Acoustic Characterization of Potential Quiet Areas in Dortmund, Germany
Abstract
:1. Introduction
1.1. Natural Sounds and Quiet Area Identification
1.2. Quiet Areas in German Noise Action Plans
1.3. Soundscape Ecology for Designation of Biophonic Areas
1.4. Selection of Composite Ecoacoustic Indicators for Biophony and Anthrophony
1.5. Research Questions
- How do daily and seasonal dB(A) patterns differ amongst quiet areas and in comparison to noise hot spots?
- Diel pattern analysis of noise hot spots and quiet areas grouped by land use type and season to address this question.
- What is the spatial distribution of biophony in day, evening, and night temporal domains consistent with LDEN time ranges?
- Interpolation and linear combination of dB(A) and ecoacoustic indices in ArcGIS introduce a biophony power index (BPI) for dawn, day, evening, and night temporal domains at the city-wide extent.
- What is the association between modelled LDEN values, spatial factors, and biophony power index?
- Spearman’s correlation associates BPI with LDEN (BImSchG §47c), distance to roads and water, and the number of vertical levels within the plant community as a measure of habitat richness.
2. Materials and Methods
2.1. Case Study Area
2.2. Sample Design
- The total population of all land use polygons within potential quiet areas following a spatial selection from EU best practices for quiet area designation [13] (n = 2781) was reduced to a target sample of contiguous land use polygons created with dissolve boundaries in ArcGIS Pro.
- From this, a 50 m buffer boundary was erased to ensure samples were not selected directly on the boundary of a target sample and road (n = 1186).
- This resulted in a sample pool of contiguous natural land cover patches > 4 ha that included the strata forests, managed tree stands, sports and recreation, cemeteries, and agriculture (n = 238).
- A stratified random sample was subsequently calculated for each strata (Table 1) to a confidence level of 80% and 10% margin of error, following [65] to arrive at a final stratified quiet area sample (n = 70)Z = the confidence level;e = margin of error;p = the population within a given land use stratum;q = a constant of 1 − p.
2.3. Spatial Data
- Distance to rail, road, highway, or industry noise map raster cells over LDEN 55 (rail, road, industry, and air sources) as calculated by the City of Dortmund Environmental Office according to [67], created with ArcGIS Near Analysis function;
- Land use category based on the City of Dortmund land use plan;
- The number of vertical levels present within the plant community structure at the sample location (herbs, grass, shrubs, understory tree, overstory tree) based on the geospatial biotope dataset from LANUV NRW [68] including plant community description, the number of species in the plant community, and the number of vertical layers in the plant community. This factor provides a measure of habitat richness.
2.4. Diel Pattern Analysis
2.5. Ecoacoustic Index Calculation
2.6. Biophony Power Index
- A tabular dataset with ecoacoustic indices and dB(A) values calculated for each observation at all sampled locations (n = 282,764) summarized by hour of the day (n = 15,960).
- Summary of mean values for dB(A) and ecoacoustic indices corresponding to LDEN, except for “dawn” from 3:00 to 7:59 used in this study to differentiate areas with and without a dawn avifauna chorus based on preliminary analysis of this dataset [84].
- Kriging Interpolation of dB(A), BIO, NDSI, ACI, M, Ht, TFSDBird for all four temporal periods (28 interpolated surfaces),
- Reclassification of ACI, BIO, NDSI, TFSDBird, dB(A), M, and Ht surfaces based on findings from past studies that associate low and high ecoacoustic index values and dB(A) with low and high biophony and anthrophony dominance.
- Raster sum to produce separate composite biophony and anthrophony indices.
- Raster sum of biophony and anthrophony indices to produce Biophony Power Index.
2.7. Correlation Analysis
- The strength of association of BPI and its constituent factors dB(A), M, Ht, NDSI, BIO, NP, and ACI. We assume the BPI model factors will correlate with their product but do not know the strength of each individual factor on the BPI outcome.
- The association of BPI temporal mapping with highways, rail, roads, and industry noise, quiet area patch size, and the number of vertical vegetation layers in the plant community where the quiet area was sampled [68].
3. Results
3.1. Descriptive Statistics
3.2. Diel Pattern Analysis
3.2.1. Forest and Managed Tree Stands
3.2.2. Cemetery and Sports and Recreation
3.2.3. Agriculture
3.2.4. Noise Hot Spots
3.3. Biophony Power Index
3.3.1. Biophony Power Index 3:00 to 7:59 (Dawn)
3.3.2. Biophony Power Index 8:00 to 18:59 (Day)
3.3.3. Biophony Power Index 20:00 to 21:59 (Evening)
3.3.4. Biophony Power Index 22:00 to 2:59 (Night)
3.3.5. Association between BPI, dB(A), and Ecoacoustic Factors
3.3.6. Spatial Associations with BPI
4. Discussion
4.1. Temporal and Seasonal dB(A) Patterns amongst Quiet Areas and Noise Hot Spots
4.2. Spatio-Temporal Distribution of Biophony and Anthrophony
4.3. Association of BPI and Spatial Factors
4.4. Limitations of the Study
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
- 1.
