The Effects of Different Combinations of Cattle Organic Soil Amendments and Copper on Lettuce (cv. Rufus) Plant Growth
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant, Soil Materials, and Experimental Design
2.2. Plant Growth Analyses
2.3. Determination of Chlorophyll
2.4. Chlorophyll Fluorescence Analysis
2.5. Measurement of Lipid Peroxidation Level
2.6. Estimation of Total Phenolic Content
2.7. Chemical Analysis
2.8. Bioaccumulation Factor of Copper in Lettuce Plants
2.9. Tolerance Index of Lettuce Plants toward Copper
2.10. Microbiological Analyses of Soil Community
2.11. Statistical Analysis
3. Results and Discussion
3.1. Plant Growth Analyses
3.2. Chlorophyll Content
3.3. Chlorophyll Fluorescence Analysis
3.4. Measurement of Lipid Peroxidation Levels
3.5. Estimation of Total Phenolic Content
3.6. Copper Determination, Bioaccumulation Factor, and Tolerance Index in Lettuce
3.7. Macro- and Micro-Nutrient Content in Lettuce Plants
3.8. Microbiological Analyses of Soil Community
3.9. Principal Component Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ruiz, D.; San Miguel, G.; Corona, B.; Gaitero, A.; Domínguez, A. Environmental and Economic Analysis of Power Generation in a Thermophilic Biogas Plant. Sci. Total Environ. 2018, 633, 1418–1428. [Google Scholar] [CrossRef]
- Mazzurco Miritana, V.; Patrolecco, L.; Barra Caracciolo, A.; Visca, A.; Piccinini, F.; Signorini, A.; Rosa, S.; Grenni, P.; Garbini, G.L.; Spataro, F.; et al. Effects of Ciprofloxacin Alone or in Mixture with Sulfamethoxazole on the Efficiency of Anaerobic Digestion and Its Microbial Community. Antibiotics 2022, 11, 1111. [Google Scholar] [CrossRef] [PubMed]
- Podjanapon, P.; Jamaree, T.; Sakhonwasee, S. Optimization of Liquid Digestate Fertigation and Light Intensity for Lettuce Cultivation in Closed Plant Production System. Environ. Control Biol. 2023, 61, 9–16. [Google Scholar] [CrossRef]
- Panuccio, M.R.; Mallamaci, C.; Attinà, E.; Muscolo, A. Using Digestate as Fertilizer for a Sustainable Tomato Cultivation. Sustainability 2021, 13, 1574. [Google Scholar] [CrossRef]
- Mortola, N.; Romaniuk, R.; Cosentino, V.; Eiza, M.; Carfagno, P.; Rizzo, P.; Bres, P.; Riera, N.; Roba, M.; Butti, M.; et al. Potential Use of a Poultry Manure Digestate as a Biofertiliser: Evaluation of Soil Properties and Lactuca sativa Growth. Pedosphere 2019, 29, 60–69. [Google Scholar] [CrossRef]
- Kwoczynski, Z.; Burdová, H.; Al Souki, K.S.; Čmelík, J. Extracted Rapeseed Meal Biochar Combined with Digestate as a Soil Amendment: Effect on Lettuce (Lactuca sativa L.) Biomass Yield and Concentration of Bioavailable Element Fraction in the Soil. Sci. Hortic. 2024, 329, 113041. [Google Scholar] [CrossRef]
- Jamison, J.; Khanal, S.K.; Nguyen, N.H.; Deenik, J.L. Assessing the Effects of Digestates and Combinations of Digestates and Fertilizer on Yield and Nutrient Use of Brassica juncea (Kai Choy). Agronomy 2021, 11, 509. [Google Scholar] [CrossRef]
