A Quantitative Review of Brain Activation Maps for Mentalizing, Empathy, and Social Interactions: Specifying Commonalities and Differences
Abstract
1. Introduction
1.1. Mentalizing and Empathy
1.2. Social Interaction Engagement
1.3. Aims of the Review
2. Materials and Methods
2.1. Data Sources
2.2. Meta-Analytic Procedure
2.3. Voxel-Wise Overlap Analysis
2.4. Network-Level Mapping
3. Results
4. Discussion
4.1. Social Interaction Engagement Co-Recruits Cognitive and Affective Processes
4.2. Effects of Valence on Social Interaction Engagement
4.3. A Brain Network Perspective
4.4. Limitations and Future Directions
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Adolphs, R. (2009). The social brain: Neural basis of social knowledge. Annual Review of Psychology, 60(1), 693–716. [Google Scholar] [CrossRef] [PubMed]
- Alcalá-López, D., Smallwood, J., Jefferies, E., Van Overwalle, F., Vogeley, K., Mars, R. B., Turetsky, B. I., Laird, A. R., Fox, P. T., Eickhoff, S. B., & Bzdok, D. (2018). Computing the social brain connectome across systems and states. Cerebral Cortex, 28(7), 2207–2232. [Google Scholar] [CrossRef]
- Arioli, M., & Canessa, N. (2019). Neural processing of social interaction: Coordinate-based meta-analytic evidence from human neuroimaging studies. Human Brain Mapping, 40(13), 3712–3737. [Google Scholar] [CrossRef] [PubMed]
- Arioli, M., Cattaneo, Z., Ricciardi, E., & Canessa, N. (2021). Overlapping and specific neural correlates for empathizing, affective mentalizing, and cognitive mentalizing: A coordinate-based meta-analytic study. Human Brain Mapping, 42(14), 4777–4804. [Google Scholar] [CrossRef] [PubMed]
- Assaf, M., Kahn, I., Pearlson, G. D., Johnson, M. R., Yeshurun, Y., Calhoun, V. D., & Hendler, T. (2009). Brain activity dissociates mentalization from motivation during an interpersonal competitive game. Brain Imaging and Behavior, 3(1), 24–37. [Google Scholar] [CrossRef] [PubMed]
- Bloom, P. (2017). Empathy and its discontents. Trends in Cognitive Sciences, 21(1), 24–31. [Google Scholar] [CrossRef]
- Boss, L., Kang, D.-H., & Branson, S. (2015). Loneliness and cognitive function in the older adult: A systematic review. International Psychogeriatrics, 27(4), 541–553. [Google Scholar] [CrossRef]
- Bzdok, D., Langner, R., Schilbach, L., Jakobs, O., Roski, C., Caspers, S., Laird, A. R., Fox, P. T., Zilles, K., & Eickhoff, S. B. (2013). Characterization of the temporo-parietal junction by combining data-driven parcellation, complementary connectivity analyses, and functional decoding. NeuroImage, 81, 381–392. [Google Scholar] [CrossRef]
- Carrillo, M., Han, Y., Migliorati, F., Liu, M., Gazzola, V., & Keysers, C. (2019). Emotional mirror neurons in the rat’s anterior cingulate cortex. Current Biology, 29(8), 1301–1312.e6. [Google Scholar] [CrossRef]
- Chai, X. J., Castañón, A. N., Öngür, D., & Whitfield-Gabrieli, S. (2012). Anticorrelations in resting state networks without global signal regression. NeuroImage, 59(2), 1420–1428. [Google Scholar] [CrossRef]
- Chaminade, T., Rosset, D., Da Fonseca, D., Nazarian, B., Lutscher, E., Cheng, G., & Deruelle, C. (2012). How do we think machines think? An fMRI study of alleged competition with an artificial intelligence. Frontiers in Human Neuroscience, 6, 103. [Google Scholar] [CrossRef] [PubMed]
- Cole, M. W., Ito, T., Bassett, D. S., & Schultz, D. H. (2016). Activity flow over resting-state networks shapes cognitive task activations. Nature Neuroscience, 19(12), 1718–1726. [Google Scholar] [CrossRef] [PubMed]
