Predictive Utility of the Multi-Process Action Control Framework for Self-Reported and Device-Measured Physical Activity Behavior of Adolescents
Abstract
:1. Introduction
2. Methods
2.1. Study Design
2.2. Study Setting
2.3. Participants
2.4. Variables
2.5. Bias
2.6. Study Size
3. Data Analysis
4. Results
4.1. Self-Reported Average Daily MVPA
4.2. Device-Assessed Physical Activity
5. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sawyer, S.M.; Afifi, R.A.; Bearinger, L.H.; Blakemore, S.-J.; Dick, B.; Ezeh, A.C.; Patton, G.C. Adolescence: A foundation for future health. Lancet 2012, 379, 1630–1640. [Google Scholar] [CrossRef] [PubMed]
- Faigenbaum, A.D.; Rial Rebullido, T.; MacDonald, J.P. The unsolved problem of paediatric physical inactivity: It’s time for a new perspective. Acta Paediatr. 2018, 107, 1857–1859. [Google Scholar] [CrossRef] [PubMed]
- Kumar, B.; Robinson, R.; Till, S. Physical activity and health in adolescence. Clin. Med. 2015, 15, 267–272. [Google Scholar] [CrossRef] [PubMed]
- Guthold, R.; Stevens, G.A.; Riley, L.M.; Bull, F.C. Global trends in insufficient physical activity among adolescents: A pooled analysis of 298 population-based surveys with 1·6 million participants. Lancet Child Adolesc. Health 2020, 4, 23–35. [Google Scholar] [CrossRef] [PubMed]
- Dumith, S.C.; Gigante, D.P.; Domingues, M.R.; Kohl, H.W., III. Physical activity change during adolescence: A systematic review and a pooled analysis. Int. J. Epidemiol. 2011, 40, 685–698. [Google Scholar] [CrossRef]
- van Sluijs, E.M.F.; Ekelund, U.; Crochemore-Silva, I.; Guthold, R.; Ha, A.; Lubans, D.; Oyeyemi, A.L.; Ding, D.; Katzmarzyk, P.T. Physical activity behaviours in adolescence: Current evidence and opportunities for intervention. Lancet 2021, 398, 429–442. [Google Scholar] [CrossRef]
- Mathisen, F.K.S.; Torsheim, T.; Falco, C.; Wold, B. Leisure-time physical activity trajectories from adolescence to adulthood in relation to several activity domains: A 27-year longitudinal study. Int. J. Behav. Nutr. Phys. Act. 2023, 20, 27. [Google Scholar] [CrossRef]
- Telama, R. Tracking of physical activity from childhood to adulthood: A review. Obes. Facts 2009, 2, 187–195. [Google Scholar] [CrossRef]
- Andersen, L.B.; Mota, J.; Pietro, L.D. Update on the global pandemic of physical inactivity. Lancet 2016, 388, 1255–1256. [Google Scholar] [CrossRef]
- Kohl, H.W.; Craig, C.L.; Lambert, E.V.; Inoue, S.; Alkandari, J.R.; Leetongin, G.; Kahlmeier, S. The pandemic of physical inactivity: Global action for public health. Lancet 2012, 380, 294–305. [Google Scholar] [CrossRef]
- Sallis, J.F.; Cervero, R.B.; Ascher, W.; Henderson, K.A.; Kraft, M.K.; Kerr, J. An ecological approach to creating active living communities. Annu. Rev. Public Health 2006, 27, 297–322. [Google Scholar] [CrossRef] [PubMed]
- Plotnikoff, R.C.; Costigan, S.A.; Karunamuni, N.; Lubans, D.R. Social cognitive theories used to explain physical activity behavior in adolescents: A systematic review and meta-analysis. Prev. Med. 2013, 56, 245–253. [Google Scholar] [CrossRef] [PubMed]
- Feil, K.; Fritsch, J.; Rhodes, R.E. The intention-behaviour gap in physical activity: A systematic review and meta-analysis of the action control framework. Br. J. Sports Med. 2023, 57, 1265–1271. [Google Scholar] [CrossRef] [PubMed]
- Sheeran, P.; Webb, T.L. The intention–behavior gap. Soc. Personal. Psychol. Compass 2016, 10, 503–518. [Google Scholar] [CrossRef]
- Haider, I.; Brown, D.M.; Bray, S.R.; Dutta, P.; Rhodes, R.E.; Kwan, M.Y. Understanding the intention-to-behaviour relationship for adolescents: An application of the multi-process action control model. Int. J. Sport Exerc. Psychol. 2022. ahead of print. [Google Scholar] [CrossRef]
- Rhodes, R.E.; McEwan, D.; Rebar, A.L. Theories of physical activity behaviour change: A history and synthesis of approaches. Psychol. Sport Exerc. 2019, 42, 100–109. [Google Scholar] [CrossRef]
- Schwarzer, R. Modeling health behavior change: How to predict and modify the adoption and maintenance of health behaviors. Appl. Psychol. 2008, 57, 1–29. [Google Scholar] [CrossRef]
- Rhodes, R.E. The evolving understanding of physical activity behavior: A multi-process action control approach. In Advances in Motivation Science; Elliot, A.J., Ed.; Elsevier: Amsterdam, The Netherlands, 2017; Volume 4, pp. 171–205. Available online: https://www.sciencedirect.com/science/article/pii/S221509191630013X (accessed on 15 July 2023).
