Multi-Index Drought Analysis in Choushui River Alluvial Fan, Taiwan
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area and Data
2.2. Data
2.2.1. Landsat 8 Satellite Imagery
2.2.2. TCCIP Meteorological Data
2.2.3. Land Use/Land Cover (LULC)
2.2.4. Soil Moisture (SM)
2.3. Methodology
2.3.1. Temperature Vegetation Dryness Index (TVDI)
2.3.2. Improved Temperature Vegetation Dryness Index (iTVDI)
2.3.3. Normalized Difference Drought Index (NDDI)
2.3.4. Standardized Precipitation Index (SPI)
2.4. Evaluating the Optimal Drought Indices
3. Results and Discussion
3.1. The Analysis Results of the NDVI-LST Spatial and the Dry/Wet Edges
3.2. Spatiotemporal Variation of TVDI
3.3. Spatiotemporal Variation of iTVDI
3.4. Spatiotemporal Distribution Differences Between TVDI and iTVDI
3.5. Spatiotemporal Variation of NDDI
3.6. The SPI Analysis
3.7. The Relationship Between TVDI, iTVDI, and Soil Moisture Content
3.8. The Relationship Between iTVDI and Drought Indices
4. Conclusions
- The TVDI is commonly used for drought monitoring due to its effectiveness and ease of use. This study applied TVDI to estimate spatiotemporal variations in the Choushui River Alluvial Fan. The results showed that the dry season (November–April) fell within the dry range, while the wet season (May–October) was normal. Coastal and mountainous areas had low TVDI values, indicating higher soil moisture and fewer drought occurrences, whereas the central fan region had high TVDI values, signifying greater drought susceptibility. The distribution maps revealed similar patterns in plains but notable differences in mountains, where TVDI indicated higher moisture levels than iTVDI. This study found that iTVDI was more accurate than TVDI based on SM data.
- Correlation analysis of iTVDI, SPI, and NDDI indicated that drought formation is influenced by factors such as rainfall and vegetation. This study assessed drought severity in the Choushui River Alluvial Fan using four indices to identify the most effective for understanding local drought patterns, while also analyzing temporal changes in drought severity and investigating factors like vegetation and rainfall.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Leng, G.; Hall, J. Crop yield sensitivity of global major agricultural countries to droughts and the projected changes in the future. Sci. Total Environ. 2019, 654, 811–821. [Google Scholar] [CrossRef] [PubMed]
- Bian, Z.; Roujean, J.; Fan, T.; Dong, Y.; Hu, T.; Cao, B.; Li, H.; Du, Y.; Xiao, Q.; Liu, Q. An angular normalization method for temperature vegetation dryness index (TVDI) in monitoring agricultural drought. Remote Sens. Environ. 2023, 284, 113330. [Google Scholar] [CrossRef]
- Yin, G.; Zhang, H. A new integrated index for drought stress monitoring based on decomposed vegetation response factors. J. Hydrol. 2023, 618, 129252. [Google Scholar] [CrossRef]
- Stocker, T.F.; Qin, D.; Plattner, G.K.; Tignor, M.M.; Allen, S.K.; Boschung, J.; Nauels, A.; Xia, Y.; Bex, V.; Midgley, P.M. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of IPCC the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2014. [Google Scholar] [CrossRef]
- Yeh, H.-F.; Hsu, H.-L. Stochastic Model for Drought Forecasting in the Southern Taiwan Basin. Water 2019, 11, 2041. [Google Scholar] [CrossRef]
- Fariesta, A.R.; Shidiq, I.P.; Dimyati, M. Spatial and temporal analysis of drought in rice fields using Normalized Difference Drought Index (NDDI) in Indramayu Regency. In Seventh Geoinformation Science Symposium 2021; SPIE: Yogyakarta, Indonesia, 2021; pp. 82–90. [Google Scholar]