- Cole, M. W., Repovš, G., & Anticevic, A. (2014). The frontoparietal control system: A central role in mental health. The Neuroscientist, 20(6), 652–664. [Google Scholar] [CrossRef] [PubMed]
- Corradi-Dell’Acqua, C., Tusche, A., Vuilleumier, P., & Singer, T. (2016). Cross-modal representations of first-hand and vicarious pain, disgust and fairness in insular and cingulate cortex. Nature Communications, 7(1), 10904. [Google Scholar] [CrossRef]
- Cutler, J., & Campbell-Meiklejohn, D. (2019). A comparative fMRI meta-analysis of altruistic and strategic decisions to give. NeuroImage, 184, 227–241. [Google Scholar] [CrossRef] [PubMed]
- Decety, J., Jackson, P. L., Sommerville, J. A., Chaminade, T., & Meltzoff, A. N. (2004). The neural bases of cooperation and competition: An fMRI investigation. NeuroImage, 23(2), 744–751. [Google Scholar] [CrossRef]
- Defendini, A., & Jenkins, A. C. (2023). Dissociating neural sensitivity to target identity and mental state content type during inferences about other minds. Social Neuroscience, 18(2), 103–121. [Google Scholar] [CrossRef] [PubMed]
- Ding, R., Ren, J., Li, S., Zhu, X., Zhang, K., & Luo, W. (2020). Domain-general and domain-preferential neural correlates underlying empathy towards physical pain, emotional situation and emotional faces: An ALE meta-analysis. Neuropsychologia, 137, 107286. [Google Scholar] [CrossRef]
- Dosenbach, N. U. F., Fair, D. A., Cohen, A. L., Schlaggar, B. L., & Petersen, S. E. (2008). A dual-networks architecture of top-down control. Trends in Cognitive Sciences, 12(3), 99–105. [Google Scholar] [CrossRef]
- Eickhoff, S. B., Bzdok, D., Laird, A. R., Kurth, F., & Fox, P. T. (2012). Activation likelihood estimation meta-analysis revisited. NeuroImage, 59(3), 2349–2361. [Google Scholar] [CrossRef]
- Eickhoff, S. B., Laird, A. R., Fox, P. M., Lancaster, J. L., & Fox, P. T. (2017). Implementation errors in the GingerALE Software: Description and recommendations. Human Brain Mapping, 38(1), 7–11. [Google Scholar] [CrossRef] [PubMed]
- Eikelboom, W. S., van den Berg, E., Beauchamp, M. H., Bray, K. O., Kumfor, F., MacPherson, S. E., McDonald, S., Spikman, J. M., & Kessels, R. P. C. (2025). Providing a taxonomy for social cognition: How to bridge the gap between expert opinion, empirical data, and theoretical models. Journal of Psychiatry and Neuroscience, 50(3), E157–E161. [Google Scholar] [CrossRef]
- Fan, Y., Duncan, N. W., de Greck, M., & Northoff, G. (2011). Is there a core neural network in empathy? An fMRI based quantitative meta-analysis. Neuroscience & Biobehavioral Reviews, 35(3), 903–911. [Google Scholar] [CrossRef]
- Feng, C., Eickhoff, S. B., Li, T., Wang, L., Becker, B., Camilleri, J. A., Hétu, S., & Luo, Y. (2021). Common brain networks underlying human social interactions: Evidence from large-scale neuroimaging meta-analysis. Neuroscience & Biobehavioral Reviews, 126, 289–303. [Google Scholar] [CrossRef]
- Fox, M. D., Snyder, A. Z., Vincent, J. L., Corbetta, M., Van Essen, D. C., & Raichle, M. E. (2005). The human brain is intrinsically organized into dynamic, anticorrelated functional networks. Proceedings of the National Academy of Sciences of the United States of America, 102(27), 9673–9678. [Google Scholar] [CrossRef] [PubMed]
- Fukui, H., Murai, T., Shinozaki, J., Aso, T., Fukuyama, H., Hayashi, T., & Hanakawa, T. (2006). The neural basis of social tactics: An fMRI study. NeuroImage, 32(2), 913–920. [Google Scholar] [CrossRef]
