Biomass Production and Metal Remediation by Salix alba L. and Salix viminalis L. Irrigated with Greywater Treated by Floating Wetlands
Abstract
:1. Introduction
2. Materials and Methods
2.1. Willow, Substrate, and Material Selection
2.2. Greywater and Floating Wetland Systems
2.3. Water Quality, Substrate, and Willow Biomass Analysis
2.4. Data Assessment and Statistical Analysis
3. Results and Discussion
3.1. Greywater Effluent Quality
3.2. Weather Conditions and Willow Growth
3.3. Element Accumulations in Substrate Used to Grow Willows
3.4. Element Accumulation in Willow Biomass
4. Conclusions and Recommendations
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- UNEP. Global Environment Outlook GEO5: Environment for the Future We Want; United Nations Environment Programme (UNEP): Nairobi, Kenya, 2012. [Google Scholar]
- Zalesny, R.S.; Headlee, W.L.; Gopalakrishnan, G.; Bauer, E.O.; Hall, R.B.; Hazel, D.W.; Isebrands, J.G.; Licht, L.A.; Negri, M.C.; Nichols, E.G.; et al. Ecosystem services of poplar at long-term phytoremediation sites in the Midwest and Southeast, United States. Wiley Interdiscip. Rev. Energy Environ. 2019, 8, e349. [Google Scholar] [CrossRef]
- Izac, A.M.N. Economic aspect of soil fertility management and agroforestry practices. In Tree Crop and Soil Fertility: Concept and Research Methods; Scroth, G., Sinclair, F., Eds.; CABI: Wallingford, UK, 2003; p. 464. [Google Scholar]
- Tawfeek, N.; Mahmoud, M.F.; Hamdan, D.I.; Sobeh, M.; Farrag, N.; Wink, M.; El–Shazly, A.M. Phytochemistry, pharmacology and medicinal uses of plants of the genus Salix: An updated review. Front. Pharmacol. 2021, 12, 50–80. [Google Scholar] [CrossRef] [PubMed]
- Nair, P.K.R. Climate change mitigation: A low hanging fruit of agroforestry. In Agroforestry: The Future of Global Land–Use; Nair, P.K.R., Garitty, D., Eds.; Springer: Dordrecht, The Netherlands, 2012; pp. 31–68. [Google Scholar]
- Nair, P.K.R.; Kumar, B.M.; Nair, V.D. Agroforestry as a strategy for carbon sequestration. J. Plant Nutr. Soil Sci. 2009, 172, 10–23. [Google Scholar] [CrossRef]
- Christenhusz, M.J.; Byng, J.W. The number of known plants species in the world and its annual increase. Phytotaxa 2016, 261, 201–217. [Google Scholar] [CrossRef]
- Ostaff, D.P.; Mosseler, A.; Johns, R.C.; Javorek, S.; Klymko, J.; Ascher, J.S. Willows (Salix spp.) as pollen and nectar sources for sustaining fruit and berry pollinating insects. Can. J. Plant Sci. 2015, 95, 505–516. [Google Scholar] [CrossRef]
- Pu, Y.; Zhang, D.; Singh, P.M.; Ragauskas, A.J. The new forestry biofuels sector. Biofuels Bioprod. Bioref. 2008, 2, 58–73. [Google Scholar] [CrossRef]
- FAO. Global Forest Resources Assessment 2010; Main report; Forestry Paper 163; Food and Agriculture Organization (FAO) of the United Nations: Rome, Italy, 2010. [Google Scholar]
- UN Water. Coping with Water Scarcity—A Strategic Issue and Priority for System–Wide Action; UN—Water Thematic Initiatives: Geneva, Switzerland, 2006. [Google Scholar]
- Almuktar, S.A.; Abed, S.N.; Scholz, M. Recycling of domestic wastewater treated by vertical–flow wetlands for irrigation of two consecutive Capsicum annuum generations. Ecol. Eng. 2017, 107, 82–98. [Google Scholar] [CrossRef]
- UNESCO. Water for People–Water for Life: A Joint Report by the Twenty-Three United Nations Agencies Concerned with Freshwater; United Nations Educational, Scientific and Cultural Organization (UNESCO): Barcelona, Spain, 2003. [Google Scholar]
- FAO. User Manual for Irrigation with Treated Wastewater; Food and Agriculture Organization (FAO) of the United Nations, Regional Office for Near East: Cairo, Egypt, 2003. [Google Scholar]
- WHO. Guidelines for the Safe Use of Wastewater, Excreta and Greywater: Wastewater Use in Agriculture; World Health Organization (WHO): Geneva, Switzerland, 2006; Volume 2. [Google Scholar]
- Eriksson, E.; Auffarth, K.; Henze, M.; Ledin, A. Characteristics of grey wastewater. Urban Water 2002, 4, 85–104. [Google Scholar] [CrossRef]
- Al–Jayyousi, O.R. Greywater reuse: Towards sustainable water management. Desalination 2003, 156, 181–192. [Google Scholar] [CrossRef]
