Lead (Pb) Pollution in Soil: A Systematic Review and Meta-Analysis of Contamination Grade and Health Risk in Mexico
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Search Strategy
2.2. Data Collection and Categorization
2.3. Data Analysis
2.3.1. Contamination Grade by Geoaccumulation Index (Igeo)
2.3.2. Contamination Grade by Ecological Risk Index (ERI)
2.3.3. Statistical Analysis of Contamination Grade
2.3.4. Health Risk by Exposure Estimation
2.3.5. Non-Carcinogenic and Carcinogenic Risk Assessments
3. Results and Discussion
3.1. Reports Retrieved
3.2. Data Collected
3.3. Lead (Pb) Concentrations in Mining, Agricultural, and Residential Land
3.3.1. Contamination Grade in Mining, Agricultural, and Residential Land
3.3.2. Health Risk in Mining, Agricultural, and Residential Land
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- World Health Organization (WHO). Exposure to Lead: A Major Public Health Concern. In Preventing Disease through Healthy Environments; World Health Organization: Geneva, Switzerland, 2021; p. 6. [Google Scholar]
- Agency for Toxic Substances and Disease Registry (ATSDR) ATSDR’s Substance Priority List. Available online: https://www.atsdr.cdc.gov/spl/index.html#2022spl (accessed on 11 August 2023).
- Collin, M.S.; Venkatraman, S.K.; Vijayakumar, N.; Kanimozhi, V.; Arbaaz, S.M.; Stacey, R.G.S.; Anusha, J.; Choudhary, R.; Lvov, V.; Tovar, G.I.; et al. Bioaccumulation of Lead (Pb) and Its Effects on Human: A Review. J. Hazard. Mater. Adv. 2022, 7, 100094. [Google Scholar] [CrossRef]
- Kushwaha, A.; Hans, N.; Kumar, S.; Rani, R. A Critical Review on Speciation, Mobilization and Toxicity of Lead in Soil-Microbe-Plant System and Bioremediation Strategies. Ecotoxicol. Environ. Saf. 2018, 147, 1035–1045. [Google Scholar] [CrossRef] [PubMed]
- Martn, F.; Simn, M.; Garca, I.; Romero, A.; Gonzlez, V. Pollution of Pb in Soils Affected by Pyrite Tailings: Influence of Soil Properties. In Environmental Risk Assessment of Soil Contamination; InTech: London, UK, 2014. [Google Scholar]
- Chaney, R.; Mielke, H.; Sterrett, S. Speciation, Mobility, and Bioavailability of Soil Lead. In Proceedings of the Lead in Soils: Issues and Guidelines. Environ. Geochem. Health 1989, 11, 105–129. [Google Scholar]
- Kumar, S.; Islam, R.; Akash, P.B.; Khan, M.H.R.; Proshad, R.; Karmoker, J.; MacFarlane, G.R. Lead (Pb) Contamination in Agricultural Products and Human Health Risk Assessment in Bangladesh. Water Air Soil. Pollut. 2022, 233, 257. [Google Scholar] [CrossRef]
- Haque, E.; Thorne, P.S.; Nghiem, A.A.; Yip, C.S.; Bostick, B.C. Lead (Pb) Concentrations and Speciation in Residential Soils from an Urban Community Impacted by Multiple Legacy Sources. J. Hazard. Mater. 2021, 416, 125886. [Google Scholar] [CrossRef]
- Li, J.; Hao, G.; Wang, X.; Ruan, L.; Zhou, J. Anthropogenic Pb Contribution in Soils of Southeast China Estimated by Pb Isotopic Ratios. Sci. Rep. 2020, 10, 22232. [Google Scholar] [CrossRef]
- Shiek, S.S.; Mani, M.S.; Kabekkodu, S.P.; Dsouza, H.S. Health Repercussions of Environmental Exposure to Lead: Methylation Perspective. Toxicology 2021, 461, 152927. [Google Scholar] [CrossRef]
- International Agency for Research on Cancer (IARC). IARC Working Group on the Evaluation of Carcinogenic Risks to Humans. In Inorganic and Organic Lead Compounds; IARC Publications: Lyon, France, 2006; Volume 87. [Google Scholar]
- Gutiérrez Pérez, V.H.; Osorio Hernández, J.D.; Sánchez Alvarado, R.G.; Cruz Ramírez, A.; Olvera Vázquez, S.L.; Rivera Salinas, J.E. Lead Recovery from a Lead Concentrate throughout Direct Smelting Reduction Process with Mixtures of Na2CO3 and SiC to 1000 °C. Metals 2021, 12, 58. [Google Scholar] [CrossRef]
- Lopez, N.B.N.; Li, J.; Wilson, B. A Study of the Geographical Shifts in Global Lead Production—A Possible Corresponding Shift in Potential Threats to the Environment. J. Clean. Prod. 2015, 107, 237–251. [Google Scholar] [CrossRef]
- United States Geological Survey (USGS). National Minerals Information Center Lead Statistics and Information. Available online: https://www.usgs.gov/centers/national-minerals-information-center/lead-statistics-and-information (accessed on 20 August 2023).
