Urban Wastewater as a Source of Reclaimed Water for Irrigation: Barriers and Future Possibilities
Abstract
:1. Introduction
- (i)
- the current legislation in force regarding the reuse of wastewater in agriculture.
- (ii)
- the technologies available to produce treated water from wastewater, focusing on the removal of contaminants and nutrients (mainly phosphorus).
- (iii)
- the health, environmental, and agronomic risks of using treated wastewater for agricultural irrigation.
2. Urban Wastewater Reuse in Agriculture
2.1. Motivations and Regulatory Barriers
EU (2020) | WHO (2016) FAO (1992) | EPA (2012) | Portugal (2019) | Spain (2007) | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Category | A | B | C | D | A | B | A | B | A | B | C | D | E | A | B | C | |
Parameter | |||||||||||||||||
E. coli (CFU/100 mL) | 10 | 100 | 1000 | 10,000 | 1000 | - | - | - | 10 | 100 | 1000 | 10,000 | 10,000 | 100 | 1000 | 10,000 | |
Fecal coliforms (CFU/100 mL) | - | - | - | - | - | - | 0 | 200 | - | - | - | - | - | - | - | - | |
BOD5 (mg/L) | 10 | 25 | 25 | 25 | - | - | 10 | 30 | 10 | 25 | 25 | 25 | 40 | - | - | - | |
TSS (mg/L) | 10 | 35 | 35 | 35 | - | - | - | 30 | 10 | 35 | 35 | 35 | 60 | 20 | 35 | 35 | |
Turbidity (NTU) | 5 | - | - | - | - | - | 2 | - | 5 | - | - | - | - | 10 | - | - | |
Intestinal nematodes (eggs/L) | 1 | 1 | 1 | 1 | 1 | 1 | - | - | - | - | 1 | 1 | - | 1 (in 10 L) | 1 (in 10 L) | 1 (in 10 L) | |
TN (mg/L) | - | - | - | - | - | - | - | - | 15 | 15 | 15 | 5 | 15 | - | - | - | |
TP (mg/L) | - | - | - | - | - | - | - | - | 5 | 5 | 5 | 5 | 5 | - | - | - |
Cyprus | France (2010) | Jordan (2002) | Greece (2011) | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Category | A | B | C | D | E | A | B | C | A | B | C | A | B | |
Parameter | ||||||||||||||
E. coli (CFU/100 mL) | 5 | 5 */15 ** | 50 */100 ** | 200 */1000 ** | 1000 */5000 ** | 250 | 10,000 | 100,000 | 100 | 1000 | - | 200 | 5 */50 ** | |
Fecal coliforms (CFU/100 mL) | - | - | - | - | - | - | - | - | - | - | - | - | - | |
BOD5 (mg/L) | 10 | 10* | 10 */15 ** | 20 */30 ** | 20 */30 ** | 60(COD) | - | - | 30 | 200 | 300 | 25 | 10 * | |
TSS (mg/L) | 10 | 10* | 10 */15 ** | 30 */45 ** | 30 */45 ** | 15 | - | - | 50 | 150 | 150 | 10 | 10 * | |
Turbidity (NTU) | - | - | - | - | - | - | - | - | 10 | - | - | - | 2 | |
Intestinal nematodes (eggs/L) | 0 | - | - | - | - | - | - | - | 1 | 1 | 1 | - | - | |
TN (mg/L) | 15 | - | - | - | - | - | - | - | 45 | 70 | 70 | - | - | |
TP (mg/L) | 10 | - | - | - | - | - | - | - | 30 *** | 30 *** | 30 *** | - | - |
Italy (1999) | Arizona | Florida | New Jersey | North Carolina | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Category | - | A | B | C | A | B | A | B | A | B | C | |
Parameter | ||||||||||||
E. coli (CFU/100 mL) | 100 | - | - | - | - | - | - | 25 (dm) | 25 (mm) | 25 (dm) | ||
Fecal coliforms (CFU/100 mL) | - | 23 | 200 */800 ** | 1000 **/4000 ** | 25 *** | 800 (avg:200) | 14 | 200 | 14 (mm) | 3 (mm) | 14 (mm) | |
BOD5 (mg/L) | 20 | - | - | - | 60 | 60 | - | 15 (dm) | 15 (dm) | 15 (dm) | ||
TSS (mg/L) | 10 | - | - | - | 5 | 60 | 5 | 30 | 10 (dm) | 10 (dm) | 10 (dm) | |
Turbidity (NTU) | - | 5 | - | - | 2—2.5 | - | 2 | - | 10 | 5 | 10 | |
Intestinal nematodes (eggs/L) | - | - | - | - | - | - | - | - | - | - | - | |
TN (mg/L) | 15 | 10 | 10 | 10 | - | - | NH3-N + NO3-N: <10 | NH3-N + NO3-N: <10 | NH3-N: 6 (dm) | NH3-N: 2 (dm) | NH3-N: 6 (dm) | |
TP (mg/L) | 2 | - | - | - | - | - | - | - | - | - | - |
2.2. Socio-Economic Barriers
2.3. Health and Environmental Hazards
Recommended Maximum Concentration | Example of Effects on Environmental Receptor [27] | ||||||
---|---|---|---|---|---|---|---|
Parameter | WHO and FAO [16,17] | Portugal [15] | Jordan [16] | Italy [41] | Greece [41] | Spain [42] | |
pH | 6.5–8.0 | - | 6.0–9.0 | 6.0–9.5 | - | - | |