- Gabay, A. S., Radua, J., Kempton, M. J., & Mehta, M. A. (2014). The Ultimatum Game and the brain: A meta-analysis of neuroimaging studies. Neuroscience & Biobehavioral Reviews, 47, 549–558. [Google Scholar] [CrossRef]
- Gallagher, H. L., Jack, A. I., Roepstorff, A., & Frith, C. D. (2002). Imaging the intentional stance in a competitive game. NeuroImage, 16((3, Pt A)), 814–821. [Google Scholar] [CrossRef]
- Gallese, V., & Goldman, A. (1998). Mirror neurons and the simulation theory of mind-reading. Trends in Cognitive Sciences, 2(12), 493–501. [Google Scholar] [CrossRef]
- Goulden, N., Khusnulina, A., Davis, N. J., Bracewell, R. M., Bokde, A. L., McNulty, J. P., & Mullins, P. G. (2014). The salience network is responsible for switching between the default mode network and the central executive network: Replication from DCM. NeuroImage, 99, 180–190. [Google Scholar] [CrossRef]
- Haber, S. N., & Knutson, B. (2010). The reward circuit: Linking primate anatomy and human imaging. Neuropsychopharmacology, 35(1), 4–26. [Google Scholar] [CrossRef] [PubMed]
- Happé, F., Cook, J. L., & Bird, G. (2017). The structure of social cognition: In(ter)dependence of sociocognitive processes. Annual Review of Psychology, 68(1), 243–267. [Google Scholar] [CrossRef] [PubMed]
- Hardwick, R. M., Caspers, S., Eickhoff, S. B., & Swinnen, S. P. (2018). Neural correlates of action: Comparing meta-analyses of imagery, observation, and execution. Neuroscience & Biobehavioral Reviews, 94, 31–44. [Google Scholar] [CrossRef]
- Holt-Lunstad, J., Smith, T. B., & Layton, J. B. (2010). Social relationships and mortality risk: A meta-analytic review. PLoS Medicine, 7(7), e1000316. [Google Scholar] [CrossRef] [PubMed]
- Hooker, C. I., Verosky, S. C., Germine, L. T., Knight, R. T., & D’Esposito, M. (2010). Neural activity during social signal perception correlates with self-reported empathy. Brain Research, 1308, 100–113. [Google Scholar] [CrossRef]
- Kalbe, E., Schlegel, M., Sack, A. T., Nowak, D. A., Dafotakis, M., Bangard, C., Brand, M., Shamay-Tsoory, S., Onur, O. A., & Kessler, J. (2010). Dissociating cognitive from affective theory of mind: A TMS study. Cortex, 46(6), 769–780. [Google Scholar] [CrossRef] [PubMed]
- Kim, D. A., Benjamin, E. J., Fowler, J. H., & Christakis, N. A. (2016). Social connectedness is associated with fibrinogen level in a human social network. Proceedings of the Royal Society B: Biological Sciences, 283(1837), 20160958. [Google Scholar] [CrossRef]
- Kitzbichler, M. G., Henson, R. N. A., Smith, M. L., Nathan, P. J., & Bullmore, E. T. (2011). Cognitive effort drives workspace configuration of human brain functional networks. The Journal of Neuroscience, 31(22), 8259–8270. [Google Scholar] [CrossRef] [PubMed]
- Kogler, L., Müller, V. I., Werminghausen, E., Eickhoff, S. B., & Derntl, B. (2020). Do I feel or do I know? Neuroimaging meta-analyses on the multiple facets of empathy. Cortex, 129, 341–355. [Google Scholar] [CrossRef]
- Krach, S., Blümel, I., Marjoram, D., Lataster, T., Krabbendam, L., Weber, J., van Os, J., & Kircher, T. (2009). Are women better mindreaders? Sex differences in neural correlates of mentalizing detected with functional MRI. BMC Neuroscience, 10(1), 9. [Google Scholar] [CrossRef]
- Kuiper, J. S., Zuidersma, M., Oude Voshaar, R. C., Zuidema, S. U., van den Heuvel, E. R., Stolk, R. P., & Smidt, N. (2015). Social relationships and risk of dementia: A systematic review and meta-analysis of longitudinal cohort studies. Ageing Research Reviews, 22, 39–57. [Google Scholar] [CrossRef] [PubMed]