- Scholz, M.; Lee, B.H. Constructed wetlands: A review. Int. J. Environ. Stud. 2005, 62, 421–447. [Google Scholar] [CrossRef]
- Borne, K.E.; Fassman–Beck, E.A.; Winston, R.J.; Hunt, W.F.; Tanner, C.C. Implementation and maintenance of floating treatment wetlands for urban stormwater management. J. Environ. Eng. 2015, 141, 04015030. [Google Scholar] [CrossRef]
- Headley, T.; Tanner, C. Constructed wetlands with floating emergent macrophytes: An innovative stormwater treatment technology. Crit. Rev. Environ. Sci. Technol. 2012, 42, 2261–2310. [Google Scholar] [CrossRef]
- Rehman, K.; Ijaz, A.; Arslan, M.; Afzal, M. Floating treatment wetlands as biological buoyant filters for wastewater reclamation. Int. J. Phytoremediat. 2019, 10, 1273–1289. [Google Scholar] [CrossRef]
- Shahid, M.J.; Arslan, M.; Ali, S.; Siddique, M.; Afzal, M. Floating wetlands: A sustainable tool for wastewater treatment. Clean Soil Air Water 2018, 46, 1800120. [Google Scholar] [CrossRef]
- Nissim, W.G.; Jerbi, A.; Lafleur, B.; Fluet, R.; Labrecque, M. Willows for the treatment of municipal wastewater: Performance under different irrigation rates. Ecol. Eng. 2015, 81, 395–404. [Google Scholar] [CrossRef]
- Sas, E.; Hennequin, L.M.; Frémont, A.; Jerbi, A.; Legault, N.; Lamontagne, J.; Fagoaga, N.; Sarrazin, M.; Hallett, J.P.; Fennell, P.S.; et al. Biorefinery potential of sustainable municipal wastewater treatment using fast–growing willow. Sci. Total Environ. 2021, 792, 148146. [Google Scholar] [CrossRef]
- Istenič, D.; Božič, G. Short–rotation willows as a wastewater treatment plant: Biomass production and the fate of macronutrients and metals. Forests 2021, 12, 554. [Google Scholar] [CrossRef]
- Jama, A.; Nowak, W. Willow (Salix viminalis L.) in purifying sewage sludge treated soils. Pol. J. Agron. 2012, 9, 3–6. [Google Scholar]
- Gregersen, P.; Brix, H. Zero–discharge of nutrients and water in a willow dominated constructed wetland. Water Sci. Technol. 2001, 44, 407–412. [Google Scholar] [CrossRef]
- Vysloužilová, M.; Tlustoš, P.; Száková, J. Cadmium and zinc phytoextraction potential of seven clones of Salix spp. planted on heavy metal contaminated soils. Plant Soil Environ. 2003, 49, 542–547. [Google Scholar] [CrossRef]
- Brix, H.; Arias, C.A. Use of Willows in Evapotranspirative Systems for Onsite Wastewater Management–Theory and Experiences from Denmark. In Proceedings of the “STREPOW” International Workshop, Andrevlje-Novi Sad, Serbia, 21–22 February 2011; Orlovi’c, S., Ed.; Institute of Lowland Forestry and Environment: Novi Sad, Serbia, 2011; pp. 15–29. [Google Scholar]
- Almuktar, S.A.A.A.N.; Abed, S.N.; Scholz, M.; Uzomah, V.C. Assessment of Capsicum annuum L. grown in controlled and semi–controlled environments irrigated with greywater treated by floating wetland systems. Agronomy 2021, 11, 1817. [Google Scholar] [CrossRef]
- Abed, S.N.; Scholz, M. Chemical simulation of greywater. Environ. Technol. 2016, 37, 1631–1646. [Google Scholar] [CrossRef] [PubMed]
- Abed, S.N.; Almuktar, S.A.A.A.N.; Scholz, M. Remediation of synthetic greywater in mesocosm–scale floating treatment wetlands. Ecol. Eng. 2017, 102, 303–319. [Google Scholar] [CrossRef]
- Abed, S.N.; Almuktar, S.A.A.A.N.; Scholz, M. Treatment of contaminated greywater using pelletised mine water sludge. J. Environ. Manag. 2017, 197, 10–23. [Google Scholar] [CrossRef]
- APHA. Standard Methods for the Examination of Water and Wastewater, 21st ed.; American Public Health Association (APHA), American Water Works Association, and Water and Environment Federation: Washington, DC, USA, 2005. [Google Scholar]
- USEPA. SW–846: Test Method 6010D: Inductively Coupled Plasma Optical Emission Spectrometry (ICP–OES); Revision 4; United States Environmental Protection Agency (USEPA): Washington, DC, USA, 2014.
- USEPA. Method 200.7: Determination of Metals and Trace Elements in Water and Wastes by Inductively Coupled Plasma Atomic Emission Spectrometry; Revision 4.4; United States Environmental Protection Agency (USEPA): Washington, DC, USA, 1994.
- Chary, N.S.; Kamala, C.T.; Raj, D.S.S. Assessing risk of heavy metals from consuming food grown on sewage irrigated soils and food chain transfer. Ecotoxicol. Environ. Saf. 2008, 69, 513–524. [Google Scholar] [CrossRef] [PubMed]