- Shi, M.; Yuan, Z.; Shi, X.; Li, M.; Chen, F.; Li, Y. Drought assessment of terrestrial ecosystems in the Yangtze River Basin, China. J. Clean. Prod. 2022, 362, 132234. [Google Scholar] [CrossRef]
- Lee, H.; Calvin, K.; Dasgupta, D.; Krinner, G.; Mukherji, A.; Thorne, P.; Trisos, C.; Romero, J.; Aldunce, P.; Barret, K.; et al. IPCC, 2023: Climate Change 2023: Synthesis Report, Summary for Policymakers. Contribution of Working Groups I, II and III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Core Writing Team, Lee, H., Romero, J., Eds.; IPCC: Geneva, Switzerland, 2023. [Google Scholar]
- Du, L.; Tian, Q.; Yu, T.; Meng, Q.; Jancso, T.; Udvardy, P.; Huang, Y. A comprehensive drought monitoring method integrating MODIS and TRMM data. Int. J. Appl. Earth Obs. Geoinf. 2013, 23, 245–253. [Google Scholar] [CrossRef]
- Ghazaryan, G.; Dubovyk, O.; Graw, V.; Kussul, N.; Schellberg, J. Local-scale agricultural drought monitoring with satellite-based multi-sensor time-series. GISci. Remote Sens. 2020, 57, 704–718. [Google Scholar] [CrossRef]
- Zhang, X.; Hao, Z.; Singh, V.P.; Zhang, Y.; Feng, S.; Xu, Y.; Hao, F. Drought propagation under global warming: Characteristics, approaches, processes, and controlling factors. Sci. Total Environ. 2022, 838, 156021. [Google Scholar] [CrossRef]
- Guo, W.; Huang, S.; Huang, Q.; She, D.; Shi, H.; Leng, G.; Li, J.; Cheng, L.; Gao, Y.; Peng, J. Precipitation and vegetation transpiration variations dominate the dynamics of agricultural drought characteristics in China. Sci. Total Environ. 2023, 898, 165480. [Google Scholar] [CrossRef]
- Yeh, H.-F. Spatiotemporal variation of the meteorological and groundwater droughts in central Taiwan. Front. Water 2021, 3, 636792. [Google Scholar] [CrossRef]
- Xu, Y.; Zhu, X.; Cheng, X.; Gun, Z.; Lin, J.; Zhao, J.; Yao, L.; Zhou, C. Drought assessment of China in 2002–2017 based on a comprehensive drought index. Agric. For. Meteorol. 2022, 319, 108922. [Google Scholar] [CrossRef]
- Pan, Y.; Zhu, Y.; Lü, H.; Yagci, A.L.; Fu, X.; Liu, E.; Xu, H.; Ding, Z.; Liu, R. Accuracy of agricultural drought indices and analysis of agricultural drought characteristics in China between 2000 and 2019. Agric. Water Manag. 2023, 283, 108305. [Google Scholar] [CrossRef]
- Tabatabaeenejad, A.; Burgin, M.; Duan, X.; Moghaddam, M. P-band radar retrieval of subsurface soil moisture profile as a second-order polynomial: First AirMOSS results. IEEE Trans. Geosci. Remote Sens. 2014, 53, 645–658. [Google Scholar] [CrossRef]
- Peng, J.; Loew, A. Recent advances in soil moisture estimation from remote sensing. Water 2017, 9, 530. [Google Scholar] [CrossRef]
- Rahimzadeh-Bajgiran, P.; Omasa, K.; Shimizu, Y. Comparative evaluation of the Vegetation Dryness Index (VDI), the Temperature Vegetation Dryness Index (TVDI) and the improved TVDI (iTVDI) for water stress detection in semi-arid regions of Iran. ISPRS J. Photogramm. Remote Sens. 2012, 68, 1–12. [Google Scholar] [CrossRef]
- Salas-Martínez, F.; Valdés-Rodríguez, O.A.; Palacios-Wassenaar, O.M.; Márquez-Grajales, A.; Rodríguez-Hernández, L.D. Methodological estimation to quantify drought intensity based on the NDDI index with Landsat 8 multispectral images in the central zone of the Gulf of Mexico. Front. Earth Sci. 2023, 11, 1027483. [Google Scholar] [CrossRef]
- AghaKouchak, A.; Farahmand, A.; Melton, F.S.; Teixeira, J.; Anderson, M.C.; Wardlow, B.D.; Hain, C.R. Remote sensing of drought: Progress, challenges and opportunities. Rev. Geophys. 2015, 53, 452–480. [Google Scholar] [CrossRef]