- Panagos, P.; Ballabio, C.; Lugato, E.; Jones, A.; Borrelli, P.; Scarpa, S.; Orgiazzi, A.; Montanarella, L. Potential Sources of Anthropogenic Copper Inputs to European Agricultural Soils. Sustainability 2018, 10, 2380. [Google Scholar] [CrossRef]
- Fagnano, M.; Agrelli, D.; Pascale, A.; Adamo, P.; Fiorentino, N.; Rocco, C.; Pepe, O.; Ventorino, V. Copper Accumulation in Agricultural Soils: Risks for the Food Chain and Soil Microbial Populations. Sci. Total Environ. 2020, 734, 139434. [Google Scholar] [CrossRef]
- Chen, G.; Li, J.; Han, H.; Du, R.; Wang, X. Physiological and Molecular Mechanisms of Plant Responses to Copper Stress. Int. J. Mol. Sci. 2022, 23, 12950. [Google Scholar] [CrossRef]
- Bankaji, I.; Caçador, I.; Sleimi, N. Physiological and Biochemical Responses of Suaeda Fruticosa to Cadmium and Copper Stresses: Growth, Nutrient Uptake, Antioxidant Enzymes, Phytochelatin, and Glutathione Levels. Environ. Sci. Pollut. R. 2015, 22, 13058–13069. [Google Scholar] [CrossRef]
- Zvezdanovic, J.; Markovic, D.; Nikolic, G. Different Possibilities for the Formation of Complexes of Copper and Zinc with Chlorophyll inside Photosynthetic Organelles: Chloroplasts and Thylakoids. J. Serb. Chem. Soc. 2007, 72, 1053–1062. [Google Scholar] [CrossRef]
- Mir, A.R.; Pichtel, J.; Hayat, S. Copper: Uptake, Toxicity and Tolerance in Plants and Management of Cu-Contaminated Soil. BioMetals 2021, 34, 737–759. [Google Scholar] [CrossRef]
- Fedeli, R.; Celletti, S.; Loppi, S.; Vannini, A. Comparison of the Effect of Solid and Liquid Digestate on the Growth of Lettuce (Lactuca sativa L.) Plants. Agronomy 2023, 13, 782. [Google Scholar] [CrossRef]
- Faran, M.; Nadeem, M.; Manful, C.F.; Galagedara, L.; Thomas, R.H.; Cheema, M. Agronomic Performance and Phytochemical Profile of Lettuce Grown in Anaerobic Dairy Digestate. Agronomy 2023, 13, 182. [Google Scholar] [CrossRef]
- Peijnenburg, W.; Baerselman, R.; de Groot, A.; Jager, T.; Leenders, D.; Posthuma, L.; Van Veen, R. Quantification of Metal Bioavailability for Lettuce (Lactuca sativa L.) in Field Soils. Arch. Environ. Contam. Toxicol. 2000, 39, 420–430. [Google Scholar] [CrossRef] [PubMed]
- Barra Caracciolo, A.; Grenni, P.; Garbini, G.L.; Rolando, L.; Campanale, C.; Aimola, G.; Fernandez-Lopez, M.; Fernandez-Gonzalez, A.J.; Villadas, P.J.; Ancona, V. Characterization of the Belowground Microbial Community in a Poplar-Phytoremediation Strategy of a Multi-Contaminated Soil. Front. Microbiol. 2020, 11, 2073. [Google Scholar] [CrossRef] [PubMed]
- Huang, F.; Guo, Z.; Xu, Z. Determined Methods of Chlorophyll from Lemma Paucicostata. Exp. Technol. Manag. 2007, 24, e31. [Google Scholar]
- Lichtenthaler, H.K. Chlorophylls and Carotenoids: Pigments of Photosynthetic Biomembranes. In Methods in Enzymology; Academic Press: Cambridge, MA, USA, 1987; pp. 350–382. [Google Scholar]
