Predictive Utility of the Multi-Process Action Control Framework for Self-Reported and Device-Measured Physical Activity Behavior of Adolescents
Abstract
1. Introduction
2. Methods
2.1. Study Design
2.2. Study Setting
2.3. Participants
2.4. Variables
2.5. Bias
2.6. Study Size
3. Data Analysis
4. Results
4.1. Self-Reported Average Daily MVPA
4.2. Device-Assessed Physical Activity
5. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sawyer, S.M.; Afifi, R.A.; Bearinger, L.H.; Blakemore, S.-J.; Dick, B.; Ezeh, A.C.; Patton, G.C. Adolescence: A foundation for future health. Lancet 2012, 379, 1630–1640. [Google Scholar] [CrossRef] [PubMed]
- Faigenbaum, A.D.; Rial Rebullido, T.; MacDonald, J.P. The unsolved problem of paediatric physical inactivity: It’s time for a new perspective. Acta Paediatr. 2018, 107, 1857–1859. [Google Scholar] [CrossRef] [PubMed]
- Kumar, B.; Robinson, R.; Till, S. Physical activity and health in adolescence. Clin. Med. 2015, 15, 267–272. [Google Scholar] [CrossRef] [PubMed]
- Guthold, R.; Stevens, G.A.; Riley, L.M.; Bull, F.C. Global trends in insufficient physical activity among adolescents: A pooled analysis of 298 population-based surveys with 1·6 million participants. Lancet Child Adolesc. Health 2020, 4, 23–35. [Google Scholar] [CrossRef] [PubMed]
- Dumith, S.C.; Gigante, D.P.; Domingues, M.R.; Kohl, H.W., III. Physical activity change during adolescence: A systematic review and a pooled analysis. Int. J. Epidemiol. 2011, 40, 685–698. [Google Scholar] [CrossRef]
- van Sluijs, E.M.F.; Ekelund, U.; Crochemore-Silva, I.; Guthold, R.; Ha, A.; Lubans, D.; Oyeyemi, A.L.; Ding, D.; Katzmarzyk, P.T. Physical activity behaviours in adolescence: Current evidence and opportunities for intervention. Lancet 2021, 398, 429–442. [Google Scholar] [CrossRef]
- Mathisen, F.K.S.; Torsheim, T.; Falco, C.; Wold, B. Leisure-time physical activity trajectories from adolescence to adulthood in relation to several activity domains: A 27-year longitudinal study. Int. J. Behav. Nutr. Phys. Act. 2023, 20, 27. [Google Scholar] [CrossRef]
- Telama, R. Tracking of physical activity from childhood to adulthood: A review. Obes. Facts 2009, 2, 187–195. [Google Scholar] [CrossRef]
- Andersen, L.B.; Mota, J.; Pietro, L.D. Update on the global pandemic of physical inactivity. Lancet 2016, 388, 1255–1256. [Google Scholar] [CrossRef]
- Kohl, H.W.; Craig, C.L.; Lambert, E.V.; Inoue, S.; Alkandari, J.R.; Leetongin, G.; Kahlmeier, S. The pandemic of physical inactivity: Global action for public health. Lancet 2012, 380, 294–305. [Google Scholar] [CrossRef]
- Sallis, J.F.; Cervero, R.B.; Ascher, W.; Henderson, K.A.; Kraft, M.K.; Kerr, J. An ecological approach to creating active living communities. Annu. Rev. Public Health 2006, 27, 297–322. [Google Scholar] [CrossRef] [PubMed]
- Plotnikoff, R.C.; Costigan, S.A.; Karunamuni, N.; Lubans, D.R. Social cognitive theories used to explain physical activity behavior in adolescents: A systematic review and meta-analysis. Prev. Med. 2013, 56, 245–253. [Google Scholar] [CrossRef] [PubMed]
- Feil, K.; Fritsch, J.; Rhodes, R.E. The intention-behaviour gap in physical activity: A systematic review and meta-analysis of the action control framework. Br. J. Sports Med. 2023, 57, 1265–1271. [Google Scholar] [CrossRef] [PubMed]
- Sheeran, P.; Webb, T.L. The intention–behavior gap. Soc. Personal. Psychol. Compass 2016, 10, 503–518. [Google Scholar] [CrossRef]
- Haider, I.; Brown, D.M.; Bray, S.R.; Dutta, P.; Rhodes, R.E.; Kwan, M.Y. Understanding the intention-to-behaviour relationship for adolescents: An application of the multi-process action control model. Int. J. Sport Exerc. Psychol. 2022. ahead of print. [Google Scholar] [CrossRef]
- Rhodes, R.E.; McEwan, D.; Rebar, A.L. Theories of physical activity behaviour change: A history and synthesis of approaches. Psychol. Sport Exerc. 2019, 42, 100–109. [Google Scholar] [CrossRef]
- Schwarzer, R. Modeling health behavior change: How to predict and modify the adoption and maintenance of health behaviors. Appl. Psychol. 2008, 57, 1–29. [Google Scholar] [CrossRef]
- Rhodes, R.E. The evolving understanding of physical activity behavior: A multi-process action control approach. In Advances in Motivation Science; Elliot, A.J., Ed.; Elsevier: Amsterdam, The Netherlands, 2017; Volume 4, pp. 171–205. Available online: https://www.sciencedirect.com/science/article/pii/S221509191630013X (accessed on 15 July 2023).
