M, Henneman LRF. Short-Term Associations of Road Density and Road Features with In-Vehicle PM2.5 during Daily Trips in the Washington, D.C. Metro Area. Environments. 2024; 11(7):135. https://doi.org/10.3390/environments11070135
Chicago/Turabian StyleKrall, Jenna R., Jonathan Thornburg, Ting Zhang, Anna Z. Pollack, Yi-Ching Lee, Michelle McCombs, and Lucas R. F. Henneman. 2024. "Short-Term Associations of Road Density and Road Features with In-Vehicle PM2.5 during Daily Trips in the Washington, D.C. Metro Area" Environments 11, no. 7: 135. https://doi.org/10.3390/environments11070135
APA StyleKrall, J. R., Thornburg, J., Zhang, T., Pollack, A. Z., Lee, Y. -C., McCombs, M., & Henneman, L. R. F. (2024). Short-Term Associations of Road Density and Road Features with In-Vehicle PM2.5 during Daily Trips in the Washington, D.C. Metro Area. Environments, 11(7), 135. https://doi.org/10.3390/environments11070135