Salinity | EC: 0.7–3.0 dS/m TDS: 450–2000 mg/L | * | TDS: 1500 mg/L | EC: 3.0 dS/m | EC<10 dS/m | EC: 3.0 dS/m | Soil damage (salinization);Crop stress; Crop uptake of cadmium; Increase in water salinity |
SAR | 3–9 | * | 9.0 | - | - | 6.0 | Crop toxicity |
Boron (mg/L) | 0.7–3.0 | * | - | 1.0 | 2.0 | 0.5 | Crop toxicity due to soil accumulation |
Chloride (mg/L) | 4–10 (in meq/L) | - | 400 | 250 | - | - | Crop toxicity (e.g., via leaves or roots uptake);Toxicity to aquatic biota |
Trace elements or potentially toxic elements (mg/L) | |||||||
Al | 5 | 5 | 5 | 1.0 | 5.0 | - | Crop toxicity due to soil accumulation |
Be | 0.1 | 0.1 | 0.1 | 0.10 | - | ||
Co | 0.05 | 0.05 | 0.05 | 0.05 | 0.05 | - | |
F− | 1.0 | 2.0 | 1.5 | 1.5 | 1.0 | - | |
Fe | 5.0 | 2.0 | 5.0 | 2.0 | 3.0 | - | |
Li | 2.5 | 2.5 | 2.5 | - | 2.5 | - | |
Mn | 0.2 | 0.2 | 0.2 | 0.2 | 0.2 | - | |
Mo | 0.01 | 0.01 | 0.01 | - | 0.01 | - | |
Se | 0.02 | 0.02 | 0.05 | 0.01 | 0.02 | 0.02 | |
V | 0.1 | 0.1 | 0.1 | 0.1 | 0.10 | - | |
Zn | 2.0 | - | 5.0 | 0.5 | 2.0 | - | |
Cd | 0.01 | - | 0.01 | 0.005 | 0.01 | - | |
Cr | 0.1 | - | 0.1 | 0.1 | 0.1 | - | |
Cu | 0.20 | - | 0.2 | 1.0 | 0.2 | - |
3. Production of Reclaimed Water for Reuse
3.1. Treatment Technologies
3.2. Selection of Treatment Technologies Based on Target Pollutants
4. Irrigation with Reclaimed Water: Practical Applications
Crop | Treatments of Reclaimed Water | Irrigation Type and Conditions | Conclusions | Ref. |
---|---|---|---|---|
Olive orchards | No information | Drip irrigation Water supply: 5000 m3/ha year 10 years treatment | 90% increase in crop productivity compared with irrigation with draw-well water Increased fruit fresh weight, but no significant effect on oil content Increased major nutrients, salts, and potentially toxic metals (e.g., Mn, Zn, and Fe) Reduced chlorophyll content and increased β-carotene content. | [68] |
Rice | Secondary treatment with activated sludge system; filtration; UV treatment unit | T1: Groundwater; T2: Untreated domestic wastewater; T3: Reclaimed water Irrigation water level: 1–10 cm | Average crop growth in T2 and T3 increased approximately 7% than in T1 Concentrations of Cu and Zn were slightly higher in T3 than in T1, but with no adverse effects observed. | [72] |
Lettuce and leeks | Lagoon-based secondary treated | Surface drip irrigation T1: Tap water; T2: Raw domestic wastewater; T3: Reclaimed water; T4: Reclaimed water with a spiked with fourteen organic contaminants Water supply: 0.5 L/2 days in spring/fall and 1 L/2 days in summer | The accumulation of fourteen organic contaminants in soil and crops was very limited when using reclaimed water, even after five successive lettuce crops Longer growing period did not imply higher contaminants accumulation | [73] |
Only soil restoration | Lagoon-based secondary treatment | T1: Reclaimed water; T2: Freshwater (control) Water supply: 6000 m3/ha.year 10 years treatment | T1 increased the average values of electrical conductivity up to 147% compared to control (values below 4 dS/m) and sodium absorption ratio up to 76% (values below the limits of FAO) Values of Cd were twice higher than its maximum allowable limit | [69] |
Lettuce | Grease tap, septic tank, microalgae tank, anaerobic sludge digestor, two wetlands | Drip irrigation T1: drinking water with conventional fertilization; T2: reclaimed water with partial conventional fertilization Water supply: field capacity; 4 L/h | T1 offers nutrients to the crop only during fertigation (20–30 days growth); T2 offers nutrients to the crop during the entire cultivation cycle Deficiency in lettuce levels for B, Cu, Fe, Mn, and Zn for T1 and T2 The concentration of Cu, Fe, and Zn in the soil was not affected by T2 The presence of E. coli was not detected during the experiment | [71] |
5. Conclusions and Future Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ritchie, H.; Roser, M. Water Use and Stress. Available online: https://ourworldindata.org/water-use-stress (accessed on 13 September 2022).