- Zhang, L.; Guo, X.; Zhao, T.; Gong, S.; Xu, X.; Li, Y.; Luo, L.; Gui, K.; Wang, H.; Zheng, Y.; et al. A modelling study of the terrain effects on haze pollution in the Sichuan Basin. Atmos. Environ. 2018, 196, 77–85. [Google Scholar] [CrossRef]
- Le, M.S.; Liou, Y.A. Spatio-temporal assessment of surface moisture and evapotranspiration variability using remote sensing techniques. Remote Sens. 2021, 13, 1667. [Google Scholar] [CrossRef]
- Hazaymeh, K.; Hassan, Q.K. A remote sensing-based agricultural drought indicator and its implementation over a semi-arid region, Jordan. J. Arid Land 2017, 9, 319–330. [Google Scholar] [CrossRef]
- Shi, S.; Yao, F.; Zhang, J.; Yang, S. Evaluation of temperature vegetation dryness index on drought monitoring over Eurasia. IEEE Access 2020, 8, 30050–30059. [Google Scholar] [CrossRef]
- Zhao, X.; Xia, H.; Pan, L.; Song, H.; Niu, W.; Wang, R.; Li, R.; Bian, X.; Guo, Y.; Qin, Y. Drought monitoring over Yellow River basin from 2003–2019 using reconstructed MODIS land surface temperature in Google Earth Engine. Remote Sens. 2021, 13, 3748. [Google Scholar] [CrossRef]
- Sandholt, I.; Rasmussen, K.; Andersen, J. A simple interpretation of the surface temperature/vegetation index space for assessment of surface moisture status. Remote Sens. Environ. 2002, 79, 213–224. [Google Scholar] [CrossRef]
- Gu, Y.; Brown, J.F.; Verdin, J.P.; Wardlow, B. A five-year analysis of MODIS NDVI and NDWI for grassland drought assessment over the central Great Plains of the United States. Geophys. Res. Lett. 2007, 34. [Google Scholar] [CrossRef]
- McKee, T.B.; Doesken, N.J.; Kleist, J. The relationship of drought frequency and duration to time scales. In Proceedings of the 8th Conference on Applied Climatology, Anaheim, CA, USA, 17–22 January 1993; pp. 179–183. [Google Scholar]
- Holzman, M.E.; Rivas, R.; Piccolo, M.C. Estimating soil moisture and the relationship with crop yield using surface temperature and vegetation index. Int. J. Appl. Earth Obs. Geoinf. 2014, 28, 181–192. [Google Scholar] [CrossRef]
- Bai, J.J.; Yuan, Y.U.; Di, L. Comparison between TVDI and CWSI for drought monitoring in the Guanzhong Plain, China. J. Integr. Agric. 2017, 16, 389–397. [Google Scholar] [CrossRef]
- Li, C.; Adu, B.; Wu, J.; Qin, G.; Li, H.; Han, Y. Spatial and temporal variations of drought in Sichuan Province from 2001 to 2020 based on modified temperature vegetation dryness index (TVDI). Ecol. Indic. 2022, 139, 108883. [Google Scholar] [CrossRef]
- Wan, W.; Han, Y.; Wu, H.; Liu, F.; Liu, Z. Application of the source–sink landscape method in the evaluation of agricultural non-point source pollution: First estimation of an orchard-dominated area in China. Agric. Water Manag. 2021, 252, 106910. [Google Scholar] [CrossRef]
- Herawati, A.; Mujiyo, M.; Nugroho, B.D.; Istiqomah, N.M.; Irmawati, V.; Hasanah, K.; Hardian, T.; Anggita, A. Drought potential index using Normalized Difference Drought Index (NDDI) method based on Geographical Information System (GIS) in Slogohimo, Wonogiri Indonesia. IOP Conf. Ser. :arth Environ. Sci. 2024, 1314, 012040. [Google Scholar] [CrossRef]
- Chen, H.Y.; Huang, C.C.; Yeh, H.F. Quantifying the relative contribution of the climate change and human activity on runoff in the choshui River Alluvial Fan, Taiwan. Land 2021, 10, 825. [Google Scholar] [CrossRef]
- Wang, F.; Lai, H.; Li, Y.; Feng, K.; Zhang, Z.; Tian, Q.; Zhu, X.; Yang, H. Identifying the status of groundwater drought from a GRACE mascon model perspective across China during 2003–2018. Agric. Water Manag. 2022, 260, 107251. [Google Scholar] [CrossRef]
- Landsat MISSIONS. Landsat 8 Data Users Handbook; Landsat MISSIONS: Sioux Falls, SD, USA, 2019.