- Hollman, H.; Sui, W.; Rhodes, R.E. A feasibility randomized controlled trial of a multi-process action control web-based intervention that targets physical activity in mothers. Women Health 2022, 62, 384–401. [Google Scholar] [CrossRef]
- Liu, S.; Husband, C.; La, H.; Juba, M.; Loucks, R.; Harrison, A.; Rhodes, R.E. Development of a self-guided web-based intervention to promote physical activity using the multi-process action control framework. Internet Interv. 2019, 15, 35–42. [Google Scholar] [CrossRef]
- Rhodes, R.E. Multi-process action control in physical activity: A primer. Front. Psychol. 2021, 12, 797484. [Google Scholar] [CrossRef]
- Brand, R.; Ekkekakis, P. Affective–Reflective Theory of physical inactivity and exercise. Ger. J. Exerc. Sport Res. 2018, 48, 48–58. [Google Scholar] [CrossRef]
- Cheval, B.; Boisgontier, M.P. The theory of effort minimization in physical activity. Exerc. Sport Sci. Rev. 2021, 49, 168–178. [Google Scholar] [CrossRef] [PubMed]
- Conroy, D.E.; Berry, T.R. Automatic affective evaluations of physical activity. Exerc. Sport Sci. Rev. 2017, 45, 230. [Google Scholar] [CrossRef] [PubMed]
- Rhodes, R.E.; Sui, W.; Nuss, K.; Liu, S. Reflecting on physical activity across 2 years of the COVID-19 pandemic: Predictors of intention-behavior profiles. Appl. Psychol. Health Well-Being 2023, 15, 757–775. [Google Scholar] [CrossRef] [PubMed]
- Rhodes, R.E.; Lithopoulos, A. Understanding action control of resistance training among adults. Psychol. Sport Exerc. 2022, 59, 102108. [Google Scholar] [CrossRef]
- Rhodes, R.E.; Beauchamp, M.R.; Quinlan, A.; Symons Downs, D.; Warburton, D.E.R.; Blanchard, C.M. Predicting the physical activity of new parents who participated in a physical activity intervention. Soc. Sci. Med. 2021, 284, 114221. [Google Scholar] [CrossRef]
- Tang, Y.; Gierc, M.; Whiteford, V.; Rhodes, R.E.; Faulkner, G. Exploring correlates of physical activity using the multi-process action control framework: Is there a moderating role for mental health? Int. J. Sport Exerc. Psychol. 2023, 22, 1497–1515. [Google Scholar] [CrossRef]
- Tabaczynski, A.; Arbour-Nicitopoulos, K.P.; Rhodes, R.E.; Sabiston, C.M.; Trinh, L. Correlates of physical activity participation among individuals diagnosed with cancer: An application of the Multi-Process Action Control Framework. Int. J. Environ. Res. Public. Health 2023, 20, 4345. [Google Scholar] [CrossRef]
- Kovacevic, D.; Bray, S.R.; Brown, D.M.Y.; Kwan, M.Y.W. Understanding changes in adolescent physical activity behaviors and cognitions prior to and during the COVID-19 pandemic. Front. Sports Act. Living 2022, 4, 895097. [Google Scholar] [CrossRef]
- Kwan, M.Y.W.; Brown, D.M.Y.; Dutta, P.; Haider, I.; Cairney, J.; Rhodes, R.E. Application of the multi-process action control model to predict physical activity during late adolescence. J. Sport Exerc. Psychol. 2022, 44, 35–41. [Google Scholar] [CrossRef]
- Kroger, J. Identity Development: Adolescence through Adulthood; SAGE Publications: Thousand Oaks, CA, USA, 2006; ISBN 978-1-5443-4030-2. [Google Scholar]
- Korbmacher, M.; Azevedo, F.; Pennington, C.R.; Hartmann, H.; Pownall, M.; Schmidt, K.; Elsherif, M.; Breznau, N.; Robertson, O.; Kalandadze, T.; et al. The replication crisis has led to positive structural, procedural, and community changes. Commun. Psychol. 2023, 1, 3. [Google Scholar] [CrossRef]
- Makel, M.C.; Plucker, J.A.; Hegarty, B. Replications in psychology research: How often do they really occur? Perspect. Psychol. Sci. 2012, 7, 537–542. [Google Scholar] [CrossRef]
- Murphy, J.; Mesquida, C.; Caldwell, A.R.; Earp, B.D.; Warne, J.P. Proposal of a selection protocol for replication of studies in sports and exercise science. Sports Med. 2023, 53, 281–291. [Google Scholar] [CrossRef] [PubMed]