- Veolia. Wastewater Reuse, a Second Life for an Essential Resource. Available online: https://www.veolia.com/en/solution/wastewater-reuse-recycling-water-stress (accessed on 13 September 2022).
- US EPA. Basic Information about Water Reuse. Available online: https://www.epa.gov/waterreuse/basic-information-about-water-reuse (accessed on 12 September 2022).
- EEA (European Environmental Agency). European Waters: Assessment of Status and Pressures 2018. Available online: https://www.eea.europa.eu/publications/state-of-water (accessed on 13 September 2022).
- United Nations. The Sustainable Development Goals Report. Available online: https://unstats.un.org/sdgs/report/2022/The-Sustainable-Development-Goals-Report-2022.pdf (accessed on 14 September 2022).
- European Commission Water Scarcity: Commission Advises on Safe Water Reuse in Agriculture. Available online: https://environment.ec.europa.eu/news/water-scarcity-commission-advises-safe-water-reuse-agriculture-2022-08-03_en (accessed on 12 September 2022).
- European Comission. Regulation (EU) 2020/741 of the European Parliament and of the Council of 25 May 2020 on Minimum Requirements for Water Reuse. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32020R0741&from=EN (accessed on 14 September 2022).
- European Commission. Farm to Fork Strategy: For a Fair, Healty and Environmentally-Friendly Food System. DG SANTE/Unit ‘Food Inf. Compos. Food Waste’ 2020. Available online: https://food.ec.europa.eu/system/files/2020-05/f2f_action-plan_2020_strategy-info_en.pdf (accessed on 14 September 2022).
- Santos, A.F.; Santos, C.P.; Matos, A.M.; Cardoso, O.; Quina, M.J. Effect of Thermal Drying and Chemical Treatments with Wastes on Microbiological Contamination Indicators in Sewage Sludge. Microorganisms 2020, 8, 376. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Langaas, S. Microplastics (MP) in Sewage Sludge and Agriculture. Available online: https://phosphorusplatform.eu/images/download/ESPP-meeting-sludge-2018/ESPP-4-12-2018-Langaas.pdf (accessed on 8 November 2020).
- US EPA. Guidelines for Water Reuse; US EPA: Washington, DC, USA, 2012.
- United Nations World Water Assessment Programme. The United Nations World Water Development Report. Wastewater: The Untapped Resource; United Nations World Water Assessment Programme: Paris, France, 2017. [Google Scholar]
- Lahlou, F.Z.; Mackey, H.R.; Al-Ansari, T. Wastewater reuse for livestock feed irrigation as a sustainable practice: A socio-environmental-economic review. J. Clean. Prod. 2021, 294, 126331. [Google Scholar] [CrossRef]
- Santos, A.F.; Almeida, P.V.; Alvarenga, P.; Gando-Ferreira, L.M.; Quina, M.J. From wastewater to fertilizer products: Alternative paths to mitigate phosphorus demand in European countries. Chemosphere 2021, 284, 131258. [Google Scholar] [CrossRef]
- N.119/2019, D.-L. Regime Jurídico de Produção de Água Para Reutilização, Obtida a Partir do Tratamento de Águas Residuais, Bem Como da Sua Utilização. Diário da República no 159, Série I 21 Agosto 2019. 2019, pp. 21–44. Available online: https://dre.pt/dre/detalhe/decreto-lei/119-2019-124097549 (accessed on 15 September 2022).