- Hollman, H.; Sui, W.; Rhodes, R.E. A feasibility randomized controlled trial of a multi-process action control web-based intervention that targets physical activity in mothers. Women Health 2022, 62, 384–401. [Google Scholar] [CrossRef]
- Liu, S.; Husband, C.; La, H.; Juba, M.; Loucks, R.; Harrison, A.; Rhodes, R.E. Development of a self-guided web-based intervention to promote physical activity using the multi-process action control framework. Internet Interv. 2019, 15, 35–42. [Google Scholar] [CrossRef]
- Rhodes, R.E. Multi-process action control in physical activity: A primer. Front. Psychol. 2021, 12, 797484. [Google Scholar] [CrossRef]
- Brand, R.; Ekkekakis, P. Affective–Reflective Theory of physical inactivity and exercise. Ger. J. Exerc. Sport Res. 2018, 48, 48–58. [Google Scholar] [CrossRef]
- Cheval, B.; Boisgontier, M.P. The theory of effort minimization in physical activity. Exerc. Sport Sci. Rev. 2021, 49, 168–178. [Google Scholar] [CrossRef] [PubMed]
- Conroy, D.E.; Berry, T.R. Automatic affective evaluations of physical activity. Exerc. Sport Sci. Rev. 2017, 45, 230. [Google Scholar] [CrossRef] [PubMed]
- Rhodes, R.E.; Sui, W.; Nuss, K.; Liu, S. Reflecting on physical activity across 2 years of the COVID-19 pandemic: Predictors of intention-behavior profiles. Appl. Psychol. Health Well-Being 2023, 15, 757–775. [Google Scholar] [CrossRef] [PubMed]
- Rhodes, R.E.; Lithopoulos, A. Understanding action control of resistance training among adults. Psychol. Sport Exerc. 2022, 59, 102108. [Google Scholar] [CrossRef]
- Rhodes, R.E.; Beauchamp, M.R.; Quinlan, A.; Symons Downs, D.; Warburton, D.E.R.; Blanchard, C.M. Predicting the physical activity of new parents who participated in a physical activity intervention. Soc. Sci. Med. 2021, 284, 114221. [Google Scholar] [CrossRef]
- Tang, Y.; Gierc, M.; Whiteford, V.; Rhodes, R.E.; Faulkner, G. Exploring correlates of physical activity using the multi-process action control framework: Is there a moderating role for mental health? Int. J. Sport Exerc. Psychol. 2023, 22, 1497–1515. [Google Scholar] [CrossRef]
- Tabaczynski, A.; Arbour-Nicitopoulos, K.P.; Rhodes, R.E.; Sabiston, C.M.; Trinh, L. Correlates of physical activity participation among individuals diagnosed with cancer: An application of the Multi-Process Action Control Framework. Int. J. Environ. Res. Public. Health 2023, 20, 4345. [Google Scholar] [CrossRef]
- Kovacevic, D.; Bray, S.R.; Brown, D.M.Y.; Kwan, M.Y.W. Understanding changes in adolescent physical activity behaviors and cognitions prior to and during the COVID-19 pandemic. Front. Sports Act. Living 2022, 4, 895097. [Google Scholar] [CrossRef]
- Kwan, M.Y.W.; Brown, D.M.Y.; Dutta, P.; Haider, I.; Cairney, J.; Rhodes, R.E. Application of the multi-process action control model to predict physical activity during late adolescence. J. Sport Exerc. Psychol. 2022, 44, 35–41. [Google Scholar] [CrossRef]
- Kroger, J. Identity Development: Adolescence through Adulthood; SAGE Publications: Thousand Oaks, CA, USA, 2006; ISBN 978-1-5443-4030-2. [Google Scholar]