- Kolmogorov–Smirnov test of normality reveals that all sound factors have p < 0.001 and thus significantly deviate from a normal distribution (Table A1).
Kolmogorov–Smirnov a | |||
---|---|---|---|
Statistic | df | Sig. | |
A Weighted (Mean dB) | 0.125 | 282764 | <0.001 |
ACI | 0.204 | 282763 | <0.001 |
TFSDBirds | 0.198 | 282763 | <0.001 |
BIO | 0.104 | 282763 | <0.001 |
NP | 0.052 | 282763 | <0.001 |
NDSI | 0.060 | 282763 | <0.001 |
M | 0.278 | 282763 | <0.001 |
Ht | 0.210 | 282763 | <0.001 |
- 2.
- 3.
Factor | BIO |
---|---|
BPI | 0.179 ** |
Factor | BIO |
---|---|
BPI | −0.195 ** |
References
- WHO. Burden of Disease from Environmental Noise: Quantification of Healthy Life Years Lost in Europe. Available online: https://www.euro.who.int/__data/assets/pdf_file/0008/136466/e94888.pdf (accessed on 3 November 2021).
- Fuks, K.; Moebus, S.; Hertel, S.; Viehmann, A.; Nonnemacher, M.; Dragano, N.; Mohlenkamp, S.; Jakobs, H.; Kessler, C.; Erbel, R.; et al. Long-term urban particulate air pollution, traffic noise, and arterial blood pressure. Environ. Health Perspect. 2011, 119, 1706–1711. [Google Scholar] [CrossRef]
- Selander, J.; Nilsson, M.E.; Bluhm, G.; Rosenlund, M.; Lindqvist, M.; Nise, G.; Pershagen, G. Long-term exposure to road traffic noise and myocardial infarction. Epidemiology 2009, 20, 272–279. [Google Scholar] [CrossRef]
- Sörenson, M.; Hvidberg, M.; Anderson, Z.J.; Nordsborg, R.B.; Lillelund, K.G.; Jakobsen, J.; Tjonneland, A.; Overvad, K.; Raaschou-Nielsen, O. Road traffic noise and stroke: A prospective cohort study. Eur. Heart J. 2011, 32, 737–744. [Google Scholar] [CrossRef]
- Kälsch, H.; Hennig, F.; Moebus, S.; Mohlenkamp, S.; Dragano, N.; Jakobs, H.; Memmesheimer, M.; Erbel, R.; Jockel, K.H.; Hoffmann, B. Are air pollution and traffic noise independently associated with atherosclerosis: The Heinz Nixdorf Recall Study. Eur. Heart J. 2014, 35, 853–860. [Google Scholar] [CrossRef] [PubMed]
- Orban, E.; McDonald, K.; Sutcliffe, R.; Hoffmann, B.; Fuks, K.; Dragano, N.; Viehmann, A.; Erbel, R.; Jöckel, K.H.; Pundt, N.; et al. Residential Road Traffic Noise and High Depressive Symptoms after Five Years of Follow-up: Results from the Heinz Nixdorf Recall Study. Environ. Health Perspect. 2016, 124, 578–585. [Google Scholar] [CrossRef]
- Seidler, A.; Schubert, M.; Romero Starke, K.; Hegewald, J. Einfluss des Lärms auf Psychische Erkrankungen des Menschen; Research ID 3717 56 102 0; Umweltbundesamt: Dessau-Roßlau, Germany, 2023; Available online: https://www.umweltbundesamt.de/publikationen/einfluss-des-laerms-auf-psychische-erkrankungen-des (accessed on 21 February 2024).
- Farina, A.; Gage, S.H. (Eds.) Ecoacoustics: The Ecological Role of Sounds, 1st ed.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2017; ISBN 9781119230724. [Google Scholar]
- Farina, A. Soundscape Ecology: Principles, Patterns, Methods and Applications; Springer: Urbino, Italy, 2014. [Google Scholar]
- DIN 12913-1; TS I—Acoustics—Soundscape Part 1: Definition and Conceptual Framework. ISO: Geneva, Switzerland, 2014.