- Liou, Y.A.; Le, M.S.; Chien, H. Normalized difference latent heat index for remote sensing of land surface energy fluxes. IEEE Trans. Geosci. Remote Sens. 2018, 57, 1423–1433. [Google Scholar] [CrossRef]
- Zhang, F.; Zhang, L.W.; Jing-Jing, S.H.; Huang, J.F. Soil moisture monitoring based on land surface temperature-vegetation index space derived from MODIS data. Pedosphere 2014, 24, 450–460. [Google Scholar] [CrossRef]
- Boonpook, W.; Tan, Y.; Nardkulpat, A.; Torsri, K.; Torteeka, P.; Kamsing, P.; Sawangwit, U.; Pena, J.; Jainaen, M. Deep learning semantic segmentation for land use and land cover types using Landsat 8 imagery. ISPRS Int. J. Geo-Inf. 2023, 12, 14. [Google Scholar] [CrossRef]
- Lin, L.Y.; Lin, C.T.; Chen, Y.M.; Cheng, C.T.; Li, H.C.; Chen, W.B. The Taiwan climate change projection information and adaptation knowledge platform: A decade of climate research. Water 2022, 14, 358. [Google Scholar] [CrossRef]
- Huang, W.R.; Chang, Y.H.; Cheng, C.T.; Hsu, H.H.; Tu, C.Y.; Kitoh, A. Summer Convective Afternoon Rainfall Simulation and Projection Using WRF Driven by Global Climate Model. Part I: Over Taiwan. Terr. Atmos. Ocean. Sci. 2016, 27, 659–671. [Google Scholar] [CrossRef]
- Lee, Y.C.; Wang, C.C.; Weng, S.P.; Chen, C.T.; Cheng, C.T. Future projections of meteorological drought characteristics in Taiwan. Atmos. Sci. 2019, 47, 66–91. [Google Scholar]
- Chen, C.J.; Chen, C.C.; Lo, M.H.; Juang, J.Y.; Chang, C.M. Central Taiwan’s hydroclimate in response to land use/cover change. Environ. Res. Lett. 2020, 15, 034015. [Google Scholar] [CrossRef]
- Li, P.L.; Lin, L.F.; Chen, C.J. Hydrometeorological assessment of satellite and model precipitation products over Taiwan. J. Hydrometeorol. 2021, 22, 2897–2915. [Google Scholar] [CrossRef]
- Zhang, Y.; Feng, X.; Fu, B.; Chen, Y.; Wang, X. Satellite-observed global terrestrial vegetation production in response to water availability. Remote Sens. 2021, 13, 1289. [Google Scholar] [CrossRef]
- Talukdar, S.; Singha, P.; Mahato, S.; Pal, S.; Liou, Y.A.; Rahman, A. Land-use land-cover classification by machine learning classifiers for satellite observations—A review. Remote Sens. 2020, 12, 1135. [Google Scholar] [CrossRef]
- Abatzoglou, J.T.; Dobrowski, S.Z.; Parks, S.A.; Hegewisch, K.C. TerraClimate, a high-resolution global dataset of monthly climate and climatic water balance from 1958–2015. Sci. Data 2018, 5, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Abdi, O. Climate-triggered insect defoliators and forest fires using multitemporal Landsat and TerraClimate data in NE Iran: An application of GEOBIA TreeNet and panel data analysis. Sensors 2019, 19, 3965. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Qi, S.; Niu, Z.; Wang, J. Evaluating soil moisture status in China using the temperature–vegetation dryness index (TVDI). Can. J. Remote Sens. 2004, 30, 671–679. [Google Scholar] [CrossRef]
- Liu, Y.; Yue, H. The temperature vegetation dryness index (TVDI) based on Bi-parabolic NDVI-Ts space and gradient-based structural similarity (GSSIM) for long-term drought assessment across Shaanxi province, China (2000–2016). Remote Sens. 2018, 10, 959. [Google Scholar] [CrossRef]
- Hope, A.S.; Petzold, D.E.; Goward, S.N.; Ragan, R.M. Simulated relationships between spectral reflectance, thermal emissions, and evapotranspiration of a soybean canopy. J. Am. Water Resour. Assoc. 1986, 22, 1011–1019. [Google Scholar] [CrossRef]
- Nemani, R.R.; Running, S.W. Estimation of regional surface resistance to evapotranspiration from NDVI and thermal-IR AVHRR data. J. Appl. Meteorol. Climatol. 1989, 28, 276–284. [Google Scholar] [CrossRef]
- Carlson, T. An overview of the “triangle method” for estimating surface evapotranspiration and soil moisture from satellite imagery. Sensors 2007, 7, 1612–1629. [Google Scholar] [CrossRef]