- USEPA. Method 3050B: Acid Digestion of Sediments, Sludges, and Soils; Revision 2; United States Environmental Protection Agency (USEPA): Washington, DC, USA, 1996.
- Plank, C.O. Plant Analysis Reference Procedures for the Southern Region of the United States; Southern Cooperative Series Bulletin number 368; University of Georgia: Athens, GA, USA, 1992. [Google Scholar]
- Decreto Ministeriale. Regulating Technical Standards for Wastewater Reuse; Decreto Ministeriale: Rome, Italy, 2003; Volume 185. [Google Scholar]
- Almuktar, S.A.A.A.N.; Abed, S.N.; Scholz, M. Contaminations of soil and two Capsicum annuum generations irrigated by reused urban wastewater treated by different reed beds. Int. J. Environ. Res. Public Health 2018, 15, 1776. [Google Scholar] [CrossRef] [PubMed]
- USEPA. Guidelines for Water Reuse; Report (EPA/600/R–12/618); United States Environmental Protection Agency (USEPA): Washington, DC, USA, 2012.
- Kuzovkina, Y.A.; Knee, M.; Quigley, M.F. Cadmium and copper uptake and translocation in five willow (Salix L.) species. Int. J. Phytoremediat. 2004, 6, 269–287. [Google Scholar] [CrossRef]
- Berndes, G.; Fredrikson, F.; Börjesson, P. Cadmium accumulation and Salix–based phytoextraction on arable land in Sweden. Agric. Ecosyst. Environ. 2004, 103, 207–223. [Google Scholar] [CrossRef]
- Aasamaa, K.; Heinsoo, K.; Holm, B. Biomass production, water use and photosynthesis of Salix clones grown in a wastewater purification system. Biomass Bioenergy 2010, 34, 897–905. [Google Scholar] [CrossRef]
- Mohsin, M.; Kaipiainen, E.; Salam, M.M.; Evstishenkov, N.; Nawrot, N.; Villa, A.; Wojciechowska, E.; Kuittinen, S.; Pappinen, A. Biomass Production and Removal of Nitrogen and Phosphorus from Processed Municipal Wastewater by Salix schwerinii: A Field Trial. Water 2021, 13, 2298. [Google Scholar] [CrossRef]
- Bouman, O.T.; Sylliboy, J. Biomass allocation and photosynthetic capacity of willow (Salix spp.) bio–energy varieties. Forstarchiv 2012, 83, 139–143. [Google Scholar]
- Sharma, R.K.; Agrawal, M.; Marshall, F. Heavy metal contamination in vegetables grown in wastewater irrigated areas of Varanasi, India. Bull. Environ. Contam. Toxicol. 2006, 77, 312–318. [Google Scholar] [CrossRef] [PubMed]
- Ding, Z.; Li, Y.; Sun, Q.; Zhang, H. Trace elements in soils and selected agricultural plants in the Tongling mining area of China. Int. J. Environ. Res. Public Health 2018, 15, 202. [Google Scholar] [CrossRef] [PubMed]
- Rezania, S.; Taib, S.M.; Din, M.F.M.; Dahalan, F.A.; Kamyab, H. Comprehensive review on phytotechnology: Heavy metals removal by diverse aquatic plants species from wastewater. J. Hazard. Mater. 2016, 318, 587–599. [Google Scholar] [CrossRef]
- Singh, A.; Sharma, R.K.; Agrawal, M.; Marshall, F.M. Risk assessment of heavy metal toxicity through contaminated vegetables from waste water irrigated area of Varanasi, India. Trop. Ecol. 2010, 51, 375–387. [Google Scholar]
- Millaleo, R.; Reyes–Díaz, M.; Ivanov, A.; Mora, M.; Alberdi, M. Manganese as essential and toxic element for plants: Transport, accumulation and resistance mechanisms. J. Soil Sci. Plant Nutr. 2010, 10, 470–481. [Google Scholar] [CrossRef]
- Wuana, R.A.; Okieimen, F.E. Heavy metals in contaminated soils: A review of sources, chemistry, risks and best available strategies for remediation. Int. Sch. Res. Net. ISRN Ecol. 2011, 2011, 402647. [Google Scholar] [CrossRef]
- Wickham, J.; Rice, B.; Finnan, J.; McConnon, R. A Review of Past and Current Research on Short Rotation Coppice in Ireland and Abroad; Coford: Dublin, Ireland, 2010. [Google Scholar]
Treatment System | HRT | SGW | TW | Vegetation | Cement–Ochre | Plant Receiving the Effluent | ||||
---|---|---|---|---|---|---|---|---|---|---|
2–Day | 7–Day | HC | LC | With | Without | With | Without | |||
T1 | ♦ | ♦ | ♦ | ♦ | SA1 and SV1 | |||||
T2 | ♦ | ♦ | ♦ | ♦ | SA2 and SV2 | |||||
T3 | ♦ | ♦ | ♦ | ♦ | SA3 and SV3 | |||||
T4 | ♦ | ♦ | ♦ | ♦ | SA4 and SV4 | |||||
T5 | ♦ | ♦ | ♦ | ♦ | SA5 and SV5 | |||||
T6 | ♦ | ♦ | ♦ | ♦ | SA6 and SV6 | |||||
T7 | ♦ | ♦ | ♦ | ♦ | SA7 and SV7 | |||||
T8 | ♦ | ♦ | ♦ | ♦ | SA8 and SV8 | |||||