- Korbmacher, M.; Azevedo, F.; Pennington, C.R.; Hartmann, H.; Pownall, M.; Schmidt, K.; Elsherif, M.; Breznau, N.; Robertson, O.; Kalandadze, T.; et al. The replication crisis has led to positive structural, procedural, and community changes. Commun. Psychol. 2023, 1, 3. [Google Scholar] [CrossRef]
- Makel, M.C.; Plucker, J.A.; Hegarty, B. Replications in psychology research: How often do they really occur? Perspect. Psychol. Sci. 2012, 7, 537–542. [Google Scholar] [CrossRef]
- Murphy, J.; Mesquida, C.; Caldwell, A.R.; Earp, B.D.; Warne, J.P. Proposal of a selection protocol for replication of studies in sports and exercise science. Sports Med. 2023, 53, 281–291. [Google Scholar] [CrossRef] [PubMed]
- Mesquida, C.; Murphy, J.; Lakens, D.; Warne, J. Replication concerns in sports and exercise science: A narrative review of selected methodological issues in the field. R. Soc. Open Sci. 2022, 9, 220946. [Google Scholar] [CrossRef] [PubMed]
- Sallis, J.F.; Saelens, B.E. Assessment of physical activity by self-report: Status, limitations, and future directions. Res. Q. Exerc. Sport 2000, 71, 1–14. [Google Scholar] [CrossRef]
- Prince, S.A.; Adamo, K.B.; Hamel, M.E.; Hardt, J.; Gorber, S.C.; Tremblay, M. A comparison of direct versus self-report measures for assessing physical activity in adults: A systematic review. Int. J. Behav. Nutr. Phys. Act. 2008, 5, 56. [Google Scholar] [CrossRef] [PubMed]
- Brenner, P.S.; DeLamater, J.D. Social desirability bias in self-reports of physical activity: Is an exercise identity the culprit? Soc. Indic. Res. 2014, 117, 489–504. [Google Scholar] [CrossRef]
- Esliger, D.W.; Copeland, J.L.; Barnes, J.D.; Tremblay, M.S. Standardizing and optimizing the use of accelerometer data for free-living physical activity monitoring. J. Phys. Act. Health 2005, 2, 366–383. [Google Scholar] [CrossRef]
- Pedisic, Z.; Bauman, A. Accelerometer-based measures in physical activity surveillance: Current practices and issues. Br. J. Sports Med. 2015, 49, 219. [Google Scholar] [CrossRef]
- Wilson, P.M.; Muon, S. Psychometric properties of the Exercise Identity Scale in a university sample. Int. J. Sport Exerc. Psychol. 2008, 6, 115–131. [Google Scholar] [CrossRef]
- Berry, T.R.; Strachan, S.M.; Verkooijen, K.T. The relationship between exercise schema and identity. Int. J. Sport Exerc. Psychol. 2014, 12, 49–63. [Google Scholar] [CrossRef]
- Tremblay, M.S.; Esliger, D.W.; Tremblay, A.; Colley, R. Incidental movement, lifestyle-embedded activity and sleep: New frontiers in physical activity assessment. Appl. Physiol. Nutr. Metab. 2007, 32, S208–S217. [Google Scholar] [CrossRef]
- Booth, M. Assessment of physical activity: An international perspective. Res. Q. Exerc. Sport 2000, 71, 114–120. [Google Scholar] [CrossRef] [PubMed]
- Craig, C.L.; Marshall, A.L.; Sjöström, M.; Bauman, A.E.; Booth, M.L.; Ainsworth, B.E.; Pratt, M.; Ekelund, U.; Yngve, A.; Sallis, J.F.; et al. International physical activity questionnaire: 12-country reliability and validity. Med. Sci. Sports Exerc. 2003, 35, 1381–1395. [Google Scholar] [CrossRef] [PubMed]
- Guedes, D.P.; Lopes, C.C.; Guedes, J.E.R.P. Reproducibility and validity of the International Physical Activity Questionnaire in adolescents. Rev. Bras. Med. Esporte 2005, 11, 151–158. [Google Scholar] [CrossRef]