- Strasser, R.J.; Tsimilli-Michael, M.; Srivastava, A. Analysis of the Chlorophyll a Fluorescence Transient. In Advances in Photosynthesis and Respiration; Papageorgiou, G.C., Govindjee, Eds.; Springer: Dordrecht, The Netherlands, 2004; Volume 19, pp. 321–362. [Google Scholar]
- Hodges, D.M.; DeLong, J.M.; Forney, C.F.; Prange, R.K. Improving the Thiobarbituric Acid-Reactive-Substances Assay for Estimating Lipid Peroxidation in Plant Tissues Containing Anthocyanin and Other Interfering Compounds. Planta 1999, 207, 604–611. [Google Scholar]
- Bernabé-Antonio, A.; Sánchez-Sánchez, A.; Romero-Estrada, A.; Meza-Contreras, J.C.; Silva-Guzmán, J.A.; Fuentes-Talavera, F.J.; Hurtado-Díaz, I.; Alvarez, L.; Cruz-Sosa, F. Establishment of a Cell Suspension Culture of Eysenhardtia platycarpa: Phytochemical Screening of Extracts and Evaluation of Antifungal Activity. Plants 2021, 10, 414. [Google Scholar] [CrossRef]
- Huang, W.-L.; Chang, W.-H.; Cheng, S.-F.; Li, H.-Y.; Chen, H.-L. Potential Risk of Consuming Vegetables Planted in Soil with Copper and Cadmium and the Influence on Vegetable Antioxidant Activity. Appl. Sci. 2021, 11, 3761. [Google Scholar] [CrossRef]
- Wilkins, D.A. The measurement of tolerance to edaphic factors by means of root growth. New Phytol. 1978, 80, 623–633. [Google Scholar] [CrossRef]
- Barra Caracciolo, A.; Giuliano, G.; Grenni, P.; Cremisini, C.; Ciccoli, R.; Ubaldi, C. Effect of Urea on Degradation of Terbuthylazine in Soil. Environ. Toxicol. Chem. 2005, 24, 1035–1040. [Google Scholar] [CrossRef] [PubMed]
- Barra Caracciolo, A.; Bustamante, M.A.; Nogues, I.; Di Lenola, M.; Luprano, M.L.; Grenni, P. Changes in Microbial Community Structure and Functioning of a Semiarid Soil Due to the Use of Anaerobic Digestate Derived Composts and Rosemary Plants. Geoderma 2015, 245–246, 89–97. [Google Scholar] [CrossRef]
- Grenni, P.; Rodríguez-Cruz, M.S.; Herrero-Hernández, E.; Marín-Benito, J.M.; Sánchez-Martín, M.J.; Barra Caracciolo, A. Effects of Wood Amendments on the Degradation of Terbuthylazine and on Soil Microbial Community Activity in a Clay Loam Soil. Water Air Soil. Pollut. 2012, 223, 5401–5412. [Google Scholar] [CrossRef]
- Vaish, B.; Srivastava, V.; Singh, U.K.; Gupta, S.K.; Chauhan, P.S.; Kothari, R.; Singh, R.P. Explicating the Fertilizer Potential of Anaerobic Digestate: Effect on Soil Nutrient Profile and Growth of Solanum melongena L. Environ. Technol. Innov. 2022, 27, 102471. [Google Scholar] [CrossRef]
- Coelho, J.J.; Hennessy, A.; Casey, I.; Woodcock, T.; Kennedy, N. Responses of Ryegrass, White Clover, Soil Plant Primary Macronutrients and Microbial Abundance to Application of Anaerobic Digestates, Cattle Slurry and Inorganic N-Fertiliser. Appl. Soil. Ecol. 2019, 144, 112–122. [Google Scholar] [CrossRef]
- Cristina, G.; Camelin, E.; Tommasi, T.; Fino, D.; Pugliese, M. Anaerobic Digestates from Sewage Sludge Used as Fertilizer on a Poor Alkaline Sandy Soil and on a Peat Substrate: Effects on Tomato Plants Growth and on Soil Properties. J. Environ. Manag. 2020, 269, 110767. [Google Scholar] [CrossRef]