- Kurina, L. M., Knutson, K. L., Hawkley, L. C., Cacioppo, J. T., Lauderdale, D. S., & Ober, C. (2011). Loneliness is associated with sleep fragmentation in a communal society. Sleep, 34(11), 1519–1526. [Google Scholar] [CrossRef] [PubMed]
- Lamm, C., Decety, J., & Singer, T. (2011). Meta-analytic evidence for common and distinct neural networks associated with directly experienced pain and empathy for pain. NeuroImage, 54(3), 2492–2502. [Google Scholar] [CrossRef] [PubMed]
- Le Bouc, R., & Pessiglione, M. (2013). Imaging social motivation: Distinct brain mechanisms drive effort production during collaboration versus competition. Journal of Neuroscience, 33(40), 15894–15902. [Google Scholar] [CrossRef]
- Li, Q., Lai, X., Li, T., Madsen, K. H., Xiao, J., Hu, K., Feng, C., Fu, D., & Liu, X. (2024). Brain responses to self- and other- unfairness under resource distribution context: Meta-analysis of fMRI studies. NeuroImage, 297, 120707. [Google Scholar] [CrossRef] [PubMed]
- Lieberman, M. D. (2007). Social cognitive neuroscience: A review of core processes. Annual Review of Psychology, 58, 259–289. [Google Scholar] [CrossRef]
- Maliske, L. Z., Schurz, M., & Kanske, P. (2023). Interactions within the social brain: Co-activation and connectivity among networks enabling empathy and Theory of Mind. Neuroscience & Biobehavioral Reviews, 147, 105080. [Google Scholar] [CrossRef]
- Mazoyer, B., Zago, L., Mellet, E., Bricogne, S., Etard, O., Houdé, O., Crivello, F., Joliot, M., Petit, L., & Tzourio-Mazoyer, N. (2001). Cortical networks for working memory and executive functions sustain the conscious resting state in man. Brain Research Bulletin, 54(3), 287–298. [Google Scholar] [CrossRef] [PubMed]
- Merrill, F. E. (1965). Society and culture, an introduction to sociology. Prentice-Hall. [Google Scholar]
- Molenberghs, P., Johnson, H., Henry, J. D., & Mattingley, J. B. (2016). Understanding the minds of others: A neuroimaging meta-analysis. Neuroscience & Biobehavioral Reviews, 65, 276–291. [Google Scholar] [CrossRef]
- Pressman, S. D., Cohen, S., Miller, G. E., Barkin, A., Rabin, B. S., & Treanor, J. J. (2005). Loneliness, social network size, and immune response to influenza vaccination in college freshmen. Health Psychology, 24(3), 297–306. [Google Scholar] [CrossRef]
- Preston, S. D., & de Waal, F. B. M. (2002). Empathy: Its ultimate and proximate bases. Behavioral and Brain Sciences, 25(1), 1–20. [Google Scholar] [CrossRef] [PubMed]
- Quesque, F., Apperly, I., Baillargeon, R., Baron-Cohen, S., Becchio, C., Bekkering, H., Bernstein, D., Bertoux, M., Bird, G., Bukowski, H., Burgmer, P., Carruthers, P., Catmur, C., Dziobek, I., Epley, N., Erle, T. M., Frith, C., Frith, U., Galang, C. M., … Brass, M. (2024). Defining key concepts for mental state attribution. Communications Psychology, 2(1), 29. [Google Scholar] [CrossRef]
- Quesque, F., & Rossetti, Y. (2020). What do theory-of-mind tasks actually measure? Theory and practice. Perspectives on Psychological Science, 15(2), 384–396. [Google Scholar] [CrossRef] [PubMed]
- Raichle, M. E., MacLeod, A. M., Snyder, A. Z., Powers, W. J., Gusnard, D. A., & Shulman, G. L. (2001). A default mode of brain function. Proceedings of the National Academy of Sciences of the United States of America, 98(2), 676–682. [Google Scholar] [CrossRef] [PubMed]
- Redcay, E., & Schilbach, L. (2019). Using second-person neuroscience to elucidate the mechanisms of social interaction. Nature Reviews Neuroscience, 20(8), 495–505. [Google Scholar] [CrossRef] [PubMed]