- Lee, P.H.; Macfarlane, D.J.; Lam, T.; Stewart, S.M. Validity of the international physical activity questionnaire short form (IPAQ-SF): A systematic review. Int. J. Behav. Nutr. Phys. Act. 2011, 8, 115. [Google Scholar] [CrossRef]
- Migueles, J.H.; Rowlands, A.V.; Huber, F.; Sabia, S.; van Hees, V.T. GGIR: A research community–driven open source R package for generating physical activity and sleep outcomes from multi-day raw accelerometer data. J. Meas. Phys. Behav. 2019, 2, 188–196. [Google Scholar] [CrossRef]
- van Hees, V.T.; Fang, Z.; Langford, J.; Assah, F.; Mohammad, A.; da Silva, I.C.M.; Trenell, M.I.; White, T.; Wareham, N.J.; Brage, S. Autocalibration of accelerometer data for free-living physical activity assessment using local gravity and temperature: An evaluation on four continents. J. Appl. Physiol. Bethesda Md 1985 2014, 117, 738–744. [Google Scholar] [CrossRef]
- van Hees, V.T.; Gorzelniak, L.; Dean León, E.C.; Eder, M.; Pias, M.; Taherian, S.; Ekelund, U.; Renström, F.; Franks, P.W.; Horsch, A.; et al. Separating movement and gravity components in an acceleration signal and implications for the assessment of human daily physical activity. PLoS ONE 2013, 8, e61691. [Google Scholar] [CrossRef]
- Hildebrand, M.; Hansen, B.H.; van Hees, V.T.; Ekelund, U. Evaluation of raw acceleration sedentary thresholds in children and adults. Scand. J. Med. Sci. Sports 2017, 27, 1814–1823. [Google Scholar] [CrossRef]
- Tudor-Locke, C.; Camhi, S.M.; Troiano, R.P. A catalog of rules, variables, and definitions applied to accelerometer data in the National Health and Nutrition Examination Survey, 2003–2006. Prev. Chronic. Dis. 2012, 9, E113. [Google Scholar] [CrossRef] [PubMed]
- Belcher, B.R.; Wolff-Hughes, D.L.; Dooley, E.E.; Staudenmayer, J.; Berrigan, D.; Eberhardt, M.S.; Troiano, R.P. US population-referenced percentiles for wrist-worn accelerometer-derived activity. Med. Sci. Sports Exerc. 2021, 53, 2455–2464. [Google Scholar] [CrossRef] [PubMed]
- Ajzen, I. Constructing a Theory of Planned Behavior Questionnaire. 006.p. 12. Available online: https://people.umass.edu/~aizen/pdf/tpb.measurement.pdf (accessed on 1 September 2022).
- Rhodes, R.E.; Courneya, K.S. Investigating multiple components of attitude, subjective norm, and perceived control: An examination of the theory of planned behaviour in the exercise domain. Br. J. Soc. Psychol. 2003, 42, 129–146. [Google Scholar] [CrossRef] [PubMed]
- Rhodes, R.E.; Blanchard, C.M.; Matheson, D.H. A multicomponent model of the theory of planned behaviour. Br. J. Health Psychol. 2006, 11, 119–137. [Google Scholar] [CrossRef]
- Sniehotta, F.F.; Scholz, U.; Schwarzer, R. Bridging the intention–behaviour gap: Planning, self-efficacy, and action control in the adoption and maintenance of physical exercise. Psychol. Health 2005, 20, 143–160. [Google Scholar] [CrossRef]
- Rhodes, R.E. Questionnaires—The Multi-Process Action Control Approach. Available online: https://onlineacademiccommunity.uvic.ca/mpac/questionnaires/ (accessed on 1 September 2022).