- Sueur, J. Sound Analysis and Synthesis with R; Springer International Publishing: Cham, Switzerland, 2018; ISBN 978-3-319-77645-3. [Google Scholar]
- DIN 12913-3; TS III—Acoustics—Soundscape Part 3: Data Analysis. ISO: Geneva, Switzerland, 2019.
- EEA. Good Practice Guide on Quiet Areas; Technical Report 04; European Environmental Agency: Copenhagen, Denmark, 2014. [Google Scholar]
- Gidlöf-Gunnarsson, A.; Öhrström, E. Noise and well-being in urban residential environments: The potential role of perceived availability to nearby green areas. Landsc. Urban Plan. 2007, 83, 115–126. [Google Scholar] [CrossRef]
- Öhrström, E.; Skånberg, A.; Svensson, H.; Gidlöf-Gunnarsson, A. Effects of road traffic noise and the benefit of access to quietness. J. Sound Vib. 2006, 295, 40–59. [Google Scholar] [CrossRef]
- Kaplan, S. The restorative benefits of nature: Toward an integrative framework. J. Environ. Psychol. 1995, 156, 169–182. [Google Scholar] [CrossRef]
- Alvarsson, J.J.; Wiens, S.; Nilsson, M.E. Stress recovery during exposure to nature sound and environmental noise. Int. J. Environ. Res. Public Health 2010, 7, 1036–1046. [Google Scholar] [CrossRef] [PubMed]
- Kang, J.; Yang, W. Acoustic comfort evaluation in urban open public spaces. Appl. Acoust. 2005, 66, 211–229. [Google Scholar] [CrossRef]
- BlmSchG §47d: Act on Protection against Harmful Effects on the Environment Caused by Air Pollution, Noise, Vibrations and Similar Processes (Federal Immission Control Act-BImSchG) § 47d Noise Action Plans. 2008. Available online: https://www.gesetze-im-internet.de/bimschg/__47d.html (accessed on 24 March 2024).
- DIN ISO 12913-2; TS II—Acoustics—Soundscape Part 2: Data Collection and Reporting Requirements. ISO: Geneva, Switzerland, 2018.
- EU Noise Directive 2002/49/EC. END, European Parliament and of the Council of the European Union: Brussels, Belgium, 2002. Revised 3-25-2020. Available online: https://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2002:189:0012:0025:en:PDF (accessed on 24 March 2024).
- Heinrichs, E.; Leben, J.; Cancik, P. Ruhige Gebiete: Eine Fachbroschüre für die Lärmaktionsplanung. Available online: https://www.umweltbundesamt.de/sites/default/files/medien/1410/publikationen/181005_uba_fb_ruhigegebiete_bf_150.pdf (accessed on 24 March 2024).
- Mackenbach, R.; Schneemelcher, O. Lärmaktionsplan der Stadt Dortmund. Zusammenfassung. Stadt Dortmund Umweltamt. 2014. Available online: https://docplayer.org/6959070-Laermaktionsplan-der-stadt-dortmund.html (accessed on 24 March 2024).
- Zänger, K.; Schöller, A. Eu-Umgebunslärm Detaillierter Lärmaktionsplan für den Ballungsraum Bochum. Stadt Bochum Umwelt- und Grünflächenamt. 2015. Available online: https://www.bochum.de/C125830C0042AB74/vwContentByKey/78B01F618DF05904C125853D0038082C/$FILE/Gesamt_Detaillierter_LAP.pdf(accessed on 24 March 2024).
- Kuhlmann, Werner: Laermaktionsplan Essen. Stadt Essen. Essen, Germany. 2021. Available online: https://media.essen.de/media/wwwessende/aemter/59/lrm/laermaktionsplan2021/Laermaktionsplan_2021.pdf(accessed on 24 March 2024).
- Botz, K.; Gatzweiler, M.; Riedel, M.; Schommer, M.; Schüren-Hinkelmann, S. Lärmaktionsplan der Stadt Duisburg. Available online: https://sessionnet.krz.de/duisburg/bi/getfile.asp?id=1651994&type=do (accessed on 24 March 2024).