- Rhoads, S. A., Cutler, J., & Marsh, A. A. (2021). A feature-based network analysis and fMRI meta-analysis reveal three distinct types of prosocial decisions. Social Cognitive and Affective Neuroscience, 16(12), 1214–1233. [Google Scholar] [CrossRef]
- Riedl, R., Mohr, P. N. C., Kenning, P. H., Davis, F. D., & Heekeren, H. R. (2014). Trusting humans and avatars: A brain imaging study based on evolution theory. Journal of Management Information Systems, 30(4), 83–114. [Google Scholar] [CrossRef]
- Rilling, J. K., Sanfey, A. G., Aronson, J. A., Nystrom, L. E., & Cohen, J. D. (2004). The neural correlates of theory of mind within interpersonal interactions. NeuroImage, 22(4), 1694–1703. [Google Scholar] [CrossRef] [PubMed]
- Rizzolatti, G., & Craighero, L. (2004). The mirror-neuron system. Annual Review of Neuroscience, 27, 169–192. [Google Scholar] [CrossRef]
- Rorden, C., & Brett, M. (2000). Stereotaxic display of brain lesions. Behavioural Neurology, 12(4), 421719. [Google Scholar] [CrossRef]
- Rütgen, M., Seidel, E.-M., Silani, G., Riečanský, I., Hummer, A., Windischberger, C., Petrovic, P., & Lamm, C. (2015). Placebo analgesia and its opioidergic regulation suggest that empathy for pain is grounded in self pain. Proceedings of the National Academy of Sciences of the United States of America, 112(41), E5638–E5646. [Google Scholar] [CrossRef] [PubMed]
- Schaafsma, S. M., Pfaff, D. W., Spunt, R. P., & Adolphs, R. (2015). Deconstructing and reconstructing theory of mind. Trends in Cognitive Sciences, 19(2), 65–72. [Google Scholar] [CrossRef]
- Schilbach, L., Timmermans, B., Reddy, V., Costall, A., Bente, G., Schlicht, T., & Vogeley, K. (2013). Toward a second-person neuroscience. Behavioral and Brain Sciences, 36(4), 393–414. [Google Scholar] [CrossRef] [PubMed]
- Schlaffke, L., Lissek, S., Lenz, M., Juckel, G., Schultz, T., Tegenthoff, M., Schmidt-Wilcke, T., & Brüne, M. (2015). Shared and nonshared neural networks of cognitive and affective theory-of-mind: A neuroimaging study using cartoon picture stories: Cognitive and affective theory of mind. Human Brain Mapping, 36(1), 29–39. [Google Scholar] [CrossRef] [PubMed]
- Schurz, M., Maliske, L., & Kanske, P. (2020). Cross-network interactions in social cognition: A review of findings on task related brain activation and connectivity. Cortex, 130, 142–157. [Google Scholar] [CrossRef]
- Schurz, M., Radua, J., Aichhorn, M., Richlan, F., & Perner, J. (2014). Fractionating theory of mind: A meta-analysis of functional brain imaging studies. Neuroscience & Biobehavioral Reviews, 42, 9–34. [Google Scholar] [CrossRef]
- Schurz, M., Radua, J., Tholen, M. G., Maliske, L., Margulies, D. S., Mars, R. B., Sallet, J., & Kanske, P. (2021). Toward a hierarchical model of social cognition: A neuroimaging meta-analysis and integrative review of empathy and theory of mind. Psychological Bulletin, 147(3), 293–327. [Google Scholar] [CrossRef] [PubMed]
- Sebastian, C. L., Fontaine, N. M. G., Bird, G., Blakemore, S.-J., De Brito, S. A., McCrory, E. J. P., & Viding, E. (2012). Neural processing associated with cognitive and affective theory of mind in adolescents and adults. Social Cognitive and Affective Neuroscience, 7(1), 53–63. [Google Scholar] [CrossRef] [PubMed]
- Shamay-Tsoory, S. G., & Aharon-Peretz, J. (2007). Dissociable prefrontal networks for cognitive and affective theory of mind: A lesion study. Neuropsychologia, 45(13), 3054–3067. [Google Scholar] [CrossRef]