- Gardner, B.; Abraham, C.; Lally, P.; de Bruijn, G.-J. Towards parsimony in habit measurement: Testing the convergent and predictive validity of an automaticity subscale of the Self-Report Habit Index. Int. J. Behav. Nutr. Phys. Act. 2012, 9, 102. [Google Scholar] [CrossRef]
- Anderson, D.F.; Cychosz, C.M. Development of an exercise identity scale. Percept. Mot. Ski. 1994, 78, 747–751. [Google Scholar] [CrossRef]
- Brown, D.; Meca, A. An examination of the psychometric properties of the Exercise Identity Scale and its adaptation to physical activity. Meas. Phys. Educ. Exerc. Sci. 2024. Published online ahead of print. [Google Scholar]
- Kuczmarski, R.J.; Ogden, C.L.; Guo, S.S.; Grummer-Strawn, L.M.; Flegal, K.M.; Mei, Z.; Wei, R.; Curtin, L.R.; Roche, A.F.; Johnson, C.L. 2000 CDC Growth Charts for the United States: Methods and Development; Vital Health Statistics: USA, 2002; Volume 11, pp. 1–190. [Google Scholar]
- Sterdt, E.; Liersch, S.; Walter, U. Correlates of physical activity of children and adolescents: A systematic review of reviews. Health Educ. J. 2014, 73, 72–89. [Google Scholar] [CrossRef]
- van Buuren, S.; Groothuis-Oudshoorn, K. mice: Multivariate imputation by chained equations in R. J. Stat. Softw. 2011, 45, 1–67. [Google Scholar] [CrossRef]
- Robitzsch, A.; Grund, S. Miceadds: Some Additional Multiple Imputation Functions, Especially for “Mice”. R Package Version 3.16-18. 2023. Available online: https://CRAN.R-project.org/package=miceadds (accessed on 1 September 2022).
- Maechler, M.; Rousseeuw, P.; Croux, C.; Todorov, V.; Ruckstuhl, A.; Salibian-Barrera, M.; Verbeke, T.; Koller, M.; Conceicao, E.L.; Anna di Palma, M. Robustbase: Basic Robust Statistics. 2021. Available online: http://robustbase.r-forge.r-project.org/ (accessed on 19 May 2021).
- Rizopoulos, D. ltm: An R package for latent variable modeling and item response analysis. J. Stat. Softw. 2007, 17, 1–25. [Google Scholar] [CrossRef]
- Woods, A.D.; Gerasimova, D.; Van Dusen, B.; Nissen, J.; Bainter, S.; Uzdavines, A.; Davis-Kean, P.E.; Halvorson, M.; King, K.M.; Logan, J.A.R.; et al. Best practices for addressing missing data through multiple imputation. Infant Child Dev. 2023, 33, e2407. [Google Scholar] [CrossRef]
- White, I.R.; Royston, P.; Wood, A.M. Multiple imputation using chained equations: Issues and guidance for practice. Stat. Med. 2011, 30, 377–399. [Google Scholar] [CrossRef]
- Caprio, S.; Daniels, S.R.; Drewnowski, A.; Kaufman, F.R.; Palinkas, L.A.; Rosenbloom, A.L.; Schwimmer, J.B. Influence of race, ethnicity, and culture on childhood obesity: Implications for prevention and treatment. Diabetes Care 2008, 31, 2211–2221. [Google Scholar] [CrossRef]
- Belton, S.; O’ Brien, W.; Meegan, S.; Woods, C.; Issartel, J. Youth-Physical Activity Towards Health: Evidence and background to the development of the Y-PATH physical activity intervention for adolescents. BMC Public Health 2014, 14, 122. [Google Scholar] [CrossRef]
- Wright, J.; Burrows, L. “Being Healthy”: The discursive construction of health in New Zealand children’s responses to the National Education Monitoring Project. Discourse Stud. Cult. Polit. Educ. 2004, 25, 211–230. [Google Scholar] [CrossRef]
- Benes, D.; Dowling, J.; Crawford, S.; Hayman, L.L. Social and Environmental Influences on Physical Activity Levels in Latina Adolescents. Public Health Nurs. Boston Mass 2017, 34, 101–111. [Google Scholar] [CrossRef]