- Farina, A.; Pieretti, N. A new frontier of landscape research and its application to islands and coastal systems. J. Mar. Isl. Cult. 2012, 1, 21–26. [Google Scholar] [CrossRef]
- Pijanowski, B.C.; Villanueva-Rivera, L.J.; Dumyahn, S.L.; Farina, A.; Krause, B.L.; Napoletano, B.M.; Gage, S.H.; Pieretti, N. Soundscape Ecology: The Science of Sound in the Landscape. BioScience 2011, 61, 203–2016. [Google Scholar] [CrossRef]
- Kang, J.; Yu, L. Factors influencing the sound preference in urban open spaces. Appl. Acoust. 2010, 71, 622–633. [Google Scholar] [CrossRef]
- Liu, J.; Kang, J.; Behm, H.; Luo, T. Effects of landscape on soundscape perception: Soundwalks in city parks. Landsc. Urban Plan. 2014, 123, 30–40. [Google Scholar] [CrossRef]
- Kang, J.; Liu, J. Soundscape Design in City Parks: Exploring the Relationships between Soundscape Composition Parameters and Physical and Psychoacoustic Parameters. J. Environ. Eng. Landsc. Manag. 2014, 23, 102–112. [Google Scholar]
- Orban, E.; Sutcliffe, R.; Dragano, N.; Jöckel, K.-H.; Moebus, S. Residential Surrounding Greenness, Self-Rated Health and Interrelations with Aspects of Neighborhood Environment and Social Relations. J. Urban Health 2017, 94, 158–169. [Google Scholar] [CrossRef] [PubMed]
- Aletta, F.; Kang, J.; Axelsson, Ö. Soundscape descriptors and a conceptual framework for developing predictive soundscape models. Landsc. Urban Plan. 2016, 149, 65–74. [Google Scholar] [CrossRef]
- Sun, K.; de Coensel, B.; Filipan, K.; Aletta, F.; van Renterghem, T.; de Pessemier, T.; Joseph, W.; Botteldooren, D. Classification of soundscapes of urban public open spaces. Landsc. Urban Plan. 2019, 189, 139–155. [Google Scholar] [CrossRef]
- Joo, W.H.; Gage, S.; Kasten, E.P. Analysis and interpretation of variability in soundscapes along an urban?: Rural gradient. Landsc. Urban Plan. 2011, 103, 259–276. [Google Scholar] [CrossRef]
- Jeon, J.Y.; Hong, J.Y. Classification of urban park soundscapes through perceptions of the acoustical environments. Landsc. Urban Plan. 2015, 141, 100–111. [Google Scholar] [CrossRef]
- Aletta, F.; Kang, J. Soundscape approach integrating noise mapping techniques: A case study in Brighton, UK. Noise Mapp. 2015, 2, 1–12. [Google Scholar] [CrossRef]
- Margaritis, E.; Kang, J. Soundscape mapping in environmental noise management and urban planning: Case studies in two UK cities. Noise Mapp. 2017, 4, 87–103. [Google Scholar] [CrossRef]
- Lippold, M.; Lawrence, B.T. Soundscape Planning as a Tool for Urban Planning. In Proceedings of the 23rd International Congress on Acoustics, Integrating 4th EAA Euroregio 2019, Aachen, Germany, 8–13 September 2019; Ochmann, M., Vorländer, M., Fels, J., Eds.; RWTH Publications: Aachen, Germany, 2019. ISBN 978-3-939296-15-7. [Google Scholar]
- Hao, Z.; Wang, C.; Sun, Z.; van den Bosch, C.K.; Zhao, D.; Sun, B.; Zhao, Y. Soundscape mapping for spatial-temporal estimate on bird activities in urban forests. Urban For. Urban Green. 2020, 57, 126822. [Google Scholar] [CrossRef]
- Margaritis, E.; Kang, J.; Filipan, K.; Botteldooren, D. The influence of vegetation and surrounding traffic noise parameters on the sound environment of urban parks. Appl. Geogr. 2018, 94, 199–212. [Google Scholar] [CrossRef]
- Chitra, B.; Jain, M.; Chundelli, F.A. Understanding the soundscape environment of an urban park through landscape elements. Environ. Technol. Innov. 2020, 19, 100998. [Google Scholar] [CrossRef]
- Bradfer-Lawrence, T.; Gardner, N.; Bunnefeld, L.; Bunnefeld, N.; Willis, S.G.; Dent, D.H. Guidelines for the use of acoustic indices in environmental research. Methods Ecol. Evol. 2019, 10, 1796–1807. [Google Scholar] [CrossRef]
- Challeat, S.; Gasc, A.; Farrugia, N.; Froidevaux, J. Silent Cities: A Participatory Monitoring Programme of an Exceptional Modification of Urban Soundscapes. Call for Participation to a Dataset Collection. 2020. Available online: https://renoir.hypotheses.org/files/2020/03/Silent%C2%B7Cities-Project.pdf (accessed on 16 March 2021).