- Fernández-Rodríguez, M.J.; Mancilla-Leytón, J.M.; Jiménez-Rodríguez, A.; Borja, R.; Rincón, B. Reuse of the Digestate Obtained from the Biomethanization of Olive Mill Solid Waste (OMSW) as Soil Amendment or Fertilizer for the Cultivation of Forage Grass (Lolium rigidum Var. Wimmera). Sci. Total Environ. 2021, 792, 148465. [Google Scholar] [CrossRef]
- Gharbi, F.; Rejeb, S.; Ghorbal, M.H.; Morel, J.L. Plant Response to Copper Toxicity as Affected by Plant Species and Soil Type. J. Plant Nutr. 2005, 28, 379–392. [Google Scholar] [CrossRef]
- Shams, M.; Ekinci, M.; Turan, M.; Dursun, A.; Kul, R.; Yildirim, E. Growth, Nutrient Uptake and Enzyme Activity Response of Lettuce (Lactuca sativa L.) to Excess Copper. Environ. Sustain. 2019, 2, 67–73. [Google Scholar] [CrossRef]
- Jin, K.; Ran, Y.; Alengebawy, A.; Yang, G.; Jia, S.; Ai, P. Agro-Environmental Sustainability of Using Digestate Fertilizer for Solanaceous and Leafy Vegetables Cultivation: Insights on Fertilizer Efficiency and Risk Assessment. J. Environ. Manag. 2022, 320, 115895. [Google Scholar] [CrossRef] [PubMed]
- Wu, W.; Lin, Z.; Zhu, X.; Li, G.; Zhang, W.; Chen, Y.; Ren, L.; Luo, S.; Lin, H.; Zhou, H.; et al. Improved Tomato Yield and Quality by Altering Soil Physicochemical Properties and Nitrification Processes in the Combined Use of Organic-Inorganic Fertilizers. Eur. J. Soil. Biol. 2022, 109, 103384. [Google Scholar] [CrossRef]
- Slamet, W.; Purbajanti, E.D.; Darmawati, A.; Fuskhah, E. Leaf Area Index, Chlorophyll, Photosynthesis Rate of Lettuce (Lactuca sativa L.) under N-Organic Fertilizer. Indian. J. Agric. Res. 2017, 51, 365–369. [Google Scholar] [CrossRef]
- Li, J.; Qiu, Y.; Zhao, Q.; Chen, D.; Wu, Z.; Peng, A.; Niazi, N.K.; Trakal, L.; Sakrabani, R.; Gao, B.; et al. Lead and Copper-Induced Hormetic Effect and Toxicity Mechanisms in Lettuce (Lactuca sativa L.) Grown in a Contaminated Soil. Sci. Total Environ. 2020, 741, 140440. [Google Scholar] [CrossRef] [PubMed]
- Tiong, Y.W.; Sharma, P.; Xu, S.; Bu, J.; An, S.; Foo, J.B.L.; Wee, B.K.; Wang, Y.; Lee, J.T.E.; Zhang, J.; et al. Enhancing Sustainable Crop Cultivation: The Impact of Renewable Soil Amendments and Digestate Fertilizer on Crop Growth and Nutrient Composition. Environ. Pollut. 2024, 342, 123132. [Google Scholar] [CrossRef] [PubMed]
- Pranckietienė, I.; Navickas, K.; Venslauskas, K.; Jodaugienė, D.; Buivydas, E.; Žalys, B.; Vagusevičienė, I. The Effect of Digestate from Liquid Cow Manure on Spring Wheat Chlorophyll Content, Soil Properties, and Risk of Leaching. Agronomy 2023, 13, 626. [Google Scholar] [CrossRef]
- Maxwell, K.; Johnson, G.N. Chlorophyll Fluorescence—A Practical Guide. J. Exp. Bot. 2000, 51, 659–668. [Google Scholar] [CrossRef]
- Pietrini, F.; Carnevale, M.; Beni, C.; Zacchini, M.; Gallucci, F.; Santangelo, E. Effect of Different Copper Levels on Growth and Morpho-Physiological Parameters in Giant Reed (Arundo donax L.) in Semi-Hydroponic Mesocosm Experiment. Water 2019, 11, 1837. [Google Scholar] [CrossRef]