- Shine, J. M., Bissett, P. G., Bell, P. T., Koyejo, O., Balsters, J. H., Gorgolewski, K. J., Moodie, C. A., & Poldrack, R. A. (2016). The dynamics of functional brain networks: Integrated network states during cognitive task performance. Neuron, 92(2), 544–554. [Google Scholar] [CrossRef]
- Shine, J. M., & Poldrack, R. A. (2018). Principles of dynamic network reconfiguration across diverse brain states. NeuroImage, 180, 396–405. [Google Scholar] [CrossRef] [PubMed]
- Shulman, G. L., Fiez, J. A., Corbetta, M., Buckner, R. L., Miezin, F. M., Raichle, M. E., & Petersen, S. E. (1997). Common blood flow changes across visual tasks: II. decreases in cerebral cortex. Journal of Cognitive Neuroscience, 9(5), 648–663. [Google Scholar] [CrossRef] [PubMed]
- Smith, S. M., Fox, P. T., Miller, K. L., Glahn, D. C., Fox, P. M., Mackay, C. E., Filippini, N., Watkins, K. E., Toro, R., Laird, A. R., & Beckmann, C. F. (2009). Correspondence of the brain’s functional architecture during activation and rest. Proceedings of the National Academy of Sciences of the United States of America, 106(31), 13040–13045. [Google Scholar] [CrossRef] [PubMed]
- Suzuki, S., Niki, K., Fujisaki, S., & Akiyama, E. (2011). Neural basis of conditional cooperation. Social Cognitive and Affective Neuroscience, 6(3), 338–347. [Google Scholar] [CrossRef]
- Tavor, I., Jones, O. P., Mars, R. B., Smith, S. M., Behrens, T. E., & Jbabdi, S. (2016). Task-free MRI predicts individual differences in brain activity during task performance. Science, 352(6282), 216–220. [Google Scholar] [CrossRef] [PubMed]
- Timmers, I., Park, A. L., Fischer, M. D., Kronman, C. A., Heathcote, L. C., Hernandez, J. M., & Simons, L. E. (2018). Is empathy for pain unique in its neural correlates? A meta-analysis of neuroimaging studies of empathy. Frontiers in Behavioral Neuroscience, 12, 289. [Google Scholar] [CrossRef] [PubMed]
- Trautwein, F.-M., Singer, T., & Kanske, P. (2016). Stimulus-driven reorienting impairs executive control of attention: Evidence for a common bottleneck in anterior insula. Cerebral Cortex, 26(11), 4136–4147. [Google Scholar] [CrossRef]
- Turkeltaub, P. E., Eden, G. F., Jones, K. M., & Zeffiro, T. A. (2002). Meta-analysis of the functional neuroanatomy of single-word reading: Method and validation. NeuroImage, 16((3, Pt A)), 765–780. [Google Scholar] [CrossRef]
- Van Overwalle, F. (2009). Social cognition and the brain: A meta-analysis. Human Brain Mapping, 30(3), 829–858. [Google Scholar] [CrossRef]
- Vatansever, D., Menon, D. K., Manktelow, A. E., Sahakian, B. J., & Stamatakis, E. A. (2015). Default mode dynamics for global functional integration. The Journal of Neuroscience, 35(46), 15254–15262. [Google Scholar] [CrossRef]
- Walter, H. (2012). Social cognitive neuroscience of empathy: Concepts, circuits, and genes. Emotion Review, 4(1), 9–17. [Google Scholar] [CrossRef]
- Wen, X., Liu, Y., Yao, L., & Ding, M. (2013). Top-down regulation of default mode activity in spatial visual attention. The Journal of Neuroscience, 33(15), 6444–6453. [Google Scholar] [CrossRef] [PubMed]
- Wendelken, C., Ferrer, E., Whitaker, K. J., & Bunge, S. A. (2016). Fronto-parietal network reconfiguration supports the development of reasoning ability. Cerebral Cortex, 26(5), 2178–2190. [Google Scholar] [CrossRef] [PubMed]
- Yang, Z., Zheng, Y., Yang, G., Li, Q., & Liu, X. (2019). Neural signatures of cooperation enforcement and violation: A coordinate-based meta-analysis. Social Cognitive and Affective Neuroscience, 14(9), 919–931. [Google Scholar] [CrossRef] [PubMed]