- Kan, X.; Dong, Y.; Feng, L.; Zhou, M.; Hou, H. Contamination and Health Risk Assessment of Heavy Metals in China’s Lead–Zinc Mine Tailings: A Meta–Analysis. Chemosphere 2021, 267, 128909. [Google Scholar] [CrossRef]
- Lu, X.; Yang, Q.; Wang, H.; Zhu, Y. A Global Meta-Analysis of the Correlation between Soil Physicochemical Properties and Lead Bioaccessibility. J. Hazard. Mater. 2023, 453, 131440. [Google Scholar] [CrossRef] [PubMed]
- Laidlaw, M.A.S.; Mohmmad, S.M.; Gulson, B.L.; Taylor, M.P.; Kristensen, L.J.; Birch, G. Estimates of Potential Childhood Lead Exposure from Contaminated Soil Using the US EPA IEUBK Model in Sydney, Australia. Environ. Res. 2017, 156, 781–790. [Google Scholar] [CrossRef] [PubMed]
- Markus, J.; McBratney, A.B. A Review of the Contamination of Soil with Lead. Environ. Int. 2001, 27, 399–411. [Google Scholar] [CrossRef] [PubMed]
- Laidlaw, M.A.S.; Gordon, C.; Taylor, M.P.; Ball, A.S. Estimates of Potential Childhood Lead Exposure from Contaminated Soil Using the USEPA IEUBK Model in Melbourne, Australia. Environ. Geochem. Health 2018, 40, 2785–2793. [Google Scholar] [CrossRef] [PubMed]
- Datko-Williams, L.; Wilkie, A.; Richmond-Bryant, J. Analysis of U.S. Soil Lead (Pb) Studies from 1970 to 2012. Sci. Total Environ. 2014, 468–469, 854–863. [Google Scholar] [CrossRef]
- Brown, S.L.; Chaney, R.L.; Hettiarachchi, G.M. Lead in Urban Soils: A Real or Perceived Concern for Urban Agriculture? J. Environ. Qual. 2016, 45, 26–36. [Google Scholar] [CrossRef]
- The Observatory of Economic Complexity (OEC) Lead Ore in Mexico. Available online: https://oec.world/en/profile/bilateral-product/lead-ore/reporter/mex (accessed on 20 August 2023).
- INEGI Economía y Sectores Productivos. Available online: https://www.inegi.org.mx/temas/mineria/ (accessed on 20 August 2023).
- Secretariat of the Commission for Environmental Cooperation (CEC). Hazardous Trade?: An Examination of US-Generated Spent Lead-Acid Battery Exports and Secondary Lead Recycling in Canada, Mexico, and the United States; Secretariat of the Commission for Environmental Cooperation (CEC): Montreal, QC, Canada, 2013. [Google Scholar]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 Statement: An Updated Guideline for Reporting Systematic Reviews. BMJ 2021, 372, n71. [Google Scholar] [CrossRef]
- Oudeika, M.S.; Altinoğlu, F.F.; Akbay, F.; Aydin, A. Heavy Metal Contamination of Topsoil in Denizli Organized Industrial Zone, Western Anatolia, Turkey. Arab. J. Geosci. 2021, 14, 720. [Google Scholar] [CrossRef]
- Muller, G. Index of Geoaccumulation in Sediments of the Rhine River. GeoJournal 1969, 2, 109–118. [Google Scholar]
- Kabata-Pendias, A. Trace Elements in Soils and Plants, 4th ed.; CRC Press: Boca Raton, FL, USA; Taylor & Francis Group: Abingdon, UK, 2010. [Google Scholar]
- Saha, A.; Gupta, B.S.; Patidar, S.; Martínez-Villegas, N. Evaluation of Potential Ecological Risk Index of Toxic Metals Contamination in the Soils. In Proceedings of the IOCAG 2022, Online, 10 February 2022; MDPI: Basel Switzerland, 2022; p. 59. [Google Scholar]
- Hakanson, L. An Ecological Risk Index for Aquatic Pollution Control.a Sedimentological Approach. Water Res. 1980, 14, 975–1001. [Google Scholar] [CrossRef]
- U.S. Environmental Protection Agency (EPA) Human Health Risk Assessment. Available online: https://www.epa.gov/risk/human-health-risk-assessment#tab-1 (accessed on 17 February 2024).
- Jiang, Y.; Chao, S.; Liu, J.; Yang, Y.; Chen, Y.; Zhang, A.; Cao, H. Source Apportionment and Health Risk Assessment of Heavy Metals in Soil for a Township in Jiangsu Province, China. Chemosphere 2017, 168, 1658–1668. [Google Scholar] [CrossRef]
- Cheng, Z.; Chen, L.-J.; Li, H.-H.; Lin, J.-Q.; Yang, Z.-B.; Yang, Y.-X.; Xu, X.-X.; Xian, J.-R.; Shao, J.-R.; Zhu, X.-M. Characteristics and Health Risk Assessment of Heavy Metals Exposure via Household Dust from Urban Area in Chengdu, China. Sci. Total Environ. 2018, 619–620, 621–629. [Google Scholar] [CrossRef]
- Tepanosyan, G.; Maghakyan, N.; Sahakyan, L.; Saghatelyan, A. Heavy Metals Pollution Levels and Children Health Risk Assessment of Yerevan Kindergartens Soils. Ecotoxicol. Environ. Saf. 2017, 142, 257–265. [Google Scholar] [CrossRef]
- Secretaria de Medio Ambiente y Recursos Naturales (SEMARNAT) NMX-AA-132-SCFI-2006, Muestreo de Suelos para la Identificación y la Cuantificación de Metales y Metaloides, y Manejo de la Muestra. Available online: https://biblioteca.semarnat.gob.mx/janium/Documentos/Ciga/agenda/PPD02/NMX132AA2006.pdf (accessed on 10 February 2023).
- Gao, X.; Zhou, Y.; Fan, M.; Jiang, M.; Zhang, M.; Cai, H.; Wang, X. Environmental Risk Assessment near a Typical Spent Lead-Acid Battery Recycling Factory in China. Environ. Res. 2023, 233, 116417. [Google Scholar] [CrossRef] [PubMed]
- Méndez-Rodríguez, L.C.; Alvarez-Castañeda, S.T. Assessment of Trace Metals in Soil, Vegetation and Rodents in Relation to Metal Mining Activities in an Arid Environment. Bull. Environ. Contam. Toxicol. 2016, 97, 44–49. [Google Scholar] [CrossRef] [PubMed]
- Servicio Geológico Mexicano (SGM) Consulta Los Panoramas Mineros Estatales. Available online: https://www.gob.mx/sgm/es/articulos/consulta-los-panoramas-mineros-estatales (accessed on 21 August 2023).