- Baker, N.R. Chlorophyll Fluorescence: A Probe of Photosynthesis In Vivo. Annu. Rev. Plant Biol. 2008, 59, 89–113. [Google Scholar] [CrossRef]
- Bussotti, F.; Desotgiu, R.; Cascio, C.; Pollastrini, M.; Gravano, E.; Gerosa, G.; Marzuoli, R.; Nali, C.; Lorenzini, G.; Salvatori, E.; et al. Ozone Stress in Woody Plants Assessed with Chlorophyll a Fluorescence. A Critical Reassessment of Existing Data. Environ. Exp. Bot. 2011, 73, 19–30. [Google Scholar] [CrossRef]
- Gilmore, A.M.; Hazlett, T.L.; Debrunner, P.G. Govindjee Comparative Time-Resolved Photosystem II Chlorophyll a Fluorescence Analyses Reveal Distinctive Differences between Photoinhibitory Reaction Center Damage and Xanthophyll Cycle-Dependent Energy Dissipation. Photochem. Photobiol. 1996, 64, 552–563. [Google Scholar] [CrossRef] [PubMed]
- Singh, H.; Kumar, D.; Soni, V. Performance of Chlorophyll a Fluorescence Parameters in Lemna Minor under Heavy Metal Stress Induced by Various Concentration of Copper. Sci. Rep. 2022, 12, 10620. [Google Scholar] [CrossRef] [PubMed]
- Grieco, M.; Suorsa, M.; Jajoo, A.; Tikkanen, M.; Aro, E.-M. Light-Harvesting II Antenna Trimers Connect Energetically the Entire Photosynthetic Machinery—Including Both Photosystems II and I. Biochim. Biophys. Acta (BBA) Bioenerg. 2015, 1847, 607–619. [Google Scholar] [CrossRef] [PubMed]
- Xu, C.; Tian, Y.; Sun, Y.; Dong, L. Effects of Biogas Slurry Irrigation on Growth, Photosynthesis, and Nutrient Status of Perilla frutescens Seedlings. Commun. Soil. Sci. Plant Anal. 2013, 44, 3381–3390. [Google Scholar] [CrossRef]
- Malav, L.C.; Khan, S.A.; Gupta, N. Impacts of Biogas Slurry Application on Soil Environment, Yield and Nutritional Quality of Baby Corn. Soc. Plant Res. 2015, 74, 194. [Google Scholar] [CrossRef]
- Zheng, X.; Fan, J.; Cui, J.; Wang, Y.; Zhou, J.; Ye, M.; Sun, M. Effects of Biogas Slurry Application on Peanut Yield, Soil Nutrients, Carbon Storage, and Microbial Activity in an Ultisol Soil in Southern China. J. Soils Sediments 2016, 16, 449–460. [Google Scholar] [CrossRef]
- Singh, R.P.; Singh, P.; Ibrahim, M.H.; Hashim, R. Land Application of Sewage Sludge: Physicochemical and Microbial Response. Rev. Environ. Contam. Toxicol. 2011, 214, 41–61. [Google Scholar]
- Tan, F.; Zhu, Q.; Guo, X.; He, L. Effects of Digestate on Biomass of a Selected Energy Crop and Soil Properties. J. Sci. Food Agric. 2021, 101, 927–936. [Google Scholar] [CrossRef]
- Qi, X.; Zhang, S.; Wang, Y.; Wang, R. Advantages of the Integrated Pig-Biogas-Vegetable Greenhouse System in North China. Ecol. Eng. 2005, 24, 175–183. [Google Scholar] [CrossRef]
- Morales, M.; Munné-Bosch, S. Malondialdehyde: Facts and Artifacts. Plant Physiol. 2019, 180, 1246–1250. [Google Scholar] [CrossRef] [PubMed]
- Liang, X.; Qian, R.; Wang, D.; Liu, L.; Sun, C.; Lin, X. Lipid-Derived Aldehydes: New Key Mediators of Plant Growth and Stress Responses. Biology 2022, 11, 1590. [Google Scholar] [CrossRef] [PubMed]