- Yeo, B. T., Krienen, F. M., Sepulcre, J., Sabuncu, M. R., Lashkari, D., Hollinshead, M., Roffman, J. L., Smoller, J. W., Zöllei, L., Polimeni, J. R., Fischl, B., Liu, H., & Buckner, R. L. (2011). The organization of the human cerebral cortex estimated by intrinsic functional connectivity. Journal of Neurophysiology, 106(3), 1125–1165. [Google Scholar] [CrossRef] [PubMed]
- Zaki, J. (2017). Moving beyond Stereotypes of empathy. Trends in Cognitive Sciences, 21(2), 59–60. [Google Scholar] [CrossRef]
- Zhou, Y., Friston, K. J., Zeidman, P., Chen, J., Li, S., & Razi, A. (2018). The hierarchical organization of the default, dorsal attention and salience networks in adolescents and young adults. Cerebral Cortex, 28(2), 726–737. [Google Scholar] [CrossRef]
- Zhou, Y., Wang, Y., Rao, L.-L., Yang, L.-Q., & Li, S. (2014). Money talks: Neural substrate of modulation of fairness by monetary incentives. Frontiers in Behavioral Neuroscience, 8, 150. [Google Scholar] [CrossRef]
Cluster Peak | Sub-Peaks | ||||||||
---|---|---|---|---|---|---|---|---|---|
AAL/Yeo 7-Networks/Neg. vs. Pos. | x | y | z | Z-Val. | vx | x | y | z | AAL/Yeo 7-Networks |
Overlap: Social interaction engagement and Cognitive/mentalizing tasks | |||||||||
L sup. front. g./DMN/- | −8 | 52 | 34 | 5.14 | 330 | 4 | 50 | 26 | R ant. cing. g./DMN |
−6 | 54 | 18 | L sup. front. g./DMN | ||||||
R mid. temp. g./DAN/- | 56 | −56 | 16 | 5.09 | 232 | 50 | −50 | 28 | R angular g./DMN |
L angular g./DMN/- | −52 | −62 | 34 | 4.29 | 145 | ||||
Precuneus/DMN/- | 0 | −54 | 34 | 4.57 | 99 | ||||
R precuneus/DMN/- | 6 | −64 | 38 | 3.76 | 36 | ||||
Overlap: Social interaction engagement and Intermediate mentalizing/empathy tasks | |||||||||
L sup. front. g./DMN/- | −6 | 54 | 34 | 5.13 | 188 | 4 | 50 | 30 | R sup. front. g./DMN |
8 | 48 | 26 | R ant. cing. g./DMN | ||||||
R mid. temp. g./DAN/- | 56 | −56 | 16 | 5.09 | 172 | 52 | −52 | 28 | R angular g./DMN |
Precuneus/DMN/- | 0 | −54 | 34 | 4.57 | 99 | ||||
L insula/VAN/N>P 18 vx | −38 | 20 | −6 | 3.67 | 18 | ||||
Overlap: Social interaction engagement and Affective/empathy tasks | |||||||||
R insula/FPN/N>P 178 vx | 34 | 22 | 0 | 4.94 | 180 | 40 | 22 | −12 | R inf. front. g./DMN |
L insula/VAN/N>P 119 vx | −32 | 24 | 6 | 4.72 | 135 | −40 | 18 | 0 | L insula/FPN |
L inf. front. g./DAN/- | −46 | 6 | 30 | 4.75 | 115 | ||||
L sup. front. g./FPN/N>P 50 vx | −2 | 18 | 44 | 3.94 | 50 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kranewitter, B.; Schurz, M. A Quantitative Review of Brain Activation Maps for Mentalizing, Empathy, and Social Interactions: Specifying Commonalities and Differences. Behav. Sci. 2025, 15, 934. https://doi.org/10.3390/bs15070934
Kranewitter B, Schurz M. A Quantitative Review of Brain Activation Maps for Mentalizing, Empathy, and Social Interactions: Specifying Commonalities and Differences. Behavioral Sciences. 2025; 15(7):934. https://doi.org/10.3390/bs15070934
Chicago/Turabian StyleKranewitter, Bela, and Matthias Schurz. 2025. "A Quantitative Review of Brain Activation Maps for Mentalizing, Empathy, and Social Interactions: Specifying Commonalities and Differences" Behavioral Sciences 15, no. 7: 934. https://doi.org/10.3390/bs15070934
APA StyleKranewitter, B., & Schurz, M. (2025). A Quantitative Review of Brain Activation Maps for Mentalizing, Empathy, and Social Interactions: Specifying Commonalities and Differences. Behavioral Sciences, 15(7), 934. https://doi.org/10.3390/bs15070934