- Liu, X.; Ju, Y.; Mandzhieva, S.; Pinskii, D.; Minkina, T.; Rajput, V.D.; Roane, T.; Huang, S.; Li, Y.; Ma, L.Q.; et al. Sporadic Pb Accumulation by Plants: Influence of Soil Biogeochemistry, Microbial Community and Physiological Mechanisms. J. Hazard. Mater. 2023, 444, 130391. [Google Scholar] [CrossRef] [PubMed]
- Secretaria de Medio Ambiente y Recursos Naturales (SEMARNAT) Norma Oficial Mexicana NOM-147-SEMARNAT/SSA1-2004. Available online: https://www.gob.mx/profepa/documentos/norma-oficial-mexicana-nom-147-semarnat-ssa1-2004 (accessed on 31 May 2023).
- Loredo-Portales, R.; Bustamante-Arce, J.; González-Villa, H.N.; Moreno-Rodríguez, V.; Del Rio-Salas, R.; Molina-Freaner, F.; González-Méndez, B.; Archundia-Peralta, D. Mobility and Accessibility of Zn, Pb, and As in Abandoned Mine Tailings of Northwestern Mexico. Environ. Sci. Pollut. Res. 2020, 27, 26605–26620. [Google Scholar] [CrossRef]
- Barajas-Aceves, M.; Rodríguez-Vázquez, R. Effects of Organic Amendments on the Mobility of Pb and Zn from Mine Tailings Added to Semi-Arid Soils. J. Environ. Sci. Health Part B 2013, 48, 226–236. [Google Scholar] [CrossRef] [PubMed]
- Mitchell, K.N.; Ramos Gómez, M.S.; Guerrero Barrera, A.L.; Yamamoto Flores, L.; Flores de la Torre, J.A.; Avelar González, F.J. Evaluation of Environmental Risk of Metal Contaminated Soils and Sediments Near Mining Sites in Aguascalientes, Mexico. Bull. Environ. Contam. Toxicol. 2016, 97, 216–224. [Google Scholar] [CrossRef] [PubMed]
- Armienta, M.A.; Beltrán, M.; Martínez, S.; Labastida, I. Heavy Metal Assimilation in Maize (Zea mays L.) Plants Growing near Mine Tailings. Environ. Geochem. Health 2020, 42, 2361–2375. [Google Scholar] [CrossRef] [PubMed]
- Mendoza-Hernández, J.C.; Vázquez-Delgado, O.R.; Castillo-Morales, M.; Varela-Caselis, J.L.; Santamaría-Juárez, J.D.; Olivares-Xometl, O.; Arriola Morales, J.; Pérez-Osorio, G. Phytoremediation of Mine Tailings by Brassica Juncea Inoculated with Plant Growth-Promoting Bacteria. Microbiol. Res. 2019, 228, 126308. [Google Scholar] [CrossRef]
- Guzmán-Rangel, G.; Torres Díaz, A.N.; Pavón Meza, E.L.; Oorts, K.; Smolders, E. Validating the Use of a Toxicity Database for Prediction of Plant Cover and Biodiversity in Multi-Metal Mining-Impacted Soils. Environ. Toxicol. Chem. 2020, 39, 1826–1838. [Google Scholar] [CrossRef]
- Saldaña-Villanueva, K.; Pérez-Vázquez, F.J.; Ávila-García, I.P.; Méndez-Rodríguez, K.B.; Carrizalez-Yáñez, L.; Gavilán-García, A.; Vargas-Morales, J.M.; Van-Brussel, E.; Diaz-Barriga, F. A Preliminary Study on Health Impacts of Mexican Mercury Mining Workers in a Context of Precarious Employment. J. Trace Elem. Med. Biol. 2022, 71, 126925. [Google Scholar] [CrossRef]
- Fernández-Macías, J.C.; González-Mille, D.J.; García-Arreola, M.E.; Cruz-Santiago, O.; Rivero-Pérez, N.E.; Pérez-Vázquez, F.; Ilizaliturri-Hernández, C.A. Integrated Probabilistic Risk Assessment in Sites Contaminated with Arsenic and Lead by Long-Term Mining Liabilities in San Luis Potosi, Mexico. Ecotoxicol. Environ. Saf. 2020, 197, 110568. [Google Scholar] [CrossRef] [PubMed]
- Monzalvo-Santos, K.; Alfaro-De la Torre, M.C.; Chapa-Vargas, L.; Castro-Larragoitia, J.; Rodríguez-Estrella, R. Arsenic and Lead Contamination in Soil and in Feathers of Three Resident Passerine Species in a Semi-Arid Mining Region of the Mexican Plateau. J. Environ. Sci. Health Part A 2016, 51, 825–832. [Google Scholar] [CrossRef] [PubMed]
- Ramos-Garza, J.; Bustamante-Brito, R.; Ángeles de Paz, G.; Medina-Canales, M.G.; Vásquez-Murrieta, M.S.; Wang, E.T.; Rodríguez-Tovar, A.V. Isolation and Characterization of Yeasts Associated with Plants Growing in Heavy-Metal- and Arsenic-Contaminated Soils. Can. J. Microbiol. 2016, 62, 307–319. [Google Scholar] [CrossRef] [PubMed]
- Espinosa-Reyes, G.; González-Mille, D.J.; Ilizaliturri-Hernández, C.A.; Mejía-Saavedra, J.; Cilia-López, V.G.; Costilla-Salazar, R.; Díaz-Barriga, F. Effect of Mining Activities in Biotic Communities of Villa de La Paz, San Luis Potosi, Mexico. Biomed. Res. Int. 2014, 2014, 165046. [Google Scholar] [CrossRef] [PubMed]
- Peña-Ortega, M.; Del Rio-Salas, R.; Valencia-Sauceda, J.; Mendívil-Quijada, H.; Minjarez-Osorio, C.; Molina-Freaner, F.; de la O-Villanueva, M.; Moreno-Rodríguez, V. Environmental Assessment and Historic Erosion Calculation of Abandoned Mine Tailings from a Semi-Arid Zone of Northwestern Mexico: Insights from Geochemistry and Unmanned Aerial Vehicles. Environ. Sci. Pollut. Res. 2019, 26, 26203–26215. [Google Scholar] [CrossRef]