- Xin, J.; Tian, G.; Liu, Q.; Chen, L. Combining vegetation index and remotely sensed temperature for estimation of soil moisture in China. Int. J. Remote Sens. 2006, 27, 2071–2075. [Google Scholar] [CrossRef]
- Du, L.; Song, N.; Liu, K.; Hou, J.; Hu, Y.; Zhu, Y.; Wang, X.; Wang, L.; Guo, Y. Comparison of two simulation methods of the temperature vegetation dryness index (TVDI) for drought monitoring in semi-arid regions of China. Remote Sens. 2017, 9, 177. [Google Scholar] [CrossRef]
- Idso, S.B.; Jackson, R.D.; Pinter, P.J., Jr.; Reginato, R.J.; Hatfield, J.L. Normalizing the stress-degree-day parameter for environmental variability. J. Agric. Meteorol. 1981, 24, 45–55. [Google Scholar] [CrossRef]
- Moran, M.S.; Clarke, T.R.; Inoue, Y.; Vidal, A. Estimating crop water deficit using the relation between surface-air temperature and spectral vegetation index. Remote Sens. Environ. 1994, 49, 246–263. [Google Scholar] [CrossRef]
- Paniagua, M.T.; Villalba, J.; Pasten, M. Spatial-temporal distribution of drought in the western region of Paraguay (2005–2017). In Proceedings of the 2020 IEEE Latin American GRSS & ISPRS Remote Sensing Conference (LAGIRS), Santiago, Chile, 22–26 March 2020; pp. 636–639. [Google Scholar]
- Yeh, H.-F.; Chang, C.-F. Using standardized groundwater index and standardized precipitation index to assess drought characteristics of the Kaoping River Basin, Taiwan. Water Resour. 2019, 46, 670–678. [Google Scholar]
- Yeh, H.F.; Lin, X.Y.; Huang, C.C.; Chen, H.Y. A Meteorological Drought Migration Model for Assessing the Spatiotemporal Paths of Drought in the Choushui River Alluvial Fan, Taiwan. Geosciences 2024, 14, 106. [Google Scholar] [CrossRef]
- Liu, Y.; Wu, L.; Yue, H. Biparabolic NDVI-Ts space and soil moisture remote sensing in an arid and semi arid area. Can. J. Remote Sens. 2015, 41, 159–169. [Google Scholar] [CrossRef]
- Geiger, R.; Aron, R.H.; Todhunter, P. The Climate near the Ground; Rowman & Littlefield: Lanham, MD, USA, 2009. [Google Scholar]
Year | Season | Date |
---|---|---|
2013 | Dry | 11/17, 12/3 |
Wet | 5/25, 6/26, 7/28, 10/16 | |
2014 | Dry | 1/20, 2/21, 3/25, 4/10, 11/4, 11/20, 12/6, 12/22 |
Wet | 5/12, 9/1, 10/3, 10/19 | |
2015 | Dry | 1/23, 2/24, 4/29, 11/7, 11/23 |
Wet | 7/18, 8/3, 9/20 | |
2016 | Dry | 1/26, 3/30, 12/11 |
Wet | 7/4, 9/22, 10/24 | |
2017 | Dry | 1/28, 2/13, 3/1, 4/2, 11/28, 12/14, 12/30 |
Wet | 5/4, 9/25, 10/11, 10/27 | |
2018 | Dry | 1/15, 4/5, 11/15, 12/1, 12/17 |
Wet | 5/23, 10/14, 10/30 | |
2019 | Dry | 1/18, 2/3, 4/8, 11/2 |
Wet | 7/13, 7/29, 10/17 | |
2020 | Dry | 1/21, 2/6, 2/22, 3/9, 4/10, 11/20, 12/22 |
Wet | 8/16, 9/1, 10/3, 10/19 | |
2021 | Dry | 3/12, 3/28, 4/13, 11/7, 12/9, 12/17 |
Wet | 5/15, 9/20, 10/6 | |
2022 | Dry | 1/2, 1/10, 2/27, 3/15, 11/10, 11/18, 12/20, 12/28 |
Wet | 5/10, 8/22, 9/15, 9/22, 10/1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cheng, Y.-S.; Lu, J.-R.; Yeh, H.-F. Multi-Index Drought Analysis in Choushui River Alluvial Fan, Taiwan. Environments 2024, 11, 233. https://doi.org/10.3390/environments11110233
Cheng Y-S, Lu J-R, Yeh H-F. Multi-Index Drought Analysis in Choushui River Alluvial Fan, Taiwan. Environments. 2024; 11(11):233. https://doi.org/10.3390/environments11110233
Chicago/Turabian StyleCheng, Youg-Sin, Jiay-Rong Lu, and Hsin-Fu Yeh. 2024. "Multi-Index Drought Analysis in Choushui River Alluvial Fan, Taiwan" Environments 11, no. 11: 233. https://doi.org/10.3390/environments11110233
APA StyleCheng, Y.-S., Lu, J.-R., & Yeh, H.-F. (2024). Multi-Index Drought Analysis in Choushui River Alluvial Fan, Taiwan. Environments, 11(11), 233. https://doi.org/10.3390/environments11110233