- Chen, T.J.; Watson, K.B.; Michael, S.L.; Carlson, S.A. Sex-stratified trends in meeting physical activity guidelines, participating in sports, and attending physical education among US adolescents, Youth Risk Behavior Survey 2009-2019. J. Phys. Act. Health 2021, 18, S102–S113. [Google Scholar] [CrossRef] [PubMed]
- Merlo, C.L.; Jones, S.E.; Michael, S.L.; Chen, T.J.; Sliwa, S.A.; Lee, S.H.; Brener, N.D.; Lee, S.M.; Park, S. Dietary and physical activity behaviors among high school students—Youth Risk Behavior Survey, United States, 2019. MMWR Suppl. 2020, 69, 64–76. [Google Scholar] [CrossRef]
- Boiché, J.; Escalera, M.Y.; Chanal, J. Students physical activity assessed by accelerometers and motivation for physical education during class: Should we consider lessons as a whole or only active periods? PLoS ONE 2020, 15, e0229046. [Google Scholar] [CrossRef]
- LeBlanc, A.G.W.; Janssen, I. Difference between self-reported and accelerometer measured moderate-to-vigorous physical activity in youth. Pediatr. Exerc. Sci. 2010, 22, 523–534. [Google Scholar] [CrossRef] [PubMed]
- Narayanan, A.; Desai, F.; Stewart, T.; Duncan, S.; Mackay, L. Application of raw accelerometer data and machine-learning techniques to characterize human movement behavior: A systematic scoping review. J. Phys. Act. Health 2020, 17, 360–383. [Google Scholar] [CrossRef] [PubMed]
- Degroote, L.; DeSmet, A.; De Bourdeaudhuij, I.; Van Dyck, D.; Crombez, G. Content validity and methodological considerations in ecological momentary assessment studies on physical activity and sedentary behaviour: A systematic review. Int. J. Behav. Nutr. Phys. Act. 2020, 17, 35. [Google Scholar] [CrossRef] [PubMed]
- Rhodes, R.E.; Kaushal, N.; Quinlan, A. Is physical activity a part of who I am? A review and meta-analysis of identity, schema and physical activity. Health Psychol. Rev. 2016, 10, 204–225. [Google Scholar] [CrossRef]
- Porter, C.D.; Groves, C.I.; Huong, C.; Brown, D.M.Y. Predicting physical activity behavior among university students using the multi-process action control framework. Psychol. Sport Exerc. 2024, 75, 102716. [Google Scholar] [CrossRef]
- Porter, C.; Kwan, M.; Meca, A.; Brown, D. Exercise identity and physical activity behavior during late adolescence: A four wave cross-lagged panel model. Psychol. Sport Exerc. 2024, 73, 102641. [Google Scholar] [CrossRef]
- Husband, C.J.; Wharf-Higgins, J.; Rhodes, R.E. A feasibility randomized trial of an identity-based physical activity intervention among university students. Health Psychol. Behav. Med. 2019, 7, 128–146. [Google Scholar] [CrossRef]
- Kok, G.; Gottlieb, N.H.; Peters, G.-J.Y.; Mullen, P.D.; Parcel, G.S.; Ruiter, R.A.C.; Fernández, M.E.; Markham, C.; Bartholomew, L.K. A taxonomy of behaviour change methods: An Intervention Mapping approach. Health Psychol. Rev. 2016, 10, 297–312. [Google Scholar] [CrossRef]
- Ruissen, G.R.; Zumbo, B.D.; Rhodes, R.E.; Puterman, E.; Beauchamp, M.R. Analysis of dynamic psychological processes to understand and promote physical activity behaviour using intensive longitudinal methods: A primer. Health Psychol. Rev. 2022, 16, 492–525. [Google Scholar] [CrossRef]
- Presseau, J.; McCleary, N.; Lorencatto, F.; Patey, A.M.; Grimshaw, J.M.; Francis, J.J. Action, actor, context, target, time (AACTT): A framework for specifying behaviour. Implement. Sci. 2019, 14, 102. [Google Scholar] [CrossRef]