- Tagnon, M.D.; Simeon, K.O. Aldehyde Dehydrogenases May Modulate Signaling by Lipid Peroxidation-Derived Bioactive Aldehydes. Plant Signal Behav. 2017, 12, e1387707. [Google Scholar] [CrossRef] [PubMed]
- Nicoletto, C.; Santagata, S.; Zanin, G.; Sambo, P. Effect of the Anaerobic Digestion Residues Use on Lettuce Yield and Quality. Sci. Hortic. 2014, 180, 207–213. [Google Scholar] [CrossRef]
- Panuccio, M.R.; Papalia, T.; Attinà, E.; Giuffrè, A.; Muscolo, A. Use of Digestate as an Alternative to Mineral Fertilizer: Effects on Growth and Crop Quality. Arch. Agron. Soil. Sci. 2019, 65, 700–711. [Google Scholar] [CrossRef]
- Li, F.; Yuan, Y.; Gong, P.; Imazumi, Y.; Na, R.; Shimizu, N. Comparative Effects of Mineral Fertilizer and Digestate on Growth, Antioxidant System, and Physiology of Lettuce under Salt Stress. Hortic. Environ. Biotechnol. 2023, 64, 379–391. [Google Scholar] [CrossRef]
- Sipter, E.; Auerbach, R.; Gruiz, K.; Mathe-Gaspar, G. Change of Bioaccumulation of Toxic Metals in Vegetables. Commun. Soil. Sci. Plant Anal. 2009, 40, 285–293. [Google Scholar] [CrossRef]
- Chaturvedi, R.; Favas, P.J.C.; Pratas, J.; Varun, M.; Paul, M.S. Metal(Loid) Induced Toxicity and Defense Mechanisms in Spinacia oleracea L.: Ecological Hazard and Prospects for Phytoremediation. Ecotoxicol. Environ. Saf. 2019, 183, 109570. [Google Scholar] [CrossRef]
- Kikis, C.; Thalassinos, G.; Antoniadis, V. Soil Phytomining: Recent Developments—A Review. Soil. Syst. 2024, 8, 8. [Google Scholar] [CrossRef]
- Christiansen, K.S.; Borggaard, O.K.; Holm, P.E.; Vijver, M.G.; Hauschild, M.Z.; Peijnenburg, W.J.G.M. Experimental Determinations of Soil Copper Toxicity to Lettuce (Lactuca sativa) Growth in Highly Different Copper Spiked and Aged Soils. Environ. Sci. Pollut. R 2015, 22, 5283–5292. [Google Scholar] [CrossRef]
- Audet, P.; Charest, C. Heavy Metal Phytoremediation from a Meta-Analytical Perspective. Environ. Pollut. 2007, 147, 231–237. [Google Scholar] [CrossRef] [PubMed]
- Wolf, M.; Baretta, D.; Becegato, V.A.; Almeida, V.d.C.; Paulino, A.T. Copper/Zinc Bioaccumulation and the Effect of Phytotoxicity on the Growth of Lettuce (Lactuca sativa L.) in Non-Contaminated, Metal-Contaminated and Swine Manure-Enriched Soils. Water Air Soil. Pollut. 2017, 228, 152. [Google Scholar] [CrossRef]
- Niazi, P.; Monib, A. Function of Macronutrients in Plant Growth and Human. IJSDR Res. J. 2023, 8, 1265. [Google Scholar]
- Gomes, D.G.; Pieretti, J.C.; Rolim, W.R.; Seabra, A.B.; Oliveira, H.C. Advances in Nano-Based Delivery Systems of Micronutrients for a Greener Agriculture. In Advances in Nano-Fertilizers and Nano-Pesticides in Agriculture; Elsevier: Amsterdam, The Netherlands, 2021; pp. 111–143. [Google Scholar]
- Codex Stan 193-1995; General Standard for Contaminants and Toxins in Food and Feed. Codex Allimentarius: Rome, Italy, 2014. Available online: https://www.fao.org/fileadmin/user_upload/livestockgov/documents/1_CXS_193e.pdf (accessed on 28 April 2024).