T9 | ♦ | ♦ | ♦ | ♦ | SA9 and SV9 | |||||
T10 | ♦ | ♦ | ♦ | ♦ | SA10 and SV10 | |||||
T11 | ♦ | ♦ | ♦ | ♦ | SA11 and SV11 | |||||
T12 | ♦ | ♦ | ♦ | ♦ | SA12 and SV12 | |||||
T13 | ♦ | ♦ | ♦ | ♦ | SA13 and SV13 | |||||
T14 | ♦ | ♦ | ♦ | ♦ | SA14 and SV14 | |||||
T15 | ♦ | ♦ | ♦ | ♦ | SA15 and SV15 | |||||
T16 | ♦ | ♦ | ♦ | ♦ | SA16 and SV16 | |||||
C1 | ♦ | ♦ | ♦ | ♦ | SA/C1 and SV/C1 | |||||
C2 | ♦ | ♦ | ♦ | ♦ | SA/C2 and SV/C2 | |||||
C3 | ♦ | ♦ | ♦ | ♦ | SA/C3 and SV/C3 | |||||
C4 | ♦ | ♦ | ♦ | ♦ | SA/C4 and SV/C4 |
Parameter | Unit | n | Influent | 2-Day HRT (HC–SGW Effluent) | Influent | 2-Day HRT (LC–SGW Effluent) | ||||||
HC–SGW | T1 | T2 | T3 | T4 | LC–SGW | T5 | T6 | T7 | T8 | |||
pH | – | 81 | 8.4 ± 1.61 | 7.4 ± 1.09 | 8.8 ± 1.69 | 7.8 ± 1.37 | 8.7 ± 1.73 | 6.9 ± 0.48 | 7.0 ± 0.71 | 10.5 ± 1.12 | 7.5 ± 0.70 | 10.6 ± 0.99 |
Redox potential | mV | 81 | −36.6 ± 74.22 | 8.1 ± 52.68 | −54.8 ± 83.66 | −3.0 ± 62.95 | −49.9 ± 83.61 | 34.1 ± 21.23 | 27.5 ± 32.18 | −137.4 ± 54.91 | 4.2 ± 30.40 | −143.5 ± 51.01 |
Turbidity | NTU | 81 | 188.9 ± 47.22 | 175.9 ± 59.61 | 223.8 ± 97.40 | 192.1 ± 50.87 | 191.3 ± 84.41 | 22.9 ± 7.14 | 28.2 ± 37.09 | 39.2 ± 45.10 | 20.2 ± 14.20 | 35.6 ± 18.11 |
Total suspended solids | mg/L | 81 | 317.0 ± 58.35 | 302.9 ± 75.19 | 422.5 ± 152.77 | 321.8 ± 56.68 | 337.4 ± 109.45 | 39.9 ± 15.94 | 41.7 ± 43.57 | 62.0 ± 49.93 | 30.0 ± 12.12 | 66.2 ± 36.63 |
Electric conductivity | µS/cm | 81 | 988.5 ± 196.09 | 987.4 ± 107.25 | 1174.5 ± 282.81 | 965.2 ± 106.68 | 1178.4 ± 264.41 | 164.6 ± 63.24 | 145.9 ± 30.41 | 371.5 ± 260.12 | 138.5 ± 23.26 | 344.5 ± 287.03 |
Dissolved oxygen | mg/L | 81 | 10.5 ± 1.39 | 9.0 ± 1.03 | 9.0 ± 1.24 | 10.2 ± 0.73 | 10.0 ± 0.52 | 10.4 ± 1.24 | 9.3 ± 1.08 | 8.8 ± 0.87 | 10.5 ± 0.82 | 10.1 ± 0.73 |
Color | Pa/Co | 81 | 1587.8 ± 379.89 | 1525.6 ± 411.54 | 2150.8 ± 864.04 | 1527.6 ± 326.28 | 1935.6 ± 702.18 | 214.5 ± 64.07 | 183.7 ± 74.89 | 308.2 ± 134.65 | 164.5 ± 40.93 | 331.7 ± 119.34 |
Temperature | °C | 81 | 16.9 ± 5.40 | 17.1 ± 4.92 | 17.4 ± 4.87 | 17.1 ± 4.75 | 17.2 ± 4.73 | 17.7 ± 4.58 | 17.0 ± 4.84 | 16.6 ± 4.55 | 16.0 ± 4.59 | 16.3 ± 4.24 |
Biochemical oxygen demand | mg/L | 81 | 34.7 ± 12.99 | 17.7 ± 6.40 | 11.1 ± 5.89 | 14.7 ± 7.78 | 11.7 ± 7.71 | 17.6 ± 8.00 | 9.9 ± 5.49 | 5.4 ± 4.36 | 5.6 ± 3.60 | 4.4 ± 5.13 |
Chemical oxygen demand | mg/L | 81 | 129.2 ± 34.68 | 96.3 ± 32.01 | 109.2 ± 24.38 | 106.6 ± 22.68 | 100.3 ± 21.08 | 28.9 ± 14.47 | 32.4 ± 14.55 | 29.6 ± 16.67 | 26.8 ± 6.18 | 24.0 ± 4.99 |
Ammonia–nitrogen | mg/L | 81 | 0.4 ± 0.19 | 0.4 ± 0.21 | 0.4 ± 0.13 | 0.4 ± 0.16 | 0.4 ± 0.09 | 0.2 ± 0.22 | 0.1 ± 0.07 | 0.2 ± 0.14 | 0.09 ± 0.05 | 0.1 ± 0.04 |
Nitrate–nitrogen | mg/L | 81 | 8.9 ± 6.38 | 14.1 ± 6.40 | 14.3 ± 5.02 | 9.4 ± 4.67 | 12.9 ± 7.03 | 1.3 ± 1.21 | 1.7 ± 1.13 | 0.4 ± 0.33 | 1.2 ± 0.71 | 0.6 ± 0.54 |
Orthophosphate–phosphorus | mg/L | 81 | 59.1 ± 14.16 | 52.0 ± 14.87 | 21.1 ± 5.81 | 46.2 ± 10.74 | 19.5 ± 4.98 | 8.4 ± 4.36 | 7.6 ± 3.90 | 3.2 ± 1.16 | 7.0 ± 3.89 | 3.9 ± 1.25 |
Element | ||||||||||||
Aluminum (Al) | mg/L | 45 | 2.13 ± 0.869 | 1.54 ± 1.479 | 2.02 ± 1.624 | 2.41 ± 1.016 | 2.98 ± 2.087 | 0.52 ± 0.528 | 0.08 ± 0.054 | 1.07 ± 0.874 | 0.34 ± 0.180 | 0.76 ± 0.347 |
Boron (B) | mg/L | 33 | 0.57 ± 0.068 | 0.53 ± 0.086 | 0.41 ± 0.079 | 0.54 ± 0.060 | 0.50 ± 0.078 | 0.14 ± 0.067 | 0.11 ± 0.010 | 0.09 ± 0.011 | 0.11 ± 0.009 | 0.10 ± 0.024 |
Calcium (Ca) | mg/L | 55 | 36.08 ± 8.750 | 42.50 ± 4.561 | 81.39 ± 23.641 | 43.02 ± 2.411 | 104.13 ± 32.868 | 10.54 ± 0.853 | 11.51 ± 0.926 | 45.13 ± 11.676 | 11.25 ± 0.773 | 70.99 ± 33.166 |
Cadmium (Cd) | mg/L | 42 | 7.36 ± 2.981 | 4.90 ± 2.730 | 4.10 ± 1.839 | 7.69 ± 1.064 | 7.14 ± 2.429 | 0.09 ± 0.056 | 0.04 ± 0.020 | 0.03 ± 0.019 | 0.05 ± 0.031 | 0.04 ± 0.030 |
Chromium (Cr) | mg/L | 54 | 3.20 ± 0.918 | 2.48 ± 2.060 | 2.74 ± 2.021 | 3.76 ± 1.203 | 3.99 ± 1.806 | 0.04 ± 0.063 | 0.03 ± 0.036 | 0.03 ± 0.033 | 0.04 ± 0.049 | 0.05 ± 0.039 |
Copper (Cu) | mg/L | 63 | 1.44 ± 0.435 | 0.95 ± 0.561 | 0.90 ± 0.375 | 1.45 ± 0.113 | 1.55 ± 0.308 | 0.16 ± 0.058 | 0.04 ± 0.029 | 0.04 ± 0.035 | 0.06 ± 0.049 | 0.05 ± 0.043 |