- Mesquida, C.; Murphy, J.; Lakens, D.; Warne, J. Replication concerns in sports and exercise science: A narrative review of selected methodological issues in the field. R. Soc. Open Sci. 2022, 9, 220946. [Google Scholar] [CrossRef] [PubMed]
- Sallis, J.F.; Saelens, B.E. Assessment of physical activity by self-report: Status, limitations, and future directions. Res. Q. Exerc. Sport 2000, 71, 1–14. [Google Scholar] [CrossRef]
- Prince, S.A.; Adamo, K.B.; Hamel, M.E.; Hardt, J.; Gorber, S.C.; Tremblay, M. A comparison of direct versus self-report measures for assessing physical activity in adults: A systematic review. Int. J. Behav. Nutr. Phys. Act. 2008, 5, 56. [Google Scholar] [CrossRef] [PubMed]
- Brenner, P.S.; DeLamater, J.D. Social desirability bias in self-reports of physical activity: Is an exercise identity the culprit? Soc. Indic. Res. 2014, 117, 489–504. [Google Scholar] [CrossRef]
- Esliger, D.W.; Copeland, J.L.; Barnes, J.D.; Tremblay, M.S. Standardizing and optimizing the use of accelerometer data for free-living physical activity monitoring. J. Phys. Act. Health 2005, 2, 366–383. [Google Scholar] [CrossRef]
- Pedisic, Z.; Bauman, A. Accelerometer-based measures in physical activity surveillance: Current practices and issues. Br. J. Sports Med. 2015, 49, 219. [Google Scholar] [CrossRef]
- Wilson, P.M.; Muon, S. Psychometric properties of the Exercise Identity Scale in a university sample. Int. J. Sport Exerc. Psychol. 2008, 6, 115–131. [Google Scholar] [CrossRef]
- Berry, T.R.; Strachan, S.M.; Verkooijen, K.T. The relationship between exercise schema and identity. Int. J. Sport Exerc. Psychol. 2014, 12, 49–63. [Google Scholar] [CrossRef]
- Tremblay, M.S.; Esliger, D.W.; Tremblay, A.; Colley, R. Incidental movement, lifestyle-embedded activity and sleep: New frontiers in physical activity assessment. Appl. Physiol. Nutr. Metab. 2007, 32, S208–S217. [Google Scholar] [CrossRef]
- Booth, M. Assessment of physical activity: An international perspective. Res. Q. Exerc. Sport 2000, 71, 114–120. [Google Scholar] [CrossRef] [PubMed]
- Craig, C.L.; Marshall, A.L.; Sjöström, M.; Bauman, A.E.; Booth, M.L.; Ainsworth, B.E.; Pratt, M.; Ekelund, U.; Yngve, A.; Sallis, J.F.; et al. International physical activity questionnaire: 12-country reliability and validity. Med. Sci. Sports Exerc. 2003, 35, 1381–1395. [Google Scholar] [CrossRef] [PubMed]
- Guedes, D.P.; Lopes, C.C.; Guedes, J.E.R.P. Reproducibility and validity of the International Physical Activity Questionnaire in adolescents. Rev. Bras. Med. Esporte 2005, 11, 151–158. [Google Scholar] [CrossRef]
- Lee, P.H.; Macfarlane, D.J.; Lam, T.; Stewart, S.M. Validity of the international physical activity questionnaire short form (IPAQ-SF): A systematic review. Int. J. Behav. Nutr. Phys. Act. 2011, 8, 115. [Google Scholar] [CrossRef]
- Migueles, J.H.; Rowlands, A.V.; Huber, F.; Sabia, S.; van Hees, V.T. GGIR: A research community–driven open source R package for generating physical activity and sleep outcomes from multi-day raw accelerometer data. J. Meas. Phys. Behav. 2019, 2, 188–196. [Google Scholar] [CrossRef]
- van Hees, V.T.; Fang, Z.; Langford, J.; Assah, F.; Mohammad, A.; da Silva, I.C.M.; Trenell, M.I.; White, T.; Wareham, N.J.; Brage, S. Autocalibration of accelerometer data for free-living physical activity assessment using local gravity and temperature: An evaluation on four continents. J. Appl. Physiol. Bethesda Md 1985 2014, 117, 738–744. [Google Scholar] [CrossRef]