- Olszyk, D.M.; Shiroyama, T.; Novak, J.M.; Cantrell, K.B.; Sigua, G.; Watts, D.W.; Johnson, M.G. Biochar Affects Essential Nutrients of Carrot Taproots and Lettuce Leaves. HortScience 2020, 55, 261–271. [Google Scholar] [CrossRef] [PubMed]
- Ntinas, G.K.; Bantis, F.; Koukounaras, A.; Kougias, P.G. Exploitation of Liquid Digestate as the Sole Nutrient Source for Floating Hydroponic Cultivation of Baby Lettuce (Lactuca sativa) in Greenhouses. Energies 2021, 14, 7199. [Google Scholar] [CrossRef]
- Wu, Y.; Wen, Q.; Chen, Z.; Fu, Q.; Bao, H. Response of Antibiotic Resistance to the Co-Exposure of Sulfamethoxazole and Copper during Swine Manure Composting. Sci. Total Environ. 2022, 805, 150086. [Google Scholar] [CrossRef]
- Lwin, C.S.; Seo, B.-H.; Kim, H.-U.; Owens, G.; Kim, K.-R. Application of Soil Amendments to Contaminated Soils for Heavy Metal Immobilization and Improved Soil Quality—A Critical Review. Soil. Sci. Plant Nutr. 2018, 64, 156–167. [Google Scholar] [CrossRef]
- Järvan, M.; Edesi, L.; Adamson, A.; Võsa, T. Soil Microbial Communities and Dehydrogenase Activity Depending on Farming Systems. Plant Soil. Environ. 2014, 60, 459–463. [Google Scholar] [CrossRef]
- Cycoń, M.; Mrozik, A.; Piotrowska-Seget, Z. Antibiotics in the Soil Environment—Degradation and Their Impact on Microbial Activity and Diversity. Front. Microbiol. 2019, 10, 338. [Google Scholar] [CrossRef]
- Moore, F.; González, M.-E.; Khan, N.; Curaqueo, G.; Sanchez-Monedero, M.; Rilling, J.; Morales, E.; Panichini, M.; Mutis, A.; Jorquera, M.; et al. Copper Immobilization by Biochar and Microbial Community Abundance in Metal-Contaminated Soils. Sci. Total Environ. 2018, 616–617, 960–969. [Google Scholar] [CrossRef]
Conditions | Experimental Acronym |
---|---|
Soil | S |
Soil + Cu | S+Cu |
Soil + Manure | M |
Soil + Manure + Cu | M+Cu |
Soil + Digestate | D |
Soil + Digestate + Cu | D+Cu |
Basic Parameters Calculated from the Extracted Data | |
F0 | Fluorescence intensity at 50 μs (O step) |
F300 | Fluorescence intensity at 300 μs |
FJ | Fluorescence intensity at 2 ms (J step) |
FI | Fluorescence intensity at 30 ms (I step) |
Fm | Maximal fluorescence intensity (P step) |
Fv = Fm − F0 | Maximal variable fluorescence |
VJ = (FJ − F0)/(Fm − F0) | Variable fluorescence at J step |
M0 = 4 (F300 − F0)/(Fm − F0) | Approximated initial slope of the fluorescence transient, expressing the rate of RCs’ closure |
Specific energy fluxes (per RC: QA-reducing PSII reaction center), in ms−1 | |
ABS/RC = M0 × (1/VJ) × [1/(Fv/Fm)] | Absorption per active reaction center |
TR0/RC = M0 × (1/VJ) | Trapping per active reaction center |
ET0/RC = M0 × (1/VJ) × (1 − VJ) | Electron transport per active reaction center |
DI0/RC = (ABS/RC) − (TR0/RC) | Dissipation per active reaction center |
Quantum yields and efficiencies | |
TR0/ABS = Fv/Fm = φP0 = (Fm − F0)/Fm | Maximum quantum yield of PSII photochemistry |