Iron (Fe) | mg/L | 48 | 6.41 ± 2.476 | 4.31 ± 2.928 | 4.71 ± 2.744 | 6.35 ± 2.423 | 7.11 ± 2.934 | 0.21 ± 0.102 | 0.15 ± 0.118 | 0.21 ± 0.202 | 0.21 ± 0.157 | 0.48 ± 0.447 |
Potassium (K) | mg/L | 12 | 60.16 ± 1.684 | 52.79 ± 1.322 | 54.03 ± 11.214 | 55.68 ± 4.486 | 60.47 ± 15.561 | 4.04 ± 0.448 | 3.40 ± 0.675 | 10.78 ± 10.185 | 3.87 ± 0.364 | 12.77 ± 15.139 |
Magnesium (Mg) | mg/L | 48 | 17.16 ± 2.119 | 17.32 ± 1.296 | 11.01 ± 2.533 | 17.76 ± 1.392 | 13.33 ± 4.526 | 1.45 ± 0.191 | 1.36 ± 0.157 | 0.63 ± 0.310 | 1.35 ± 0.133 | 0.70 ± 0.336 |
Manganese (Mn) | mg/L | 63 | 0.98 ± 0.257 | 0.48 ± 0.320 | 0.51 ± 0.255 | 1.19 ± 0.063 | 0.89 ± 0.396 | 0.17 ± 0.084 | 0.01 ± 0.012 | 0.04 ± 0.031 | 0.08 ± 0.056 | 0.08 ± 0.069 |
Sodium (Na) | mg/L | 12 | 62.68 ± 14.538 | 58.54 ± 11.080 | 56.95 ± 9.494 | 58.19 ± 10.620 | 58.54 ± 11.630 | 14.32 ± 1.662 | 14.74 ± 1.282 | 15.90 ± 1.869 | 13.82 ± 1.175 | 15.35 ± 3.197 |
Nickel (Ni) | mg/L | 51 | 0.05 ± 0.065 | 0.02 ± 0.019 | 0.02 ± 0.019 | 0.03 ± 0.018 | 0.03 ± 0.033 | 0.04 ± 0.065 | 0.004 ± 0.006 | 0.01 ± 0.010 | 0.01 ± 0.007 | 0.01 ± 0.012 |
Zinc (Zn) | mg/L | 39 | 4.25 ± 1.500 | 2.86 ± 1.680 | 2.58 ± 1.114 | 4.30 ± 0.524 | 4.52 ± 0.961 | 0.21 ± 0.159 | 0.06 ± 0.066 | 0.04 ± 0.054 | 0.09 ± 0.083 | 0.07 ± 0.084 |
Note: Values are mean ± SD, where SD is the corresponding standard deviation; NTU, nephelometric turbidity unit; HRT, hydraulic retention time; T1, treatment system with only P. australis; T2, treatment system with P. australis and ochre pellets; T3, treatment system without P. australis or ochre pellets; T4, treatment system with only ochre pellets; LC, low pollutant concentrations; T5, treatment system with only P. australis; T6, treatment system with P. australis and ochre pellets; T7, treatment system without P. australis and ochre pellets; and T8, treatment system with only ochre pellets. | ||||||||||||
Parameter | Unit | n | Influent | 7-day HRT (HC–SGW effluent) | Influent | 7-day HRT (LC–SGW effluent) | ||||||
HC–SGW | T9 | T10 | T11 | T12 | LC–SGW | T13 | T14 | T15 | T16 | |||
pH | – | 81 | 8.4 ± 1.61 | 7.3 ± 0.82 | 9.8 ± 1.34 | 7.7 ± 1.21 | 9.8 ± 1.54 | 6.9 ± 0.48 | 6.9 ± 0.61 | 10.3 ± 1.33 | 7.5 ± 0.72 | 10.5 ± 1.05 |
Redox potential | mV | 81 | −36.6 ± 74.22 | 12.2 ± 40.30 | −100.1 ± 66.45 | −4.4 ± 59.67 | −95.5 ± 88.21 | 34.1 ± 21.23 | 31.0 ± 28.12 | −130.8 ± 63.74 | 1.8 ± 33.00 | −131.3 ± 72.36 |
Turbidity | NTU | 81 | 188.9 ± 47.22 | 154.8 ± 86.08 | 178.8 ± 98.79 | 185.7 ± 49.24 | 245.8 ± 96.29 | 22.9 ± 7.14 | 18.9 ± 11.05 | 25.1 ± 16.21 | 16.5 ± 7.27 | 40.9 ± 25.03 |
Total suspended solids | mg/L | 81 | 317.0 ± 58.35 | 267.8 ± 110.05 | 342.9 ± 125.33 | 302.6 ± 61.44 | 423.4 ± 114.04 | 39.9 ± 15.94 | 27.7 ± 16.48 | 37.5 ± 15.62 | 25.0 ± 10.96 | 55.2 ± 24.85 |
Electric conductivity | µS/cm | 81 | 988.5 ± 196.09 | 1137.4 ± 471.09 | 1191.1 ± 343.72 | 1003.0 ± 306.88 | 1107.1 ± 299.47 | 164.6 ± 63.24 | 161.4 ± 42.91 | 306.8 ± 118.32 | 144.0 ± 32.28 | 290.2 ± 135.74 |
Dissolved oxygen | mg/L | 81 | 10.5 ± 1.39 | 8.8 ± 0.89 | 8.3 ± 1.03 | 10.5 ± 0.91 | 9.8 ± 1.19 | 10.4 ± 1.24 | 9.3 ± 1.24 | 8.7 ± 0.94 | 11.0 ± 1.11 | 10.1 ± 0.84 |
Color | Pa/Co | 81 | 1587.8 ± 379.89 | 1448.1 ± 647.98 | 1593.5 ± 761.50 | 1644.8 ± 489.96 | 2040.5 ± 757.57 | 214.5 ± 64.07 | 159.1 ± 56.83 | 250.6 ± 120.15 | 152.6 ± 41.05 | 283.8 ± 115.21 |
Temperature | °C | 81 | 16.9 ± 5.40 | 16.8 ± 4.03 | 18.0 ± 4.14 | 16.6 ± 3.87 | 17.7 ± 4.20 | 17.7 ± 4.58 | 15.9 ± 4.18 | 17.3 ± 4.31 | 15.3 ± 4.23 | 17.0 ± 4.15 |
Biochemical oxygen demand | mg/L | 81 | 34.7 ± 12.99 | 23.1 ± 9.35 | 12.1 ± 7.32 | 16.6 ± 7.07 | 8.3 ± 4.23 | 17.6 ± 8.00 | 13.4 ± 5.63 | 5.5 ± 6.00 | 6.7 ± 4.85 | 5.4 ± 3.95 |
Chemical oxygen demand | mg/L | 81 | 129.2 ± 34.68 | 94.0 ± 31.13 | 90.7 ± 29.89 | 100.8 ± 27.65 | 103.1 ± 16.10 | 28.9 ± 14.47 | 31.3 ± 11.95 | 29.2 ± 10.71 | 17.2 ± 6.95 | 19.9 ± 7.28 |
Ammonia–nitrogen | mg/L | 81 | 0.4 ± 0.19 | 0.5 ± 0.23 | 0.3 ± 0.14 | 0.3 ± 0.13 | 0.3 ± 0.11 | 0.2 ± 0.22 | 0.1 ± 0.07 | 0.1 ± 0.07 | 0.1 ± 0.04 | 0.1 ± 0.15 |
Nitrate–nitrogen | mg/L | 81 | 8.9 ± 6.38 | 10.7 ± 7.92 | 16.3 ± 4.89 | 8.5 ± 8.42 | 15.0 ± 8.59 | 1.3 ± 1.21 | 1.3 ± 0.77 | 0.7 ± 0.77 | 1.0 ± 0.64 | 0.3 ± 0.28 |