- WHO. A Compendium of Standards for Wastewater Reuse in the Eastern Mediterranean Region; WHO: Cairo, Egypt, 2006.
- Pescod, M.B. Wastewater Treatment and Use in Agriculture, 1st ed.; Publications Division: Rome, Italy, 1992. [Google Scholar]
- Real Decreto 1620/2007 Régimen Jurídico de la Reutilización de Las Aguas Depuradas; Boletín of del Estado no 294; Ministerio de la Presidencia: Georgetown, Guyana, 2007; pp. 50639–50661. Available online: https://www.boe.es/buscar/doc.php?id=BOE-A-2007-21092 (accessed on 15 September 2022).
- Hadjigeorgiou, P. Reuse of Treated Effluent in Cyprus. Available online: https://www.riob.org/sites/default/files/IMG/pdf/TR1-9_Reuse_of_Treated_Effluent_in_Cyprus_-_Panayota_Hadjigeorgiou.pdf (accessed on 21 September 2022).
- Arrêté du 2 août 2010 Utilisation D’eaux Issues du Traitement D’épuration des Eaux Résiduaires Urbaines Pour L’irrigation de Cultures ou D’espaces Verts. J. Off. la République Française no201 du 31 août 2010. 2010. Available online: https://www.legifrance.gouv.fr/loda/id/JORFTEXT000022753522 (accessed on 15 September 2022).
- Gancheve, M.; McNeill, A.; Muro, M. Water Reuse–Legislative Framework in EU Regions. Available online: https://cor.europa.eu/en/engage/studies/Documents/Water-reuse.pdf (accessed on 7 December 2022).
- Norton-Brandão, D.; Scherrenberg, S.M.; van Lier, J.B. Reclamation of used urban waters for irrigation purposes—A review of treatment technologies. J. Environ. Manag. 2013, 122, 85–98. [Google Scholar] [CrossRef] [PubMed]
- Ofori, S.; Puškáčová, A.; Růžičková, I.; Wanner, J. Treated wastewater reuse for irrigation: Pros and cons. Sci. Total Environ. 2021, 760, 144026. [Google Scholar] [CrossRef] [PubMed]
- Shoushtarian, F.; Negahban-Azar, M. Worldwide Regulations and Guidelines for Agricultural Water Reuse: A Critical Review. Water 2020, 12, 971. [Google Scholar] [CrossRef] [Green Version]
- Mainardis, M.; Cecconet, D.; Moretti, A.; Callegari, A.; Goi, D.; Freguia, S.; Capodaglio, A.G. Wastewater fertigation in agriculture: Issues and opportunities for improved water management and circular economy. Environ. Pollut. 2022, 296, 118755. [Google Scholar] [CrossRef]
- Shakir, E.; Zahraw, Z.; Al-Obaidy, A.H. Environmental and health risks associated with reuse of wastewater for irrigation. Egypt. J. Pet. 2017, 26, 95–102. [Google Scholar] [CrossRef] [Green Version]
- European Commission. Guidelines to Support the Application of Regulation 2020/741 on Minimum Requirements for Water Reuse. 2022. Available online: https://environment.ec.europa.eu/publications/minimum-requirements-water-reuse-guidelines_en (accessed on 14 September 2022).
- Rimoldi, S.G.; Stefani, F.; Gigantiello, A.; Polesello, S.; Comandatore, F.; Mileto, D.; Maresca, M.; Longobardi, C.; Mancon, A.; Romeri, F.; et al. Presence and infectivity of SARS-CoV-2 virus in wastewaters and rivers. Sci. Total Environ. 2020, 744, 140911. [Google Scholar] [CrossRef]
- Baldovin, T.; Amoruso, I.; Fonzo, M.; Buja, A.; Baldo, V.; Cocchio, S.; Bertoncello, C. SARS-CoV-2 RNA detection and persistence in wastewater samples: An experimental network for COVID-19 environmental surveillance in Padua, Veneto Region (NE Italy). Sci. Total Environ. 2021, 760, 143329. [Google Scholar] [CrossRef]
- Chojnacka, K.; Witek-Krowiak, A.; Moustakas, K.; Skrzypczak, D.; Mikula, K.; Loizidou, M. A transition from conventional irrigation to fertigation with reclaimed wastewater: Prospects and challenges. Renew. Sustain. Energy Rev. 2020, 130, 109959. [Google Scholar] [CrossRef]
- Fertilizers Europe. Nutrient Stewardship: Fertilizer Application, Food & Nutrition, and Nutrient Recycling. 2016. Available online: https://www.fertilizerseurope.com/wp-content/uploads/2019/08/Nutrient_Stewardship_Sept_2016_websize.pdf (accessed on 17 September 2022).