- Boelman, N.T.; Asner, G.P.; Hart, P.J.; Martin, R.E. Multi-Trophic Invasion Resistance in Hawaii: Bioacoustics, Field Surveys, and Airborne Remote Sensing. Ecol. Appl. 2007, 2007, 2137–2144. [Google Scholar] [CrossRef]
- Sueur, J.; Pavoine, S.; Hamerlynck, O.; Duvail, S. Rapid Acoustic Survey for Biodiversity Appraisal. PLoS ONE 2008, 3, e4065. [Google Scholar] [CrossRef] [PubMed]
- Krause, B.; Gage, S.H.; Joo, W. Measuring and interpreting the temporal variability in the soundscape at four places in Sequoia National Park. Landsc. Ecol. 2011, 26, 1247–1256. [Google Scholar] [CrossRef]
- Rodriguez, A.; Gasc, A.; Pavoine, S.; Grandcolas, P.; Gaucher, P.; Sueur, J. Temporal and spatial variability of animal sound within a neotropical forest. Ecol. Inform. 2014, 21, 133–143. [Google Scholar] [CrossRef]
- Towsey, M.; Roe, P.; Wimmer, J.; Williamson, I. The use of acoustic indices to determine avian species richness in audio-recordings of the environment. Ecol. Inform. 2014, 21, 110–119. [Google Scholar] [CrossRef]
- Bradfer-Lawrence, T.; Bunnefeld, N.; Gardner, N.; Willis, S.G.; Dent, D.H. Rapid assessment of avian species richness and abundance using acoustic indices. Ecol. Indic. 2020, 115, 106400. [Google Scholar] [CrossRef]
- Dröge, S.; Martin, D.A.; Andriafanomezantsoa, R.; Burivalova, Z.; Fulgence, T.R.; Osen, K.; Rakotomalala, E.; Schwab, D.; Wurz, A.; Richter, T.; et al. Listening to a changing landscape: Acoustic indices reflect bird species richness and plot-scale vegetation structure across different land-use types in north-eastern Madagascar. Ecol. Indic. 2021, 120, 106929. [Google Scholar] [CrossRef]
- Mammides, C.; Goodale, E.; Dayananda, S.K.; Kang, L.; Chen, J. Do acoustic indices correlate with bird diversity? Insights from two biodiverse regions in Yunnan Province, south China. Ecol. Indic. 2017, 82, 470–477. [Google Scholar] [CrossRef]
- Shamon, H.; Paraskevopoulou, Z.; Kitzes, J.; Card, E.; Deichmann, J.L.; Boyce, A.J.; McShea, W.J. Using ecoacoustics metrices to track grassland bird richness across landscape gradients. Ecol. Indic. 2021, 120, 106928. [Google Scholar] [CrossRef]
- Fuller, S.; Axel, A.C.; Tucker, D.; Gage, S.H. Connecting soundscape to landscape: Which acoustic index best describes landscape configuration? Ecol. Indic. 2015, 58, 207–215. [Google Scholar] [CrossRef]
- Scarpelli, M.D.A.; Ribeiro, M.C.; Teixeira, C.P. What does Atlantic Forest soundscapes can tell us about landscape? Ecol. Indic. 2021, 121, 107050. [Google Scholar] [CrossRef]
- Gasc, A.; Pavoine, S.; Lellouch, L.; Grandcolas, P.; Sueur, J. Acoustic indices for biodiversity assessments: Analyses of bias based on simulated bird assemblages and recommendations for field surveys. Biol. Conserv. 2015, 191, 306–312. [Google Scholar] [CrossRef]
- Fairbrass, A.J.; Rennert, P.; Williams, C.; Titheridge, H.; Jones, K.E. Biases of acoustic indices measuring biodiversity in urban areas. Ecol. Indic. 2017, 83, 169–177. [Google Scholar] [CrossRef]
- Eldridge, A.; Guyot, P.; Moscoso, P.; Johnston, A.; Eyre-Walker, Y.; Peck, M. Sounding out ecoacoustic metrics: Avian species richness is predicted by acoustic indices in temperate but not tropical habitats. Ecol. Indic. 2018, 95, 939–952. [Google Scholar] [CrossRef]
- Devos, P. Soundecology indicators applied to urban soundscapes. In Proceedings of the INTER-NOISE and NOISE-CON Congress and Conference Proceedings, Hamburg, Germany, 21–24 August 2016; pp. 3631–3638. [Google Scholar]
- Gage, S.; Wimmer, J.; Tarrant, T.; Grace, P.R. Acoustic patterns at the Samford Ecological Research Facility in South East Queensland Australia: The peri-urban superSite of the Terrestrial Ecosystem Research NEtwork. Ecol. Inform. 2017, 38, 62–75. [Google Scholar] [CrossRef]
- Depraetere, M.; Pavoine, S.; Jiguet, F.; Gasc, A.; Duvail, S.; Sueur, J. Monitoring animal diversity using acoustic indices: Implementation in a temperate woodland. Ecol. Indic. 2012, 13, 46–54. [Google Scholar] [CrossRef]