Orthophosphate–phosphorus | mg/L | 81 | 59.1 ± 14.16 | 48.0 ± 13.76 | 16.3 ± 3.00 | 43.0 ± 13.78 | 17.3 ± 5.63 | 8.4 ± 4.36 | 11.9 ± 6.36 | 3.0 ± 1.77 | 8.5 ± 4.03 | 3.7 ± 1.29 |
Element | ||||||||||||
Aluminum (Al) | mg/L | 45 | 2.13 ± 0.869 | 2.33 ± 1.321 | 1.56 ± 0.880 | 2.98 ± 1.218 | 3.61 ± 2.306 | 0.52 ± 0.528 | 0.12 ± 0.094 | 0.37 ± 0.232 | 0.36 ± 0.189 | 0.73 ± 0.420 |
Boron (B) | mg/L | 33 | 0.57 ± 0.068 | 0.55 ± 0.211 | 0.44 ± 0.202 | 0.54 ± 0.160 | 0.39 ± 0.078 | 0.14 ± 0.067 | 0.13 ± 0.069 | 0.08 ± 0.005 | 0.12 ± 0.064 | 0.08 ± 0.006 |
Calcium (Ca) | mg/L | 55 | 36.08 ± 8.750 | 42.49 ± 4.386 | 77.22 ± 42.765 | 37.39 ± 4.030 | 145.67 ± 92.506 | 10.54 ± 0.853 | 11.44 ± 0.944 | 60.11 ± 13.881 | 10.74 ± 0.739 | 65.46 ± 37.361 |
Cadmium (Cd) | mg/L | 42 | 7.36 ± 2.981 | 5.82 ± 2.238 | 4.61 ± 2.126 | 6.40 ± 1.984 | 6.87 ± 2.628 | 0.09 ± 0.056 | 0.08 ± 0.097 | 0.02 ± 0.021 | 0.09 ± 0.083 | 0.05 ± 0.046 |
Chromium (Cr) | mg/L | 54 | 3.20 ± 0.918 | 3.22 ± 1.736 | 2.86 ± 1.328 | 4.76 ± 1.215 | 4.75 ± 2.021 | 0.04 ± 0.063 | 0.05 ± 0.069 | 0.04 ± 0.031 | 0.07 ± 0.074 | 0.06 ± 0.054 |
Copper (Cu) | mg/L | 63 | 1.44 ± 0.435 | 1.15 ± 0.385 | 0.98 ± 0.308 | 1.30 ± 0.301 | 1.47 ± 0.247 | 0.16 ± 0.058 | 0.07 ± 0.081 | 0.04 ± 0.032 | 0.10 ± 0.091 | 0.06 ± 0.057 |
Iron (Fe) | mg/L | 48 | 6.41 ± 2.476 | 5.45 ± 1.657 | 5.03 ± 1.475 | 7.02 ± 1.801 | 8.69 ± 2.012 | 0.21 ± 0.102 | 0.14 ± 0.080 | 0.39 ± 0.218 | 0.20 ± 0.100 | 0.93 ± 0.759 |
Potassium (K) | mg/L | 12 | 60.16 ± 1.684 | 44.90 ± 2.827 | 56.58 ± 19.919 | 45.77 ± 5.160 | 59.62 ± 20.132 | 4.04 ± 0.448 | 2.99 ± 0.216 | 17.59 ± 16.141 | 3.62 ± 0.438 | 20.16 ± 19.003 |
Magnesium (Mg) | mg/L | 48 | 17.16 ± 2.119 | 17.77 ± 3.477 | 12.84 ± 6.124 | 16.24 ± 1.971 | 12.97 ± 3.785 | 1.45 ± 0.191 | 1.55 ± 0.195 | 0.84 ± 0.224 | 1.38 ± 0.161 | 0.78 ± 0.330 |
Manganese (Mn) | mg/L | 63 | 0.98 ± 0.257 | 0.35 ± 0.249 | 0.46 ± 0.212 | 1.01 ± 0.223 | 0.86 ± 0.457 | 0.17 ± 0.084 | 0.05 ± 0.077 | 0.04 ± 0.033 | 0.06 ± 0.074 | 0.10 ± 0.094 |
Sodium (Na) | mg/L | 12 | 62.68 ± 14.538 | 55.09 ± 11.391 | 55.85 ± 12.850 | 55.22 ± 11.852 | 55.59 ± 12.232 | 14.32 ± 1.662 | 13.91 ± 1.648 | 15.42 ± 3.280 | 13.15 ± 1.199 | 15.69 ± 5.272 |
Nickel (Ni) | mg/L | 51 | 0.05 ± 0.065 | 0.10 ± 0.091 | 0.05 ± 0.077 | 0.09 ± 0.081 | 0.04 ± 0.033 | 0.04 ± 0.065 | 0.05 ± 0.081 | 0.00 ± 0.012 | 0.05 ± 0.080 | 0.01 ± 0.010 |
Zinc (Zn) | mg/L | 39 | 4.25 ± 1.500 | 3.12 ± 0.872 | 2.78 ± 0.859 | 3.90 ± 0.972 | 4.32 ± 0.787 | 0.21 ± 0.159 | 0.11 ± 0.094 | 0.06 ± 0.050 | 0.13 ± 0.068 | 0.11 ± 0.089 |
Note: Values are mean± SD, where SD is the corresponding standard deviation; NTU, nephelometric turbidity unit; HRT, hydraulic retention time; HC, high pollutant concentrations; T9, treatment system with only P. australis; T10, treatment system with P. australis and ochre pellets; T11, treatment system without P. australis or ochre pellets; T12, treatment system with ochre pellets only; LC, low pollutant concentrations; T13, treatment system with only P. australis; T14, treatment system with P. australis and ochre pellets; T15, treatment system without P. australis or ochre pellets; and T16, treatment system with only ochre pellets. | ||||||||||||
Parameter | Unit | n | 2-day HRT (TW effluent) | 7-day HRT (TW effluent) | ||||||||
C1 | C2 | C3 | C4 | |||||||||
pH | – | 81 | 6.7 ± 0.39 | 7.4 ± 0.60 | 6.6 ± 0.39 | 7.1 ± 0.52 | ||||||
Redox potential | mV | 81 | 42.2 ± 16.50 | 9.6 ± 28.10 | 44.1 ± 17.06 | 25.1 ± 24.68 | ||||||
Turbidity | NTU | 81 | 9.3 ± 6.61 | 4.2 ± 4.37 | 12.7 ± 12.56 | 3.7 ± 3.47 | ||||||
Total suspended solids | mg/L | 81 | 14.3 ± 8.16 | 3.9 ± 2.93 | 17.8 ± 13.69 | 4.3 ± 5.79 | ||||||
Electric conductivity | µS/cm | 81 | 84.4 ± 12.15 | 81.5 ± 9.94 | 92.9 ± 27.28 | 87.1 ± 20.83 | ||||||
Dissolved oxygen | mg/L | 81 | 9.0 ± 0.87 | 10.4 ± 0.70 | 8.9 ± 1.09 | 10.8 ± 1.07 | ||||||
Color | Pa/Co | 81 | 44.3 ± 30.56 | 8.6 ± 7.66 | 56.1 ± 31.45 | 12.7 ± 9.73 | ||||||
Temperature | °C | 81 | 16.5 ± 3.76 | 16.8 ± 4.04 | 15.1 ± 4.20 | 15.5 ± 4.17 | ||||||
Biochemical oxygen demand | mg/L | 81 | 7.3 ± 3.45 | 5.4 ± 4.03 | 9.1 ± 5.05 | 6.7 ± 4.65 | ||||||
Chemical oxygen demand | mg/L | 81 | 15.9 ± 7.74 | 6.3 ± 2.84 | 17.6 ± 6.74 | 7.0 ± 2.48 | ||||||