- Hu, P.; Ren, J.; Hu, X.; Yang, H. Comparison of two starch-based flocculants with polyacrylamide for the simultaneous removal of phosphorus and turbidity from simulated and actual wastewater samples in combination with FeCl3. Int. J. Biol. Macromol. 2021, 167, 223–232. [Google Scholar] [CrossRef] [PubMed]
- Bashir, A.; Wang, L.; Deng, S.; Liu, J.; Tian, J.; Qiu, B.; Cheng, X. Phosphorus release during alkaline treatment of waste activated sludge from wastewater treatment plants with Al salt enhanced phosphorus removal: Speciation and mechanism clarification. Sci. Total Environ. 2019, 688, 87–93. [Google Scholar] [CrossRef] [PubMed]
- Zheng, Y.; Wang, B.; Wester, A.E.; Chen, J.; He, F.; Chen, H.; Gao, B. Reclaiming phosphorus from secondary treated municipal wastewater with engineered biochar. Chem. Eng. J. 2019, 362, 460–468. [Google Scholar] [CrossRef]
- Martí, N.; Pastor, L.; Bouzas, A.; Ferrer, J.; Seco, A. Phosphorus recovery by struvite crystallization in WWTPs: Influence of the sludge treatment line operation. Water Res. 2010, 44, 2371–2379. [Google Scholar] [CrossRef] [Green Version]
- Wei, J.; Ge, J.; Rouff, A.A.; Wen, X.; Meng, X.; Song, Y. Phosphorus recovery from wastewater using light calcined magnesite, effects of alkalinity and organic acids. J. Environ. Chem. Eng. 2019, 7, 103334. [Google Scholar] [CrossRef]
- Egle, L.; Rechberger, H.; Zessner, M. Overview and description of technologies for recovering phosphorus from municipal wastewater. Resour. Conserv. Recycl. 2015, 105, 325–346. [Google Scholar] [CrossRef]
- Pinnekamp, J.; Montag, D.; Gethke, K.; Herbst, H. Recovery of a Pollutant-Free, Mineral Combination Fertilizer Magnesium Ammonium Phosphate—MAP from Wastewater and Sewage Sludge. Available online: https://www.umweltbundesamt.de/sites/default/files/medien/publikation/long/3256.pdf (accessed on 17 September 2022).
- Aboukarima, A.M.; Al-Sulaiman, M.A.; El Marazky, M.S. Effect of sodium adsorption ratio and electric conductivity of the applied water on infiltration in a sandy-loam soil. Water SA 2018, 44, 105–110. [Google Scholar] [CrossRef] [Green Version]
- Roccaro, P. Treatment processes for municipal wastewater reclamation: The challenges of emerging contaminants and direct potable reuse. Curr. Opin. Environ. Sci. Health 2018, 2, 46–54. [Google Scholar] [CrossRef]
- Paranychianakis, N.V.; Salgot, M.; Snyder, S.A.; Angelakis, A.N. Water Reuse in EU States: Necessity for Uniform Criteria to Mitigate Human and Environmental Risks. Crit. Rev. Environ. Sci. Technol. 2015, 45, 1409–1468. [Google Scholar] [CrossRef]
- Zhao, P.; Ma, M.; Hu, Y.; Wu, W.; Xiao, J. Comparison of international standards for irrigation with reclaimed water. Agric. Water Manag. 2022, 274, 107974. [Google Scholar] [CrossRef]
- Aquares-Interreg Europe; RRAPK. Water Reuse Technology Application Guide. Available online: https://projects2014-2020.interregeurope.eu/fileadmin/user_upload/tx_tevprojects/library/file_1602654845.pdf (accessed on 25 September 2022).