- Solis-Hernández, A.P.; Chávez-Vergara, B.M.; Rodríguez-Tovar, A.V.; Beltrán-Paz, O.I.; Santillán, J.; Rivera-Becerril, F. Effect of the Natural Establishment of Two Plant Species on Microbial Activity, on the Composition of the Fungal Community, and on the Mitigation of Potentially Toxic Elements in an Abandoned Mine Tailing. Sci. Total Environ. 2022, 802, 149788. [Google Scholar] [CrossRef]
- Ramos, Q.; Armienta, M.A.; Aguayo, A.; Cruz, O. Evaluation of the Interactions of Arsenic (As), Boron (B), and Lead (Pb) from Geothermal Production Wells with Agricultural Soils. Ecotoxicol. Environ. Saf. 2021, 211, 111843. [Google Scholar] [CrossRef]
- Cervantes-Trejo, A.; Pinedo-Álvarez, C.; Santellano-Estrada, E.; Cortes-Palacios, L.; Rentería-Villalobos, M. Distribution of Chemical Species in the Water-Soil-Plant (Carya illinoiensis) System near a Mineralization Area in Chihuahua, Mexico—Health Risk Implications. Int. J. Environ. Res. Public Health 2018, 15, 1393. [Google Scholar] [CrossRef]
- Núñez-Gastélum, J.A.; Hernández-Carreón, S.; Delgado-Ríos, M.; Flores-Marguez, J.P.; Meza-Montenegro, M.M.; Osorio-Rosas, C.; Cota-Ruiz, K.; Gardea-Torresdey, J.L. Study of Organochlorine Pesticides and Heavy Metals in Soils of the Juarez Valley: An Important Agricultural Region between Mexico and the USA. Environ. Sci. Pollut. Res. 2019, 26, 36401–36409. [Google Scholar] [CrossRef]
- Roque-Álvarez, I.; Sosa-Rodríguez, F.S.; Vazquez-Arenas, J.; Escobedo-Bretado, M.A.; Labastida, I.; Corral-Rivas, J.J.; Aragón-Piña, A.; Armienta, M.A.; Ponce-Peña, P.; Lara, R.H. Spatial Distribution, Mobility and Bioavailability of Arsenic, Lead, Copper and Zinc in Low Polluted Forest Ecosystem in North-Western Mexico. Chemosphere 2018, 210, 320–333. [Google Scholar] [CrossRef] [PubMed]
- Ruiz-Huerta, E.A.; Armienta-Hernández, M.A.; Dubrovsky, J.G.; Gómez-Bernal, J.M. Bioaccumulation of Heavy Metals and As in Maize (Zea mays L.) Grown Close to Mine Tailings Strongly Impacts Plant Development. Ecotoxicology 2022, 31, 447–467. [Google Scholar] [CrossRef]
- Labastida, I.; Mercado, L.A.; Rojas, S.; Barrera, B.; Beltrán, M.; Armienta, M.A.; Lara, R.H.; Luna, R.M. Remediation by Means of EDTA of an Agricultural Calcareous Soil Polluted with Pb. Environ. Geochem. Health 2021, 43, 2231–2242. [Google Scholar] [CrossRef]
- Carmona-Chit, E.; Carrillo-González, R.; González-Chávez, M.C.A.; Vibrans, H.; Yáñez-Espinosa, L.; Delgado-Alvarado, A. Riparian Plants on Mine Runoff in Zimapan, Hidalgo, Mexico: Useful for Phytoremediation? Int. J. Phytoremediat. 2016, 18, 861–868. [Google Scholar] [CrossRef] [PubMed]
- Meza-Montenegro, M.M.; Gandolfi, A.J.; Santana-Alcántar, M.E.; Klimecki, W.T.; Aguilar-Apodaca, M.G.; Del Río-Salas, R.; De la O-Villanueva, M.; Gómez-Alvarez, A.; Mendivil-Quijada, H.; Valencia, M.; et al. Metals in Residential Soils and Cumulative Risk Assessment in Yaqui and Mayo Agricultural Valleys, Northern Mexico. Sci. Total Environ. 2012, 433, 472–481. [Google Scholar] [CrossRef]
- Flores-Ramírez, R.; Rico-Escobar, E.; Núñez-Monreal, J.E.; García-Nieto, E.; Carrizales, L.; Ilizaliturri-Hernández, C.; Díaz-Barriga, F. Exposición Infantil al Plomo En Sitios Contaminados. Salud Publica Mex. 2012, 54, 383–392. [Google Scholar] [CrossRef]
- Garcia-Vargas, G.G.; Rothenberg, S.J.; Silbergeld, E.K.; Weaver, V.; Zamoiski, R.; Resnick, C.; Rubio-Andrade, M.; Parsons, P.J.; Steuerwald, A.J.; Navas-Acién, A.; et al. Spatial Clustering of Toxic Trace Elements in Adolescents around the Torreón, Mexico Lead–Zinc Smelter. J. Expo. Sci. Environ. Epidemiol. 2014, 24, 634–642. [Google Scholar] [CrossRef]
- Soto-Jiménez, M.F.; Flegal, A.R. Childhood Lead Poisoning from the Smelter in Torreón, México. Environ. Res. 2011, 111, 590–596. [Google Scholar] [CrossRef]
- Sosa-Rodríguez, F.S.; Vazquez-Arenas, J.; Peña, P.P.; Escobedo-Bretado, M.A.; Castellanos-Juárez, F.X.; Labastida, I.; Lara, R.H. Spatial Distribution, Mobility and Potential Health Risks of Arsenic and Lead Concentrations in Semiarid Fine Top-Soils of Durango City, Mexico. Catena 2020, 190, 104540. [Google Scholar] [CrossRef]
- Peralta, N.; Cantoral, A.; Téllez-Rojo, M.M.; Trejo-Valdivia, B.; Estrada-Sánchez, D.; Richardson-L, V.; Caravanos, J.; Fuller, R. Lead Levels in a Potters Population and Its Association with the Use of Different Glazes: Cross-Sectional Evaluation of the Approved Pottery Program. Front. Toxicol. 2022, 4, 799633. [Google Scholar] [CrossRef] [PubMed]