ET0/TR0 = ψ0 = (Fm − FJ)/(Fm − F0) | Probability that a trapped exciton moves an electron into the electron transport chain beyond QA |
ET0/ABS = φE0 = φP0 × ψE0 | Quantum yield of electron transport |
Fv/F0 = TR0/DI0 = (Fm − F0)/F0 = φP0/(1 − φP0) | Maximum ratio of quantum yields of photochemical and concurrent non-photochemical processes in PSII |
F0/Fm = DI0/ABS = φD0 | Maximum quantum yield for energy dissipation at the antenna level |
Performance index | |
PIABS = [φP0 (VJ/M0)] × [φP0/(1 − φP0)] × [ψE0/(1 − ψE0)] | Performance index (potential) for energy conservation from photons absorbed by PSII to the reduction of intersystem electron acceptors |
S | S+Cu | M | M+Cu | D | D+Cu | |
---|---|---|---|---|---|---|
Height | 14.6 ± 1.2 ab | 11.8 ± 0.8 c | 14.3 ± 1.0 ab | 12.9 ± 1.9 bc | 14.5 ± 1.2 ab | 15.1 ± 1.0 a |
N° leaves | 11.9 ± 1.1 b | 11.1 ± 0.4 b | 16.5 ± 0.5 a | 15.9 ± 1.2 a | 17.4 ± 0.5 a | 16.3 ± 1.1 a |
SLA | 2.9 ± 0.2 a | 3.0 ± 0.5 a | 2.6 ± 0.9 a | 2.9 ± 0.4 a | 3.0 ± 0.4 a | 2.9 ± 2.0 a |
S | S+Cu | M | M+Cu | D | D+Cu | |
---|---|---|---|---|---|---|
MDA | 5.0 ± 0.6 c | 3.9 ± 0.4 d | 6.6 ± 0.7 b | 4.3 ± 0.5 cd | 9.3 ± 0.5 a | 9.5 ± 1.3 a |
TPC | 0.30 ± 0.05 ab | 0.32 ± 0.07 a | 0.31 ± 0.01 a | 0.35 ± 0.03 a | 0.36 ± 0.07 a | 0.37 ± 0.05 a |
S | S+Cu | M | M+Cu | D | D+Cu | |
---|---|---|---|---|---|---|
Cu | 1.1 ± 0.1 c | 3.3 ± 0.3 b | 2.9 ± 0.4 b | 5.7 ± 0.4 a | 4.2 ± 0.2 b | 3.9 ± 0.2 b |
BAFCu | 0.04 ± 0.01 c | 0.14 ± 0.06 ab | 0.23 ± 0.09 a | 0.19 ± 0.07 ab | 0.15 ± 0.03 ab | 0.10 ± 0.03 ab |
Ti% | 100 ± 0.00 b | 53 ± 7 d | 105 ± 6 b | 77 ± 13 c | 134 ± 10 a | 121 ± 2 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
De Carolis, C.; Iori, V.; Narciso, A.; Gentile, D.; Casentini, B.; Pietrini, F.; Grenni, P.; Barra Caracciolo, A.; Iannelli, M.A. The Effects of Different Combinations of Cattle Organic Soil Amendments and Copper on Lettuce (cv. Rufus) Plant Growth. Environments 2024, 11, 134. https://doi.org/10.3390/environments11070134
De Carolis C, Iori V, Narciso A, Gentile D, Casentini B, Pietrini F, Grenni P, Barra Caracciolo A, Iannelli MA. The Effects of Different Combinations of Cattle Organic Soil Amendments and Copper on Lettuce (cv. Rufus) Plant Growth. Environments. 2024; 11(7):134. https://doi.org/10.3390/environments11070134
Chicago/Turabian StyleDe Carolis, Chiara, Valentina Iori, Alessandra Narciso, Davide Gentile, Barbara Casentini, Fabrizio Pietrini, Paola Grenni, Anna Barra Caracciolo, and M. Adelaide Iannelli. 2024. "The Effects of Different Combinations of Cattle Organic Soil Amendments and Copper on Lettuce (cv. Rufus) Plant Growth" Environments 11, no. 7: 134. https://doi.org/10.3390/environments11070134
APA StyleDe Carolis, C., Iori, V., Narciso, A., Gentile, D., Casentini, B., Pietrini, F., Grenni, P., Barra Caracciolo, A., & Iannelli, M. A. (2024). The Effects of Different Combinations of Cattle Organic Soil Amendments and Copper on Lettuce (cv. Rufus) Plant Growth. Environments, 11(7), 134. https://doi.org/10.3390/environments11070134