- Rizzo, L. Addressing main challenges in the tertiary treatment of urban wastewater: Are homogeneous photodriven AOPs the answer? Environ. Sci. Water Res. Technol. 2022, 8, 2145–2169. [Google Scholar] [CrossRef]
- Hai, F.; Riley, T.; Shawkat, S.; Magram, S.; Yamamoto, K. Removal of Pathogens by Membrane Bioreactors: A Review of the Mechanisms, Influencing Factors and Reduction in Chemical Disinfectant Dosing. Water 2014, 6, 3603–3630. [Google Scholar] [CrossRef]
- Marti, E.; Monclús, H.; Jofre, J.; Rodriguez-Roda, I.; Comas, J.; Balcázar, J.L. Removal of microbial indicators from municipal wastewater by a membrane bioreactor (MBR). Bioresour. Technol. 2011, 102, 5004–5009. [Google Scholar] [CrossRef]
- Hosseinzadeh, M.; Bidhendi, G.N.; Torabian, A.; Mehrdadi, N. Evaluation of membrane bioreactor for advanced treatment of industrial wastewater and reverse osmosis pretreatment. J. Environ. Health Sci. Eng. 2013, 11, 34. [Google Scholar] [CrossRef] [Green Version]
- Goswami, L.; Kumar, R.V.; Borah, S.N.; Arul Manikandan, N.; Pakshirajan, K.; Pugazhenthi, G. Membrane bioreactor and integrated membrane bioreactor systems for micropollutant removal from wastewater: A review. J. Water Process Eng. 2018, 26, 314–328. [Google Scholar] [CrossRef]
- Srinivasa Raghavan, D.S.; Qiu, G.; Ting, Y.-P. Fate and removal of selected antibiotics in an osmotic membrane bioreactor. Chem. Eng. J. 2018, 334, 198–205. [Google Scholar] [CrossRef]
- Kehrein, P.; van Loosdrecht, M.; Osseweijer, P.; Garfí, M.; Dewulf, J.; Posada, J. A critical review of resource recovery from municipal wastewater treatment plants—Market supply potentials, technologies and bottlenecks. Environ. Sci. Water Res. Technol. 2020, 6, 877–910. [Google Scholar] [CrossRef] [Green Version]
- Du, L.; Trinh, X.; Chen, Q.; Wang, C.; Wang, H.; Xia, X.; Zhou, Q.; Xu, D.; Wu, Z. Enhancement of microbial nitrogen removal pathway by vegetation in Integrated Vertical-Flow Constructed Wetlands (IVCWs) for treating reclaimed water. Bioresour. Technol. 2018, 249, 644–651. [Google Scholar] [CrossRef]
- Du, L.; Chen, Q.; Liu, P.; Zhang, X.; Wang, H.; Zhou, Q.; Xu, D.; Wu, Z. Phosphorus removal performance and biological dephosphorization process in treating reclaimed water by Integrated Vertical-flow Constructed Wetlands (IVCWs). Bioresour. Technol. 2017, 243, 204–211. [Google Scholar] [CrossRef]
- Matamoros, V.; Caiola, N.; Rosales, V.; Hernández, O.; Ibáñez, C. The role of rice fields and constructed wetlands as a source and a sink of pesticides and contaminants of emerging concern: Full-scale evaluation. Ecol. Eng. 2020, 156, 105971. [Google Scholar] [CrossRef]
- Anawar, H.M.; Ahmed, G.; Strezov, V. Long-term performance and feasibility of using constructed wetlands for treatment of emerging and nanomaterial contaminants in municipal and industrial wastewater. In Emerging and Nanomaterial Contaminants in Wastewater; Elsevier: Amsterdam, The Netherlands, 2019; pp. 63–81. [Google Scholar]
- Melia, P.M.; Cundy, A.B.; Sohi, S.P.; Hooda, P.S.; Busquets, R. Trends in the recovery of phosphorus in bioavailable forms from wastewater. Chemosphere 2017, 186, 381–395. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rittmann, B.E.; Mayer, B.; Westerhoff, P.; Edwards, M. Capturing the lost phosphorus. Chemosphere 2011, 84, 846–853. [Google Scholar] [CrossRef] [PubMed]
- Gutierrez, F.; Kinney, K.A.; Katz, L.E. Phosphorus speciation in municipal wastewater solids and implications for phosphorus recovery. Environ. Eng. Sci. 2020, 37, 316–327. [Google Scholar] [CrossRef]
- Cichy, B.; Kużdżał, E.; Krztoń, H. Phosphorus recovery from acidic wastewater by hydroxyapatite precipitation. J. Environ. Manag. 2019, 232, 421–427. [Google Scholar] [CrossRef]