- Urrutia-Goyes, R.; Argyraki, A.; Ornelas-Soto, N. Characterization of Soil Contamination by Lead around a Former Battery Factory by Applying an Analytical Hybrid Method. Environ. Monit. Assess. 2018, 190, 429. [Google Scholar] [CrossRef] [PubMed]
- Orta-García, S.T.; Ochoa-Martinez, A.C.; Carrizalez-Yáñez, L.; Varela-Silva, J.A.; Pérez-Vázquez, F.J.; Pruneda-Álvarez, L.G.; Torres-Dosal, A.; Guzmán-Mar, J.L.; Pérez-Maldonado, I.N. Persistent Organic Pollutants and Heavy Metal Concentrations in Soil from the Metropolitan Area of Monterrey, Nuevo Leon, Mexico. Arch. Environ. Contam. Toxicol. 2016, 70, 452–463. [Google Scholar] [CrossRef]
- Rodriguez-Espinosa, P.F.; Jonathan, M.P.; Morales-García, S.S.; Villegas, L.E.C.; Martínez-Tavera, E.; Muñoz-Sevilla, N.P.; Cardona, M.A. Metal Enrichment of Soils Following the April 2012–2013 Eruptive Activity of the Popocatépetl Volcano, Puebla, Mexico. Environ. Monit. Assess. 2015, 187, 717. [Google Scholar] [CrossRef]
- Martínez-Toledo, Á.; González-Mille, D.J.; García-Arreola, M.E.; Cruz-Santiago, O.; Trejo-Acevedo, A.; Ilizaliturri-Hernández, C.A. Patterns in Utilization of Carbon Sources in Soil Microbial Communities Contaminated with Mine Solid Wastes from San Luis Potosi, Mexico. Ecotoxicol. Environ. Saf. 2021, 208, 111493. [Google Scholar] [CrossRef]
- Berumen-Rodríguez, A.A.; Díaz de León-Martínez, L.; Zamora-Mendoza, B.N.; Orta-Arellanos, H.; Saldaña-Villanueva, K.; Barrera-López, V.; Gómez-Gómez, A.; Pérez-Vázquez, F.J.; Díaz-Barriga, F.; Flores-Ramírez, R. Evaluation of Respiratory Function and Biomarkers of Exposure to Mixtures of Pollutants in Brick-Kilns Workers from a Marginalized Urban Area in Mexico. Environ. Sci. Pollut. Res. 2021, 28, 67833–67842. [Google Scholar] [CrossRef]
- Perez-Vazquez, F.J.; Flores-Ramirez, R.; Ochoa-Martinez, A.C.; Orta-Garcia, S.T.; Hernandez-Castro, B.; Carrizalez-Yañez, L.; Pérez-Maldonado, I.N. Concentrations of Persistent Organic Pollutants (POPs) and Heavy Metals in Soil from San Luis Potosí, México. Environ. Monit. Assess. 2015, 187, 4119. [Google Scholar] [CrossRef]
- Gamiño-Gutiérrez, S.P.; González-Pérez, C.I.; Gonsebatt, M.E.; Monroy-Fernández, M.G. Arsenic and Lead Contamination in Urban Soils of Villa de La Paz (Mexico) Affected by Historical Mine Wastes and Its Effect on Children’s Health Studied by Micronucleated Exfoliated Cells Assay. Environ. Geochem. Health 2013, 35, 37–51. [Google Scholar] [CrossRef]
- Franco-Hernández, M.O.; Vásquez-Murrieta, M.S.; Patiño-Siciliano, A.; Dendooven, L. Heavy Metals Concentration in Plants Growing on Mine Tailings in Central Mexico. Bioresour. Technol. 2010, 101, 3864–3869. [Google Scholar] [CrossRef]
- González-Grijalva, B.; Meza-Figueroa, D.; Romero, F.M.; Robles-Morúa, A.; Meza-Montenegro, M.; García-Rico, L.; Ochoa-Contreras, R. The Role of Soil Mineralogy on Oral Bioaccessibility of Lead: Implications for Land Use and Risk Assessment. Sci. Total Environ. 2019, 657, 1468–1479. [Google Scholar] [CrossRef]
- Pelletier, N.; Chételat, J.; Cousens, B.; Zhang, S.; Stepner, D.; Muir, D.C.G.; Vermaire, J.C. Lead Contamination from Gold Mining in Yellowknife Bay (Northwest Territories), Reconstructed Using Stable Lead Isotopes. Environ. Pollut. 2020, 259, 113888. [Google Scholar] [CrossRef]
- Muller, S.; Lassin, A.; Lai, F.; Thiéry, D.; Guignot, S. Modelling Releases from Tailings in Life Cycle Assessments of the Mining Sector: From Generic Models to Reactive Transport Modelling. Miner. Eng. 2022, 180, 107481. [Google Scholar] [CrossRef]
- Zhang, Y.; Song, B.; Zhou, Z. Pollution Assessment and Source Apportionment of Heavy Metals in Soil from Lead—Zinc Mining Areas of South China. J. Environ. Chem. Eng. 2023, 11, 109320. [Google Scholar] [CrossRef]
- Liu, W.; Zafar, A.; Khan, Z.I.; Nadeem, M.; Ahmad, K.; Wajid, K.; Bashir, H.; Munir, M.; Malik, I.S.; Ashfaq, A. Bioaccumulation of Lead in Different Varieties of Wheat Plant Irrigated with Wastewater in Remote Agricultural Regions. Environ. Sci. Pollut. Res. 2020, 27, 27937–27951. [Google Scholar] [CrossRef]
- Canadian Council of Ministers of the Environment Canadian Soil Quality Guidelines for the Protection of Environmental and Human Health 1999. Available online: https://ccme.ca/en/res/copper-canadian-soil-quality-guidelines-for-the-protection-of-environmental-and-human-health-en.pdf (accessed on 14 July 2023).