- Lawrence, B.T.; Hornberg, J.; Haselhoff, T.; Sutcliffe, R.; Ahmed, S.; Moebus, S.; Gruehn, D. A widened array of metrics (WAM) approach to characterize the urban acoustic environment; a case comparison of urban mixed-use and forest. Appl. Acoust. 2021, 185, 108387. [Google Scholar] [CrossRef]
- Haselhoff, T.; Lawrence, B.; Hornberg, J.; Ahmed, S.; Sutcliffe, R.; Gruehn, D.; Moebus, S. The acoustic quality and health in urban environments (SALVE) project: Study design, rationale and methodology. Appl. Acoust. 2021, 188, 108538. [Google Scholar] [CrossRef]
- Moebus, S.; Gruehn, D.; Poppen, J.; Sutcliffe, R.; Haselhoff, T.; Lawrence, B. Akustische Qualität und Stadtgesundheit—Mehr als nur Lärm und Stille. Bundesgesundheitsblatt Gesundheitsforschung Gesundheitsschutz 2020, 63, 997–1003. [Google Scholar] [CrossRef]
- Israel, G.D. Determining Sample Size; University of Florieda: Gainesville, FL, USA, 1992. [Google Scholar]
- Frücht, A. Bericht über die Umgebungslärmkartierung der IV Stufe im Jahr 2022. 2023. Available online: https://www.dortmund.de/media/p/umweltamt/downloads_umweltamt/umgebungslaerm/Bericht_Umgebungslrmkartierung_der_IV_Stufe_im_Jahr_2022.pdf (accessed on 24 March 2024).
- BlmSchG §47c: Act on Protection against Harmful Effects on the Environment Caused by Air Pollution, Noise, Vibrations and Similar Processes (Federal Immission Control Act-BImSchG) § 47c Noise Maps. 2007. Available online: https://www.gesetze-im-internet.de/bimschg/__47c.html. (accessed on 24 March 2024).
- LANUV. Biotopkataster NRW; LANUV, Landesamt für Natur, Umwelt und Verbraucherschutz Nordrhein-Westfalen: Düsseldorf, Germany, 2023. [Google Scholar]
- Lawrence, B.T.; Ahmed, S.; Sutcliffe, R.; Poppen, J.; Moebus, S.; Gruehn, D. A widened array of metrics (WAM) approach to charactarize urban sound environments: The example in SALVE. In Proceedings of the 23rd International Congress on Acoustics, Integrating 4th EAA Euroregio 2019, Aachen, Germany, 8–13 September 2019; Ochmann, M., Vorländer, M., Fels, J., Eds.; RWTH Publications: Aachen, Germany, 2019. ISBN 978-3-939296-15-7. [Google Scholar]
- Gasc, A.; Sueur, J.; Jiguet, F.; Devictor, V.; Grandcolas, P.; Burrow, C.; Depraetere, M.; Pavoine, S. Assessing biodiversity with sound: Do acoustic diversity indices reflect phylogenetic and functional diversities of bird communities? Ecol. Indic. 2013, 25, 279–287. [Google Scholar] [CrossRef]
- Pieretti, N.; Farina, A.; Morri, D. A new methodology to infer the singing activity of an avian community: The Acoustic Complexity Index (ACI). Ecol. Indic. 2011, 11, 868–873. [Google Scholar] [CrossRef]
- Aumond, P.; Can, A.; de Coensel, B.; Botteldooren, D.; Ribeiro, C.; Lavandier, C. Modeling soundscape pleasantness using perceptual assessments and acoustic measurements along paths in urban context. Acta Acust. United Acust. 2017, 12, 50–67. [Google Scholar] [CrossRef]
- Gontier, F.; Lavandier, C.; Aumond, P.; Lagrange, M.; Petiot, J.-F. Estimation of the Perceived Time of Presence of Sources in Urban Acoustic Environments Using Deep Learning Techniques. Acta Acust. United Acust. 2019, 105, 1053–1066. [Google Scholar] [CrossRef]
- Wildlife Acoustics. Kaleidoscope; Wildlife Acoustics: Maynard, MA, USA, 2021. [Google Scholar]
- Hopkins, L.D. Methods for Generating Land Suitability Maps: A Comparative Evaluation. J. Am. Inst. Plan. 1977, 43, 386–400. [Google Scholar] [CrossRef]
- Malczewski, J. On the Use of Weighted Linear Combination Method in GIS: Common and Best Practice Approaches. Trans. GIS 2000, 4, 5–22. [Google Scholar] [CrossRef]
- Greco, S.; Matarazzo, B.; Slowinski, R. Decision Rule Approach. In Multiple Criteria Decision Analysis: State of the Art Surveys, 2nd ed.; Greco, S., Ehrgott, M., Figueira, J.R., Eds.; Springer: New York, NY, USA; Heidelberg, Germany; Dordrecht, The Netherlands; London, UK, 2016; p. 497. ISBN 9781493930944. [Google Scholar]