- Al-Mallahi, J.; Sürmeli, R.Ö.; Çalli, B. Recovery of phosphorus from liquid digestate using waste magnesite dust. J. Clean. Prod. 2020, 272, 122616. [Google Scholar] [CrossRef]
- Li, M.; Sun, H.; Zhang, H.; Mohammed, A.; Liu, Y.; Lu, Q. Phosphorus recovery from synthetic biosolid digestion supernatant through lignin-induced struvite precipitation. J. Clean. Prod. 2020, 276, 124235. [Google Scholar] [CrossRef]
- Monballiu, A.; Ghyselbrecht, K.; Pinoy, L.; Meesschaert, B. Phosphorus reclamation by end-of-pipe recovery as calcium phosphate from effluent of wastewater treatment plants of agroindustry. J. Environ. Chem. Eng. 2020, 8, 104280. [Google Scholar] [CrossRef]
- Xia, W.J.; Xu, L.Z.; Yu, L.Q.; Zhang, Q.; Zhao, Y.H.; Xiong, J.R.; Zhu, X.Y.; Fan, N.S.; Huang, B.C.; Jin, R.C. Conversion of municipal wastewater-derived waste to an adsorbent for phosphorus recovery from secondary effluent. Sci. Total Environ. 2020, 705, 135959. [Google Scholar] [CrossRef]
- Santos, A.F.; Arim, A.L.; Lopes, D.V.; Gando-Ferreira, L.M.; Quina, M.J. Recovery of phosphate from aqueous solutions using calcined eggshell as an eco-friendly adsorbent. J. Environ. Manag. 2019, 238, 451–459. [Google Scholar] [CrossRef]
- Li, R.; Wang, J.J.; Zhou, B.; Awasthi, M.K.; Ali, A.; Zhang, Z.; Lahori, A.H.; Mahar, A. Recovery of phosphate from aqueous solution by magnesium oxide decorated magnetic biochar and its potential as phosphate-based fertilizer substitute. Bioresour. Technol. 2016, 215, 209–214. [Google Scholar] [CrossRef] [Green Version]
- Rodriguez-Mozaz, S.; Ricart, M.; Kock-Schulmeyer, M.; Guasch, H.; Bonnineau, C.; Proia, L.; Lopez de Alda, M.; Sabater, S.; Barceló, D. Pharmaceuticals and pesticides in reclaimed water: Efficiency assessment of a microfiltration-reverse osmosis (MF-RO) pilot plant. J. Hazard. Mater. 2015, 282, 165–173. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hashem, M.S.; Qi, X. Treated Wastewater Irrigation—A Review. Water 2021, 13, 1527. [Google Scholar] [CrossRef]
- Randaci, A. Common Plant Diseases. Available online: https://earthsally.com/disease-control/common-plant-diseases.html (accessed on 6 December 2022).
- Bedbabis, S.; Trigui, D.; Ben Ahmed, C.; Clodoveo, M.L.; Camposeo, S.; Vivaldi, G.A.; Ben Rouina, B. Long-terms effects of irrigation with treated municipal wastewater on soil, yield and olive oil quality. Agric. Water Manag. 2015, 160, 14–21. [Google Scholar] [CrossRef]
- Jahany, M.; Rezapour, S. Assessment of the quality indices of soils irrigated with treated wastewater in a calcareous semi-arid environment. Ecol. Indic. 2020, 109, 105800. [Google Scholar] [CrossRef]
- Kabata-Pendias, A. Trace Elements in Soils and Plants, 4th ed.; Taylor & Francis: Boca Raton, FL, USA, 2010. [Google Scholar]
- Urbano, V.R.; Mendonça, T.G.; Bastos, R.G.; Souza, C.F. Effects of treated wastewater irrigation on soil properties and lettuce yield. Agric. Water Manag. 2017, 181, 108–115. [Google Scholar] [CrossRef]
- Jung, K.; Jang, T.; Jeong, H.; Park, S. Assessment of growth and yield components of rice irrigated with reclaimed wastewater. Agric. Water Manag. 2014, 138, 17–25. [Google Scholar] [CrossRef]
- Manasfi, R.; Brienza, M.; Ait-Mouheb, N.; Montemurro, N.; Perez, S.; Chiron, S. Impact of long-term irrigation with municipal reclaimed wastewater on the uptake and degradation of organic contaminants in lettuce and leek. Sci. Total Environ. 2021, 765, 142742. [Google Scholar] [CrossRef]
- Petousi, I.; Daskalakis, G.; Fountoulakis, M.S.; Lydakis, D.; Fletcher, L.; Stentiford, E.I.; Manios, T. Effects of treated wastewater irrigation on the establishment of young grapevines. Sci. Total Environ. 2019, 658, 485–492. [Google Scholar] [CrossRef]
- European Commission. Water Reuse: Regulation on Minimum Requirements for Water Reuse. Available online: https://ec.europa.eu/environment/water/reuse.htm (accessed on 10 December 2022).