Ammonia–nitrogen | mg/L | 81 | 0.1 ± 0.12 | 0.1 ± 0.14 | 0.1 ± 0.04 | 0.1 ± 0.05 | ||||||
Nitrate–nitrogen | mg/L | 81 | 1.1 ± 0.75 | 0.8 ± 0.53 | 0.9 ± 0.42 | 0.8 ± 0.54 | ||||||
Orthophosphate–phosphorus | mg/L | 81 | 2.8 ± 1.82 | 2.4 ± 0.63 | 3.4 ± 1.47 | 2.4 ± 0.86 | ||||||
Element | ||||||||||||
Aluminum (Al) | mg/L | 45 | 0.01 ± 0.006 | 0.01 ± 0.007 | 0.08 ± 0.092 | 0.09 ± 0.101 | ||||||
Boron (B) | mg/L | 33 | 0.02 ± 0.018 | 0.03 ± 0.009 | 0.05 ± 0.061 | 0.05 ± 0.059 | ||||||
Calcium (Ca) | mg/L | 55 | 9.96 ± 0.549 | 9.78 ± 0.552 | 9.67 ± 0.591 | 9.51 ± 0.476 | ||||||
Cadmium (Cd) | mg/L | 42 | 0.01 ± 0.006 | 0.00 ± 0.006 | 0.04 ± 0.071 | 0.05 ± 0.071 | ||||||
Chromium (Cr) | mg/L | 54 | 0.00 ± 0.005 | 0.00 ± 0.005 | 0.03 ± 0.063 | 0.03 ± 0.063 | ||||||
Copper (Cu) | mg/L | 63 | 0.01 ± 0.006 | 0.01 ± 0.008 | 0.04 ± 0.073 | 0.05 ± 0.078 | ||||||
Iron (Fe) | mg/L | 48 | 0.02 ± 0.007 | 0.02 ± 0.009 | 0.05 ± 0.069 | 0.05 ± 0.066 | ||||||
Potassium (K) | mg/L | 12 | 0.35 ± 0.049 | 0.69 ± 0.261 | 0.50 ± 0.492 | 0.52 ± 0.127 | ||||||
Magnesium (Mg) | mg/L | 48 | 1.10 ± 0.123 | 1.10 ± 0.138 | 1.20 ± 0.119 | 1.16 ± 0.120 | ||||||
Manganese (Mn) | mg/L | 63 | 0.01 ± 0.010 | 0.00 ± 0.009 | 0.04 ± 0.070 | 0.04 ± 0.069 | ||||||
Sodium (Na) | mg/L | 12 | 6.62 ± 0.721 | 6.69 ± 0.869 | 6.80 ± 0.085 | 6.35 ± 0.105 | ||||||
Nickel (Ni) | mg/L | 51 | 0.01 ± 0.023 | 0.01 ± 0.023 | 0.04 ± 0.075 | 0.04 ± 0.075 | ||||||
Zinc (Zn) | mg/L | 39 | 0.03 ± 0.009 | 0.02 ± 0.010 | 0.04 ± 0.070 | 0.04 ± 0.061 | ||||||
Note: Values are means ± SD, where SD is the corresponding standard deviation. SD, standard deviation; NTU, nephelometric turbidity unit; HRT, hydraulic retention time; TW, tap water; C1 and C3, treatment system with TW and floating P. australis; C2 and C4, treatment system with only TW. |
(a) S. alba | Element | |||||||
Aluminum (Al) | Boron (B) | Cadmium (Cd) | Chromium (Cr) | Copper (Cu) | Iron (Fe) | Magnesium (Mg) | Manganese (Mn) | |
SA1 | 7378 ± 324.9 | 27 ± 0.01 | 1821 ± 507.3 | 4727 ± 316.9 | 653 ± 61.8 | 18,250 ± 453.1 | 26,259 ± 2657.6 | 1617 ± 174.0 |
SA2 | 5819 ± 270.4 | 20 ± 0.004 | 1610 ± 227.9 | 3962 ± 325.9 | 380 ± 89.7 | 17,309 ± 754.9 | 23,409 ± 2807.0 | 834 ± 126.0 |
SA3 | 6648 ± 234.5 | 35 ± 0.005 | 1902 ± 492.8 | 4338 ± 192.7 | 697 ± 65.5 | 16,116 ± 429.9 | 22,332 ± 1988.1 | 1685 ± 185.9 |
SA4 | 9251 ± 460.2 | 89 ± 0.01 | 2883 ± 785.5 | 5616 ± 195.9 | 935 ± 47.5 | 21,458 ± 889.9 | 28,063 ± 2443.3 | 1914 ± 276.5 |
SA5 | 6777 ± 206.0 | ND | 182 ± 6.9 | 1944 ± 202.0 | 164 ± 20.7 | 15,240 ± 440.0 | 21,653 ± 2042.0 | 765 ± 156.8 |
SA6 | 7236 ± 285.1 | ND | 203 ± 49.3 | 2298 ± 227.6 | 150 ± 63.6 | 13,653 ± 471.3 | 22,493 ± 3010.9 | 1000 ± 132.4 |
SA7 | 8516 ± 317.8 | ND | 158 ± 0.1 | 467 ± 29.1 | 281 ± 20.1 | 16,809 ± 533.0 | 22,560 ± 2172.0 | 968 ± 148.5 |
SA8 | 6966 ± 236.0 | ND | ND | 1691 ± 161.2 | 103 ± 26.6 | 14,293 ± 462.8 | 24,950 ± 3553.4 | 982 ± 135.3 |
SA9 | 7838 ± 373.3 | 127 ± 0.005 | 2108 ± 503.3 | 4054 ± 211.0 | 664 ± 47.5 | 16,460 ± 614.8 | 25,243 ± 2155.8 | 1505 ± 213.8 |
SA10 | 7997 ± 272.0 | 21 ± 0.007 | 2164 ± 555.6 | 3948 ± 178.6 | 655 ± 32.7 | 19,510 ± 532.5 | 25,083 ± 2382.9 | 1249 ± 132.9 |
SA11 | 11,342 ± 336.1 | 68 ± 39.9 | 1913 ± 506.3 | 4717 ± 219.6 | 734 ± 32.0 | 21,645 ± 1199.2 | 28,468 ± 2686.5 | 1538 ± 223.3 |
SA12 | 7788 ± 370.1 | 115 ± 83.1 | 994 ± 213.1 | 3100 ± 352.5 | 341 ± 89.1 | 14,907 ± 558.2 | 26,879 ± 3322.5 | 939 ± 166.8 |
SA13 | 7602 ± 330.8 | ND | 31 ± 0.01 | 2900 ± 253.1 | 149 ± 98.9 | 13,940 ± 464.4 | 23,845 ± 2951.4 | 1012 ± 148.9 |
SA14 | 7463 ± 316.6 | ND | ND | 2529 ± 296.3 | 109 ± 10.3 | 13,617 ± 489.9 | 23,470 ± 2838.1 | 939 ± 160.7 |
SA15 | 10,142 ± 465.1 | ND | 118 ± 94.2 | 1026 ± 96.7 | 154 ± 69.1 | 21,652 ± 889.5 | 25,270 ± 2305.4 | 1363 ± 113.9 |
SA16 | 7862 ± 314.2 | ND | ND | 2547 ± 244.4 | 141 ± 70.2 | 15,111 ± 531.4 | 25,076 ± 3318.7 | 1438 ± 150.4 |
SA/C1 | 9829 ± 257.7 | ND | ND | 3132 ± 241.7 | 120 ± 43.6 | 20,753 ± 1217.2 | 24,349 ± 2968.9 | 1245 ± 148.7 |
SA/C2 | 7885 ± 366.9 | ND | ND | 1579 ± 153.5 | 147 ± 62.3 | 19,726 ± 684.5 | 24,234 ± 3015.4 | 1221 ± 121.4 |