- Muñoz, S.; Valdez, E.; Castillo, J.; Badillo, F.; Vega-Carrillo, H.; Salas Luévano, M. Accumulation of As and Pb in Vegetables Grown in Agricultural Soils Contaminated by Historical Mining in Zacatecas, Mexico; Springer: Berlin/Heidelberg, Germany, 2021. [Google Scholar]
- Abelsohn, A.R.; Sanborn, M. Lead and Children: Clinical Management for Family Physicians. Can. Fam. Physician 2010, 56, 531–535. [Google Scholar] [PubMed]
- Muciño-Sandoval, K.; Ariza, A.C.; Ortiz-Panozo, E.; Pizano-Zárate, M.L.; Mercado-García, A.; Wright, R.; Maria Téllez-Rojo, M.; Sanders, A.P.; Tamayo-Ortiz, M. Prenatal and Early Childhood Exposure to Lead and Repeated Measures of Metabolic Syndrome Risk Indicators from Childhood to Preadolescence. Front. Pediatr. 2021, 9, 750316. [Google Scholar] [CrossRef] [PubMed]
- Ommati, M.M.; Ahmadi, H.N.; Sabouri, S.; Retana-Marquez, S.; Abdoli, N.; Rashno, S.; Niknahad, H.; Jamshidzadeh, A.; Mousavi, K.; Rezaei, M.; et al. Glycine Protects the Male Reproductive System against Lead Toxicity via Alleviating Oxidative Stress, Preventing Sperm Mitochondrial Impairment, Improving Kinematics of Sperm, and Blunting the Downregulation of Enzymes Involved in the Steroidogenesis. Environ. Toxicol. 2022, 37, 2990–3006. [Google Scholar] [CrossRef]
- Ebrahimi, M.; Khalili, N.; Razi, S.; Keshavarz-Fathi, M.; Khalili, N.; Rezaei, N. Effects of Lead and Cadmium on the Immune System and Cancer Progression. J. Environ. Health Sci. Eng. 2020, 18, 335–343. [Google Scholar] [CrossRef] [PubMed]
Grade | Igeo Value | Soil Quality |
---|---|---|
0 | ≤0 | Uncontaminated |
1 | 0 < Igeo < 1 | Uncontaminated to moderately contaminated |
2 | 1 < Igeo < 2 | Moderately contaminated |
3 | 2 < Igeo < 3 | Moderately to heavily contaminated |
4 | 3 < Igeo < 4 | Heavily contaminated |
5 | 4 < Igeo < 5 | Heavily to extremely contaminated |
6 | >5 | Extremely contaminated |
Parameter | Description | Substituted Value |
---|---|---|
Cs | Pb concentration identified in soil | * mg Pb/kg determined in each report |
IR | Ingestion rate of soil | 100 mg/day for adults 200 g/day for children |
ED | Exposure duration | 24 years for adults 6 years for children |
EF | Exposure frequency | 350 days/year |
FI | Factor ingestion | 1 |
BW | Body weight | 63 kg for adults 29 kg for children |
AT | Average exposure time | ED × 365 days for non-carcinogen 76.6 × 365 days for carcinogens |
SA | Skin surface area exposed | 5700 cm2 for adults 2800 cm2 for children |
AF | Adherence factor | 0.07 mg/cm2 h for adults 0.2 mg/cm2 h for children |
ABS | Dermal absorption factor | 0.001 |
ET | Exposure time | 8 h/day |
PEF | Emission factor | 1.36 × 109 m3/kg |
Location | Characteristics and Distance from the Pollution Source | Range; Median, or Mean ± SD (mg/kg) | References |
---|---|---|---|
AGU, Asientos | Dry season, 10 m * | 164.6 | [43] |
Rainy season, 10 m * | 2309.5 | [43] | |
BCS, Los Planes | “San Antonio” mine | 7.1 ± 1.9 | [37] |
“Ensenada de Muertos” mine | 3.9 ± 0.2 | [37] | |
HID, Zimapán | 20 m ** | 610.0 ± 5.0 | [44] |
30 m ** | 505.5 ± 61.5 | [44] | |
Tailing | 2211.6 ± 232.5 | [45] | |
5–45 m * | 268.0–996.0; med 693.6 | [46] | |
GRO, Taxco | 5–45 m * | 89.0–2859.0; med 832.4 | [46] |
GUA, Pozos | 5–35 m * | 58.0–469.0; med 243.0 | [46] |
GUA, Xichú | 5–35 m * | 111–12,966; med 1171.3 | [46] |
QUE, Maconí | 5–45 m * | 70–234; med 126.6 | [46] |
QUE, Peñamiller | “La Estrella” mine | 1.0–2.8; med 1.4 | [47] |
SLP, Cedral | Currently active mining | 2682.4–18,537.3; 4327.0 ± 3015.6 | [48] |
SLP, Cerro de San Pedro | Current and historical tailings | 281.7–19,549.3; 4220.0 ± 3793.3 | [48] |
SLP, Charcas | Historical mining 442 years ago | 42.1–17,861.2; 12,929.6 ± 4689.0 | [48] |
Mine | <400.0 | [49] | |
SLP, Villa de la Paz | Current and historical tailings | 189.2–5088.3; 907.8 ± 996.7 | [48] |
Tailing | 555.0 | [50] | |
Hill | 5488.0 | [50] | |
Rosettophyllous desert in soil | 117.9–487.1 | [51] | |
Microphyllous desert in soil | 428.1–2226.8 | [51] | |