- Greco, S.; Ehrgott, M.; Figueira, J.R. (Eds.) Multiple Criteria Decision Analysis: State of the Art Surveys, 2nd ed.; Springer: New York, NY, USA; Heidelberg, Germany; Dordrecht, The Netherlands; London, UK, 2016; p. 552. ISBN 9781493930944. [Google Scholar]
- Lavandier, C.; Aumond, P.; Can, A. (Eds.) Urban Sensor Network for Characterizing the Sound Environment in Lorient (France) through an Automatic Assessment of Traffic, Voice and Bird Presence Ratios; European Congress on Noise Control Engineering (EuroNoise): Madeira, Portugal, 2021. [Google Scholar]
- Krige, D.G. A statistical approach to some basic mine valuation problems on the Witwatersrand. J. S. Afr. Inst. Min. Metall. 1951, 52, 201–203. [Google Scholar]
- Farina, A.; Pieretti, N. Sonic environment and vegetation structure: A methodological approach for a soundscape analysis of a Mediterranean maqui. Ecol. Inform. 2014, 21, 120–132. [Google Scholar] [CrossRef]
- Can, A.; Dekoninck, L.; Botteldooren, D. Measurement network for urban noise assessment: Comparison of mobile measurements and spatial interpolation approaches. Appl. Acoust. 2014, 83, 32–39. [Google Scholar] [CrossRef]
- Tsai, K.-T.; Lin, M.-D.; Chen, Y.-H. Noise mapping in urban environments: A Taiwan study. Appl. Acoust. 2009, 70, 964–972. [Google Scholar] [CrossRef]
- Lawrence, B.T.; Frücht, A.; Sievers, L.; Ammerahl, V.; Boegner, M.; Brockmann, C.; Buran, F.; Hartung, N.; Heying, D.; Jäkel, H.; et al. (Eds.) Quiet Areas in the Ruhr Region; Poster Presentation; Urban Sound Symposium: Barcelona, Spain, 2023. [Google Scholar]
- Spearman, C.E. The proof and measurement of association between two things. Am. J. Psychol. 1904, 15, 72–101. [Google Scholar] [CrossRef]
- Bühl, A. SPSS 20: Einführung in Die Moderne Datenanalyse, 13th ed.; Pearson Studium—Scientific Tools; Pearson: Benelux, The Netherlands, 2012. [Google Scholar]
- Haselhoff, T.; Braun, T.; Hornberg, J.; Lawrence, B.T.; Ahmed, S.; Gruehn, D.; Moebus, S. Analysing Interlinked Frequency Dynamics of the Urban Acoustic Environment. Int. J. Environ. Res. Public Health 2022, 19, 15014. [Google Scholar] [CrossRef] [PubMed]
- Lawrence, B.T.; Hornberg, J.; Schröer, K.; Djeudeu, D.; Haselhoff, T.; Ahmed, S.; Moebus, S.; Gruehn, D. Linking ecoacoustic indices to psychoacoustic perception of the urban acoustic environment. Ecol. Indic. 2023, 155, 111023. [Google Scholar] [CrossRef]
- Dein, J.; Rüdisser, J. Landscape influence on biophony in an urban environment in the European Alps. Landsc. Ecol. 2020, 35, 1875–1889. [Google Scholar] [CrossRef]
- Berengier, M.; Lavandier, C.; Raimbault, M. Ambient sound assessment of urban environments: Field studies in two French cities. Appl. Acoust. 2003, 64, 1241–1256. [Google Scholar] [CrossRef]
- Drake, C.; Viollon, S.; Lavandier, C. Influence of visual setting on sound ratings in an urban environment. Appl. Acoust. 2002, 63, 493–511. [Google Scholar] [CrossRef]
- Rychtarikova, M.; Vermeir, G.; Domecka, M. The Application of the Soundscape Approach in the Evaluation of the Urban Public Spaces. J. Acoust. Soc. Am. 2008, 123, 3810. [Google Scholar] [CrossRef]
- Jia, Y.; Ma, H.; Kang, J.; Wang, C. The preservation value of urban soundscape and its determinant factors—ScienceDirect. Appl. Acoust. 2020, 168, 107430. [Google Scholar] [CrossRef]
- Axelsson, Ö.; Nilsson, M.E.; Hellström, B.; Lundén, P. A field experiment on the impact of sounds from a jet-and-basin fountain on soundscape quality in an urban park. Landsc. Urban Plan. 2014, 123, 49–60. [Google Scholar] [CrossRef]
- Klein, E.; Chapple, S.; Fainberg, J.; Magill, C.; Parker, M.; Raab, C.; Silvertown, J. Capturing the sounds of an urban greenspace. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2018, XLII-4/W11, 19–26. [Google Scholar] [CrossRef]