SA/C3 | 1890 ± 152.3 | ND | ND | 291 ± 27.1 | 88 ± 93.4 | 3491 ± 568.6 | 7472 ± 974.1 | 222 ± 44.0 |
SA/C4 | 7785 ± 194.7 | 73 ± 0.02 | ND | 3173 ± 261.4 | 146 ± 79.9 | 12,655 ± 343.6 | 20,502 ± 2611.8 | 900 ± 109.3 |
Note: All values in mg/kg of dry weight as mean ± standard deviation; SA1–SA/C4, S. alba with two replicates; and ND, not detected. Sample number: 20. | ||||||||
(b) S. viminalis | Element | |||||||
Aluminum (Al) | Boron (B) | Cadmium (Cd) | Chromium (Cr) | Copper (Cu) | Iron (Fe) | Magnesium (Mg) | Manganese (Mn) | |
SV1 | 7389 ± 256.4 | 87 ± 0.02 | 398 ± 162.9 | 1990 ± 177.9 | 239 ± 85.4 | 16,249 ± 434.4 | 27,645 ± 3648.9 | 1161 ± 201.7 |
SV2 | 6328 ± 192.1 | 133 ± 0.03 | 143 ± 0.6 | 2074 ± 193.0 | 122 ± 22.4 | 13,107 ± 396.2 | 23,695 ± 2436.6 | 690 ± 145.8 |
SV3 | 5474 ± 144.5 | ND | 461 ± 182.2 | 2382 ± 303.7 | 226 ± 64.8 | 10,759 ± 359.5 | 24,008 ± 2403.0 | 750 ± 106.4 |
SV4 | 5232 ± 248.0 | ND | 635 ± 219.5 | 2138 ± 199.8 | 254 ± 75.8 | 14,609 ± 575.9 | 28,209 ± 2910.0 | 1208 ± 147.5 |
SV5 | 7704 ± 284.8 | ND | 225 ± 10.8 | 2213 ± 237.7 | 177 ± 83.3 | 15,700 ± 428.4 | 27,961 ± 2848.8 | 1062 ± 158.1 |
SV6 | 7579 ± 328.1 | ND | 297 ± 10.2 | 1202 ± 123.9 | 237 ± 62.9 | 14,428 ± 474.9 | 27,418 ± 3219.3 | 1246 ± 157.2 |
SV7 | 6527 ± 220.8 | 47 ± 0.01 | 144 ± 13.1 | 977 ± 81.6 | 143 ± 62.8 | 10,521 ± 424.2 | 26,408 ± 2661.1 | 911 ± 105.8 |
SV8 | 7597 ± 294.6 | ND | 245 ± 130.1 | 2507 ± 257.1 | 155 ± 28.9 | 13,829 ± 522.0 | 31,301 ± 3800.2 | 1412 ± 174.2 |
SV9 | 13,879 ± 460.8 | 95 ± 0.02 | 742 ± 178.6 | 988 ± 23.0 | 397 ± 71.7 | 23,077 ± 660.2 | 50,172 ± 6692.2 | 2080 ± 198.9 |
SV10 | 19,158 ± 770.1 | 15 ± 0.01 | 766 ± 149.2 | 2587 ± 199.3 | 548 ± 54.9 | 28,066 ± 972.3 | 66,288 ± 8833.8 | 2635 ± 384.3 |
SV11 | 10,139 ± 276.6 | 19 ± 0.03 | 1529 ± 193.1 | 4008 ± 324.4 | 510 ± 38.8 | 17,827 ± 449.6 | 28,431 ± 3207.8 | 1499 ± 196.7 |
SV12 | 8542 ± 177.1 | 125 ± 0.03 | 1205 ± 149.1 | 2399 ± 105.9 | 386 ± 60.9 | 14,229 ± 374.1 | 23,843 ± 2335.1 | 1585 ± 162.0 |
SV13 | 7548 ± 227.7 | ND | 26 ± 0.01 | 1277 ± 120.2 | 341 ± 23.3 | 12,807 ± 482.0 | 32,584 ± 4269.5 | 1492 ± 151.4 |
SV14 | 15,106 ± 492.7 | ND | 175 ± 0.04 | 2270 ± 242.3 | 222 ± 54.5 | 23,510 ± 902.6 | 56,967 ± 7906.6 | 1967 ± 283.7 |
SV15 | 8236 ± 237.7 | ND | ND | 55 ± 0.01 | 197 ± 39.4 | 15,117 ± 396.2 | 24,577 ± 2608.7 | 1292 ± 116.0 |
SV16 | 8971 ± 377.0 | 99 ± 0.03 | 204 ± 2.5 | 2876 ± 256.0 | 139 ± 19.5 | 21,450 ± 756.6 | 25,250 ± 2973.6 | 1245 ± 193.4 |
SV/C1 | 7990 ± 323.0 | ND | ND | 2385 ± 176.2 | 167 ± 40.8 | 15,673 ± 425.7 | 27,558 ± 3094.3 | 1650 ± 182.1 |
SV/C2 | 6138 ± 154.3 | ND | 274 ± 0.1 | 3483 ± 267.9 | 185 ± 61.8 | 12,285 ± 411.0 | 25,887 ± 3431.2 | 1267 ± 179.8 |
SV/C3 | 7497 ± 257.8 | ND | ND | 1067 ± 102.4 | 185 ± 39.1 | 13,923 ± 425.9 | 26,654 ± 3998.5 | 1315 ± 167.5 |
SV/C4 | 9317 ± 364.0 | 152 ± 0.04 | ND | 1243 ± 119.2 | 187 ± 22.2 | 16,764 ± 622.9 | 25,150 ± 2485.4 | 1320 ± 168.6 |
Note: All values in mg/kg of dry weight as mean ± standard deviation; SV1–SV/C4, S. viminalis with two replicates; and ND, not detected. Sample number: 20. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Almuktar, S.A.A.A.N.; Abed, S.N.; Scholz, M. Biomass Production and Metal Remediation by Salix alba L. and Salix viminalis L. Irrigated with Greywater Treated by Floating Wetlands. Environments 2024, 11, 44. https://doi.org/10.3390/environments11030044
Almuktar SAAAN, Abed SN, Scholz M. Biomass Production and Metal Remediation by Salix alba L. and Salix viminalis L. Irrigated with Greywater Treated by Floating Wetlands. Environments. 2024; 11(3):44. https://doi.org/10.3390/environments11030044
Chicago/Turabian StyleAlmuktar, Suhad A. A. A. N., Suhail N. Abed, and Miklas Scholz. 2024. "Biomass Production and Metal Remediation by Salix alba L. and Salix viminalis L. Irrigated with Greywater Treated by Floating Wetlands" Environments 11, no. 3: 44. https://doi.org/10.3390/environments11030044
APA StyleAlmuktar, S. A. A. A. N., Abed, S. N., & Scholz, M. (2024). Biomass Production and Metal Remediation by Salix alba L. and Salix viminalis L. Irrigated with Greywater Treated by Floating Wetlands. Environments, 11(3), 44. https://doi.org/10.3390/environments11030044