SON, Nacozari de García | Abandoned tailings II | 21.4–122.4, 70.0 ± 28.3 | [52] |
Abandoned tailing III | 2.5–33.9; 14.1 ± 9.5 | [52] | |
SON, San Felipe de Jesús | Sulfide-rich tailings | 9720.0–23,400.0; med 21,288.0 | [41] |
Oxide-rich tailings | 8960.0–23,400.0; med 14,763.0 | [41] | |
ZAC, Vetagrande | “Jal Viejo” tailing | 3984.0 ± 306 | [53] |
Mining soil with Reseda Luteola L. | 853 ± 250 | [53] | |
Mining soil with Asphodelus fistulosus L. | 2656 ± 151 | [53] |
Location | Characteristics and Distance from the Pollution Source | Range; Median or Mean ± SD (mg/kg) | References |
---|---|---|---|
AGU, Asientos BCN, Cerro Prieto | 1600 m * | 369.7–374.7; med 372.2 | [43] |
Geothermal station | 14.7–25.8; med 19.9 | [54] | |
CHH, Aldama | Walnut orchards near mine | 1–47.4; med 30.5 | [55] |
CHH, Juarez Valley | Juarez Valley (agrochemicals) | 23.4 ± 6.4 | [56] |
DUR, Santiago Papasquiaro | Forest soil impacted by mine tailing | 26.5–768.6; 256.8 ± 166.8 | [57] |
GRO, Santa Rosa | 3000 m ** | 229.6 ± 50.6 | [58] |
400 m ** | 59.9 ± 0.1 | [58] | |
40 m ** | 3269.7 ± 53.7 | [58] | |
HID, Zimapán | 20 m ** | 505.5 ± 61.5 | [59] |
30 m ** | 674.0 ± 3.5 | [59] | |
100 m ** Soil from terrestrial plants | 365.0–3884.0; 1722.8 ± 1277.7 | [60] | |
Soil from wetlands and aquatic plants | 201.0–3991.0; 2019.2 ± 1138.6 | [60] | |
SON, San Felipe de Jesús | Soil adjacent mine tailings | 106.0–4630.0; med 1673.3 | [41] |
SON, Yaqui and Mayo valleys | Yaqui valley (PbHAsO4 pesticide) | 10.0–195.0; med 40.1 | [61] |
Mayo valley (PbHAsO4 pesticide) | 9.0–33.0; med 23.2 | [61] | |
ZAC, Vetagrande | Agricultural and rangeland soils near mines | 7516.6 ± 456.3 | [42] |
Location | Characteristics and Distance from the Pollution Source | Range; Median or Mean ± SD (mg/kg) | References |
---|---|---|---|
AGU, Asientos | 800 m *, residential zone | 33.2–44.9; med 39.0 | [43] |
1600 m *, residential zone | 82.3–98.8; med 90.5 | [43] | |
BCS, Los Planes | “El Sargento” town, 10 km * | 5.2 ± 0.5 | [37] |
“Brisamar” town, 40 km * | 0.4 ± 0.4 | [37] | |
CHH, Chihuahua | 600 m from “Ávalos” Pb smelter | 62–4716; med 1499 | [62] |
COA, Torreón | <1.5 km from Pb smelter | 25–21,179 | [63] |
>1.5 km from Pb smelter | 24.0–589.0 | [63] | |
Pb smelter plant | 130–12,050; med 374.0 | [64] | |
DUR, Durango | “Cerro de Mercado” mining district | 21.6–107.3 | [65] |
MOR, Tlayacapan | Pottery workshops | 165.0–916.0; med 195.0 | [66] |
NLE, Monterrey | Battery factory | 8.0–6064.0; med 83.4 | [67] |
Industrial zones | 224.0–1230.0; 455.0 ± 204.0 | [68] | |
PUE, Popocatépetl | Volcanic soil | 3.6–60.3 | [69] |
SLP, Cedral | Old mines and tailings | 98–4225; med 263 | [62] |
SLP, Cerro de San Pedro | Urban zone mining activity | 11,124.5–18,537.8; med 6485.1 | [70] |
SLP, Las Terceras | Brick-kiln area | 19.9–611.5; med 60.5 | [71] |
SLP, Morales | Formerly Pb-concentrate production | 62–5187; med 570 | [62] |
SLP, San Luis Potosí | Industrial, and vehicular traffic zones | 25.0–435.0; 108.0 ± 105.0 | [72] |
SLP, Villa de la Paz | Urban areas near mining activity | 37.0–16,991.0; 458.0 ± 4567.0 | [73] |
Urban zone mining activity | 466.1–3486.4; med 1053.7 | [70] | |
Zone near tailing | 13–754; 373.4 ± 278.6 | [74] | |
SON, Hermosillo | Traffic paint and urban topsoils | 34.0–173.0; med 59.9 | [75] |
TLA, Trinidad Tenexyecac | Pottery area | 411–2740; med 1126 | [62] |
Location | Mining | Agricultural | Residential | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
HI | CRI (10−6) | HI | CRI (10−6) | HI | CRI (10−6) | |||||||
Adult | Children | Adult | Children | Adult | Children | Adult | Children | Adult | Children | Adult | Children | |
AGU, Asientos | 5.5 | 23.9 | 50.1 | 54.5 | 1.7 | 7.2 | 15.1 | 16.4 | 0.3 | 1.2 | 2.6 | 2.9 |
BCN, Cerro Prieto | --- | --- | --- | --- | 0.1 | 0.4 | 0.8 | 0.9 | --- | --- | --- | --- |
BCS, Los Planes | 0.0 | 0.1 | 0.2 | 0.2 | --- | --- | --- | --- | 0.0 | 0.1 | 0.1 | 0.1 |
CHH, Aldama | --- | --- | --- | --- | 0.1 | 0.6 | 1.2 | 1.3 | --- | --- | --- | --- |