Forest | Agriculture | Managed Tree Stands | Cemetery | Sports and Recreation | Noise Hot Spots | |
---|---|---|---|---|---|---|
Sample Size | 26 | 17 | 7 | 7 | 13 | 23 |
Index | Index Range | Meaning of the Index in the Acoustic Environment | Source |
---|---|---|---|
Amplitude Index (M) | 0 to 1 | One indicates that the median amplitude of the recording is identical to the maximum amplitude over the entire duration of the recording and values closer to zero indicate that the median amplitude is almost never the same as the maximum amplitude over the entire duration of a recording. | [61] |
Number of Peaks (NP) | 0 to ∞ | Higher values indicate more audible frequency peaks and thereby more fidelity of the acoustic environment. | [70] |
Temporal Entropy (Ht) | 0 to 1 | One equates to complete unevenness of the Hilbert amplitude envelope and zero equates to complete evenness of the Hilbert amplitude envelope. | [11] |
Normalized Difference Soundscape Index (NDSI) | −1 to 1 | A ratio of how much of the amplitude of an acoustic observation is contained within the range of biophony (2–8 kHz) and how much is within the range of anthrophony (1–2 kHz), where the closer the value to positive one, the more influence biophony has in an observation and the closer to minus one, the more influence anthrophony has in an observation. | [35] |
Bioacoustic Index (BIO) | 0 to ∞ | Zero represents no amplitude between 2 kHz to 8 kHz in a recording, and values greater than zero represent increasing amplitude between 2 kHz and 8 kHz. | [45] |
Acoustic Complexity Index (ACI) | 0 to ∞ | Zero indicates no modulation in amplitude between frequency scales over time (low complexity) and higher values indicate greater modulation in amplitude between frequency scales over time (higher complexity). | [71] |
Normalized Time and Frequency Second Derivative (TFSDBird) | 0 to 1 | The greater the TFSD variation between 0 and 1, the greater the temporal presence of avian or human vocalizations. With the default configuration, a TFSD > 0.3 indicates a very important presence time of the vocalizations in the signal. The TFSD is always greater than 0. | [72,73] |
A-weighted Decibel (dB(A)) | 0 to ∞ | The parameter dB(A) is the unit of measurement for sound pressure level according to the internationally standardized frequency weighting curve A, adjusted for the range of human hearing. | [74] |
Factor | dB(A) | NDSI | NP | M | BIO | Ht | TFSD Bird | ACI |
---|---|---|---|---|---|---|---|---|
BPI | −0.548 ** | 0.606 ** | 0.425 ** | −0.579 ** | −0.303 ** | 0.275 ** | 0.087 ** | 0.106 * |
Factor | Distance to Rail Noise ≥ LDEN 55 | Distance to Water | Quiet Area in Ha. | Distance to Road Noise ≥ LDEN 55 | Distance to Hwy Noise ≥ LDEN 55 | No. of Plant Associations |
---|---|---|---|---|---|---|
BPI | 0.567 ** | −0.498 ** | 0.391 ** | 0.322 ** | 0.271 ** | 0.157 ** |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lawrence, B.T.; Frücht, A.; Heying, D.; Schröer, K.; Gruehn, D. Acoustic Characterization of Potential Quiet Areas in Dortmund, Germany. Environments 2024, 11, 69. https://doi.org/10.3390/environments11040069
Lawrence BT, Frücht A, Heying D, Schröer K, Gruehn D. Acoustic Characterization of Potential Quiet Areas in Dortmund, Germany. Environments. 2024; 11(4):69. https://doi.org/10.3390/environments11040069
Chicago/Turabian StyleLawrence, Bryce T., Andreas Frücht, Damian Heying, Kai Schröer, and Dietwald Gruehn. 2024. "Acoustic Characterization of Potential Quiet Areas in Dortmund, Germany" Environments 11, no. 4: 69. https://doi.org/10.3390/environments11040069
APA StyleLawrence, B. T., Frücht, A., Heying, D., Schröer, K., & Gruehn, D. (2024). Acoustic Characterization of Potential Quiet Areas in Dortmund, Germany. Environments, 11(4), 69. https://doi.org/10.3390/environments11040069