1. | 2. | 3. | 4. | 5. | 6. | 7. | 8. | 9. | 10. | M (SD) | |
---|---|---|---|---|---|---|---|---|---|---|---|
1. Instrumental Attitudes | - | 5.29 (1.53) | |||||||||
2. Affective Attitudes | 0.78 | - | 4.88 (1.58) | ||||||||
3. Perceived Capability | 0.54 | 0.54 | - | 4.77 (1.54) | |||||||
4. Perceived Opportunity | 0.44 | 0.38 | 0.60 | - | 4.42 (0.91) | ||||||
5. Behavioral Regulation | 0.27 | 0.39 | 0.45 | 0.24 | - | 3.59 (1.49) | |||||
6. Habit | 0.33 | 0.46 | 0.48 | 0.30 | 0.48 | - | 3.99 (1.53) | ||||
7. Identity | 0.44 | 0.53 | 0.54 | 0.35 | 0.65 | 0.61 | - | 3.90 (1.51) | |||
8. Role Identity | 0.26 | 0.40 | 0.41 | 0.24 | 0.61 | 0.60 | 0.82 | - | 3.58 (1.73) | ||
9. PA Beliefs | 0.47 | 0.53 | 0.53 | 0.35 | 0.57 | 0.52 | 0.95 | 0.60 | - | 4.06 (1.64) | |
10. Daily MVPA | 0.26 | 0.31 | 0.31 | 0.18 | 0.33 | 0.40 | 0.37 | 0.37 | 0.32 | - | 68.67 (62.10) |
1. | 2. | 3. | 4. | 5. | 6. | 7. | 8. | 9. | 10. | 11. | 12. | M (SD) | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1. Instrumental Attitudes | - | 5.40 (1.49) | |||||||||||
2. Affective Attitudes | 0.77 | - | 5.03 (1.56) | ||||||||||
3. Perceived Capability | 0.48 | 0.52 | - | 5.03 (1.38) | |||||||||
4. Perceived Opportunity | 0.42 | 0.54 | 0.54 | - | 4.56 (0.84) | ||||||||
5. Behavioral Regulation | 0.23 | 0.40 | 0.42 | 0.21 | - | 3.75 (1.48) | |||||||
6. Habit | 0.27 | 0.44 | 0.41 | 0.25 | 0.59 | - | 4.15 (1.42) | ||||||
7. Identity | 0.44 | 0.54 | 0.54 | 0.32 | 0.63 | 0.58 | - | 4.06 (1.53) | |||||
8. Role Identity | 0.31 | 0.44 | 0.47 | 0.24 | 0.59 | 0.59 | 0.85 | - | 3.74 (1.74) | ||||
9. PA Beliefs | 0.46 | 0.53 | 0.52 | 0.32 | 0.58 | 0.51 | 0.96 | 0.66 | - | 4.22 (1.63) | |||
10. Daily MVPA | 0.01 | 0.04 | 0.07 | −0.05 | 0.09 | 0.08 | 0.07 | 0.09 | 0.05 | - | 15.10 (24.24) | ||
11. PA Volume | 0.09 | 0.09 | 0.00 | −0.08 | 0.03 | 0.01 | 0.07 | 0.09 | 0.05 | 0.83 | - | 35.14 (17.55) | |
12. Peak-60 PA | 0.06 | 0.09 | 0.07 | 0.00 | 0.11 | 0.03 | 0.10 | 0.12 | 0.08 | 0.79 | 0.78 | - | 110.22 (78.40) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Brown, D.M.Y.; Porter, C.D.; Huong, C.; Groves, C.I.; Kwan, M.Y.W. Predictive Utility of the Multi-Process Action Control Framework for Self-Reported and Device-Measured Physical Activity Behavior of Adolescents. Behav. Sci. 2024, 14, 841. https://doi.org/10.3390/bs14090841
Brown DMY, Porter CD, Huong C, Groves CI, Kwan MYW. Predictive Utility of the Multi-Process Action Control Framework for Self-Reported and Device-Measured Physical Activity Behavior of Adolescents. Behavioral Sciences. 2024; 14(9):841. https://doi.org/10.3390/bs14090841
Chicago/Turabian StyleBrown, Denver M. Y., Carah D. Porter, Christopher Huong, Claire I. Groves, and Matthew Y. W. Kwan. 2024. "Predictive Utility of the Multi-Process Action Control Framework for Self-Reported and Device-Measured Physical Activity Behavior of Adolescents" Behavioral Sciences 14, no. 9: 841. https://doi.org/10.3390/bs14090841
APA StyleBrown, D. M. Y., Porter, C. D., Huong, C., Groves, C. I., & Kwan, M. Y. W. (2024). Predictive Utility of the Multi-Process Action Control Framework for Self-Reported and Device-Measured Physical Activity Behavior of Adolescents. Behavioral Sciences, 14(9), 841. https://doi.org/10.3390/bs14090841