CHH, Chihuahua | --- | --- | --- | --- | --- | --- | --- | --- | 6.7 | 28.9 | 60.8 | 66.0 |
CHH, Juarez Valley | --- | --- | --- | --- | 0.1 | 0.5 | 1.0 | 1.0 | --- | --- | --- | --- |
COA, Torreón | --- | --- | --- | --- | --- | --- | --- | --- | 33.0 | 142.1 | 299.2 | 325.0 |
DUR, Durango | --- | --- | --- | --- | --- | --- | --- | --- | 0.5 | 2.1 | 4.4 | 4.7 |
DUR, Santiago Papasquiaro | --- | --- | --- | --- | 1.1 | 4.9 | 10.4 | 11.3 | --- | --- | --- | --- |
GRO, Santa Rosa | --- | --- | --- | --- | 5.3 | 22.8 | 48.1 | 52.2 | --- | --- | --- | --- |
GRO, Taxco | 3.7 | 16.0 | 33.7 | 36.6 | --- | --- | --- | --- | --- | --- | --- | --- |
GUA, Pozos | 1.1 | 4.7 | 9.9 | 10.7 | --- | --- | --- | --- | --- | --- | --- | --- |
GUA, Xichú | 5.2 | 22.5 | 47.5 | 51.6 | --- | --- | --- | --- | --- | --- | --- | --- |
HID, Zimapán | 4.5 | 19.1 | 40.2 | 43.7 | 5.5 | 23.7 | 49.9 | 54.2 | --- | --- | --- | --- |
MOR, Tlayacapan | --- | --- | --- | --- | --- | --- | --- | --- | 0.9 | 3.8 | 7.9 | 8.6 |
NLE, Monterrey | --- | --- | --- | --- | --- | --- | --- | --- | 1.2 | 5.2 | 10.9 | 11.9 |
PUE, Popocatépetl volcano | --- | --- | --- | --- | --- | --- | --- | --- | 0.3 | 1.2 | 2.4 | 2.7 |
QUE, Maconí | 0.6 | 2.4 | 5.1 | 5.6 | --- | --- | --- | --- | --- | --- | --- | --- |
QUE, Peñamiller | 0.0 | 0.0 | 0.1 | 0.1 | --- | --- | --- | --- | --- | --- | --- | --- |
SLP, Cedral | 19.3 | 83.3 | 175.4 | 190.5 | --- | --- | --- | --- | 1.2 | 5.1 | 10.7 | 11.6 |
SLP, Cerro de San Pedro | 18.8 | 81.2 | 171.1 | 185.8 | --- | --- | --- | --- | 29.0 | 124.8 | 262.9 | 285.5 |
SLP, Charcas | 29.8 | 128.3 | 270.2 | 293.5 | --- | --- | --- | --- | --- | --- | --- | --- |
SLP, Las Terceras | --- | --- | --- | --- | --- | --- | --- | --- | 0.3 | 1.2 | 2.5 | 2.7 |
SLP, Morales | --- | --- | --- | --- | --- | --- | --- | --- | 2.5 | 11.0 | 23.1 | 25.1 |
SLP, San Luis Potosí | --- | --- | --- | --- | --- | --- | --- | --- | 0.5 | 2.1 | 4.4 | 4.8 |
SLP, Villa de la Paz | 8.6 | 37.2 | 78.4 | 85.1 | 6.1 | 26.2 | 55.0 | 59.8 | 2.8 | 12.1 | 25.5 | 27.7 |
SON, Hermosillo | --- | --- | --- | --- | --- | --- | --- | --- | 0.3 | 1.2 | 2.4 | 2.6 |
SON, Nacozari de García | 0.2 | 0.8 | 1.7 | 1.9 | --- | --- | --- | --- | --- | --- | --- | --- |
SON, San Felipe de Jesús | 80.5 | 346.9 | 730.7 | 793.7 | 7.5 | 32.2 | 67.8 | 73.7 | --- | --- | --- | --- |
SON, Yaqui and Mayo valleys | --- | --- | --- | --- | 0.2 | 0.6 | 1.3 | 1.4 | --- | --- | --- | --- |
TLA, Trinidad Tenexyecac | --- | --- | --- | --- | --- | --- | --- | --- | 5.0 | 21.7 | 45.6 | 49.6 |
ZAC, Vetagrande | 11.2 | 48.1 | 101.2 | 110.0 | 16.4 | 70.7 | 149.0 | 161.8 | --- | --- | --- | --- |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Briseño-Bugarín, J.; Araujo-Padilla, X.; Escot-Espinoza, V.M.; Cardoso-Ortiz, J.; Flores de la Torre, J.A.; López-Luna, A. Lead (Pb) Pollution in Soil: A Systematic Review and Meta-Analysis of Contamination Grade and Health Risk in Mexico. Environments 2024, 11, 43. https://doi.org/10.3390/environments11030043
Briseño-Bugarín J, Araujo-Padilla X, Escot-Espinoza VM, Cardoso-Ortiz J, Flores de la Torre JA, López-Luna A. Lead (Pb) Pollution in Soil: A Systematic Review and Meta-Analysis of Contamination Grade and Health Risk in Mexico. Environments. 2024; 11(3):43. https://doi.org/10.3390/environments11030043
Chicago/Turabian StyleBriseño-Bugarín, Jorge, Xelha Araujo-Padilla, Victor Manuel Escot-Espinoza, Jaime Cardoso-Ortiz, Juan Armando Flores de la Torre, and Argelia López-Luna. 2024. "Lead (Pb) Pollution in Soil: A Systematic Review and Meta-Analysis of Contamination Grade and Health Risk in Mexico" Environments 11, no. 3: 43. https://doi.org/10.3390/environments11030043
APA StyleBriseño-Bugarín, J., Araujo-Padilla, X., Escot-Espinoza, V. M., Cardoso-Ortiz, J., Flores de la Torre, J. A., & López-Luna, A. (2024). Lead (Pb) Pollution in Soil: A Systematic Review and Meta-Analysis of Contamination Grade and Health Risk in Mexico. Environments, 11(3), 43. https://doi.org/10.3390/environments11030043