- Fito, J.; Van Hulle, S.W. Wastewater reclamation and reuse potentials in agriculture: Towards environmental sustainability. Environ. Dev. Sustain. 2021, 23, 2949–2972. [Google Scholar] [CrossRef]
Pathogen | Examples | Examples of Diseases for Humans | Reference Pathogen (Indicator) |
---|---|---|---|
Bacteria | Salmonella | Gastroenteritis (diarrhea, vomiting, fever) | E. coli |
Vibrio cholera | Cholera | ||
Pathogenic E. coli | Gastroenteritis and septicemia | ||
Protozoa | Entamoeba | Amebiasis | Cryptosporidium |
Giardia | Gastroenteritis | ||
Cryptosporidium | Diarrhea, fever | ||
Helminths | Ascaris | Ascariasis | Intestinal nematodes (Helminth eggs) |
Ancylostoma | Ancylostomiasis | ||
Necator | Necatoriasis | ||
Viruses | Enteroviruses | Gastroenteritis, heart anomalies | Rotavirus |
Adenovirus | Respiratory disease, eye infection | ||
Rotavirus SARS-CoV-2 virus [28,29] | Gastroenteritis Respiratory disease |
Levels of Treatment in WWTP | |||
---|---|---|---|
Primary | Secondary | Tertiary/Advanced | |
Technologies | Screening Sand removal Primary sedimentation Flotation | Biological processes (e.g., activated sludge, anaerobic treatment) Secondary sedimentation | Chemical coagulation Disinfection (e.g., chlorination, ozonation, photo-driven processes) Microfiltration; nanofiltration; ultrafiltration Adsorption Ion exchange Reverse osmosis Electrodialysis |
End-use of reclaimed water | No uses recommended | Surface irrigation of orchards and vineyards Non-food crop irrigation Restricted landscape irrigation | Food crop irrigation Vehicle washing Irrigation of recreation fields Industrial applications Indirect potable reuse |
Human exposure | Higher risk for human exposure | Medium risk for human exposure | Low risk for human exposure |
Cost | Low | Medium | High |
Removal of Target Pollutants | ||||||
---|---|---|---|---|---|---|
Technology | Advantages (A)/Disadvantages (D) | Pathogenic Microorganisms | Nutrients | Potentially Toxic Metals | Remain Solids | CEC |
UV disinfection | (A) Fast, efficient, and cost-effective process (D) Formation of harmful by-products | +++ | 0 | 0 | 0 | + |
Chlorination | +++ | + | 0 | 0 | + | |
Ozonation | ++ | + | 0 | + | +++ | |
Nutrients biological removal | (A) Requires less or no chemical addition (D) Complex process; Large space requirements | + | +++ (N and P) | 0 | ++ | 0 |
Ion exchange | (A) Selective and reverse process (D) Formation of organic contaminants from the resin | + | ++ | ++ | 0 | ++ |
Chemical precipitation | (A) Simple operation; Less probability of releasing potentially toxic metals (D) High chemical requirements | 0 | +++ (P) | +++ | ++ | 0 |
Adsorption | (A) Simple operation and design (D) High requirements for adsorbents | + | ++ | ++ | 0 | ++ |
Constructed wetlands | (A) Low energy input; Cost-effective (D) Performance depending on season; Large area footprint | + | 0 | ++ | ++ | ++ |
Nanofiltration/ Reverse osmosis | (A) Need for less space; Physical barrier against particle material; No by-product formation (D) High energy is required for nanofiltration and reverse osmosis; High investment | +++ | +++ (N and P) | +++ | + | +++ |
Microfiltration/ ultrafiltration | ++ | + | 0 | +++ | 0 | |
Membrane bioreactors | (A) Higher mixed liquor-suspended solids concentration, allowing smaller reactors (D) Complex process; High equipment and operation costs | ++ | ++ | 0 | +++ | + |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Santos, A.F.; Alvarenga, P.; Gando-Ferreira, L.M.; Quina, M.J. Urban Wastewater as a Source of Reclaimed Water for Irrigation: Barriers and Future Possibilities. Environments 2023, 10, 17. https://doi.org/10.3390/environments10020017
Santos AF, Alvarenga P, Gando-Ferreira LM, Quina MJ. Urban Wastewater as a Source of Reclaimed Water for Irrigation: Barriers and Future Possibilities. Environments. 2023; 10(2):17. https://doi.org/10.3390/environments10020017
Chicago/Turabian StyleSantos, Andreia F., Paula Alvarenga, Licínio M. Gando-Ferreira, and Margarida J. Quina. 2023. "Urban Wastewater as a Source of Reclaimed Water for Irrigation: Barriers and Future Possibilities" Environments 10, no. 2: 17. https://doi.org/10.3390/environments10020017
APA StyleSantos, A. F., Alvarenga, P., Gando-Ferreira, L. M., & Quina, M. J. (2023). Urban Wastewater as a Source of Reclaimed Water for Irrigation: Barriers and Future Possibilities. Environments, 10(2), 17. https://doi.org/10.3390/environments10020017