- van Hees, V.T.; Gorzelniak, L.; Dean León, E.C.; Eder, M.; Pias, M.; Taherian, S.; Ekelund, U.; Renström, F.; Franks, P.W.; Horsch, A.; et al. Separating movement and gravity components in an acceleration signal and implications for the assessment of human daily physical activity. PLoS ONE 2013, 8, e61691. [Google Scholar] [CrossRef]
- Hildebrand, M.; Hansen, B.H.; van Hees, V.T.; Ekelund, U. Evaluation of raw acceleration sedentary thresholds in children and adults. Scand. J. Med. Sci. Sports 2017, 27, 1814–1823. [Google Scholar] [CrossRef]
- Tudor-Locke, C.; Camhi, S.M.; Troiano, R.P. A catalog of rules, variables, and definitions applied to accelerometer data in the National Health and Nutrition Examination Survey, 2003–2006. Prev. Chronic. Dis. 2012, 9, E113. [Google Scholar] [CrossRef] [PubMed]
- Belcher, B.R.; Wolff-Hughes, D.L.; Dooley, E.E.; Staudenmayer, J.; Berrigan, D.; Eberhardt, M.S.; Troiano, R.P. US population-referenced percentiles for wrist-worn accelerometer-derived activity. Med. Sci. Sports Exerc. 2021, 53, 2455–2464. [Google Scholar] [CrossRef] [PubMed]
- Ajzen, I. Constructing a Theory of Planned Behavior Questionnaire. 006.p. 12. Available online: https://people.umass.edu/~aizen/pdf/tpb.measurement.pdf (accessed on 1 September 2022).
- Rhodes, R.E.; Courneya, K.S. Investigating multiple components of attitude, subjective norm, and perceived control: An examination of the theory of planned behaviour in the exercise domain. Br. J. Soc. Psychol. 2003, 42, 129–146. [Google Scholar] [CrossRef] [PubMed]
- Rhodes, R.E.; Blanchard, C.M.; Matheson, D.H. A multicomponent model of the theory of planned behaviour. Br. J. Health Psychol. 2006, 11, 119–137. [Google Scholar] [CrossRef]
- Sniehotta, F.F.; Scholz, U.; Schwarzer, R. Bridging the intention–behaviour gap: Planning, self-efficacy, and action control in the adoption and maintenance of physical exercise. Psychol. Health 2005, 20, 143–160. [Google Scholar] [CrossRef]
- Rhodes, R.E. Questionnaires—The Multi-Process Action Control Approach. Available online: https://onlineacademiccommunity.uvic.ca/mpac/questionnaires/ (accessed on 1 September 2022).
- Gardner, B.; Abraham, C.; Lally, P.; de Bruijn, G.-J. Towards parsimony in habit measurement: Testing the convergent and predictive validity of an automaticity subscale of the Self-Report Habit Index. Int. J. Behav. Nutr. Phys. Act. 2012, 9, 102. [Google Scholar] [CrossRef]
- Anderson, D.F.; Cychosz, C.M. Development of an exercise identity scale. Percept. Mot. Ski. 1994, 78, 747–751. [Google Scholar] [CrossRef]
- Brown, D.; Meca, A. An examination of the psychometric properties of the Exercise Identity Scale and its adaptation to physical activity. Meas. Phys. Educ. Exerc. Sci. 2024. Published online ahead of print. [Google Scholar]
- Kuczmarski, R.J.; Ogden, C.L.; Guo, S.S.; Grummer-Strawn, L.M.; Flegal, K.M.; Mei, Z.; Wei, R.; Curtin, L.R.; Roche, A.F.; Johnson, C.L. 2000 CDC Growth Charts for the United States: Methods and Development; Vital Health Statistics: USA, 2002; Volume 11, pp. 1–190. [Google Scholar]
- Sterdt, E.; Liersch, S.; Walter, U. Correlates of physical activity of children and adolescents: A systematic review of reviews. Health Educ. J. 2014, 73, 72–89. [Google Scholar] [CrossRef]
- van Buuren, S.; Groothuis-Oudshoorn, K. mice: Multivariate imputation by chained equations in R. J. Stat. Softw. 2011, 45, 1–67. [Google Scholar] [CrossRef]
- Robitzsch, A.; Grund, S. Miceadds: Some Additional Multiple Imputation Functions, Especially for “Mice”. R Package Version 3.16-18. 2023. Available online: https://CRAN.R-project.org/package=miceadds (accessed on 1 September 2022).
- Maechler, M.; Rousseeuw, P.; Croux, C.; Todorov, V.; Ruckstuhl, A.; Salibian-Barrera, M.; Verbeke, T.; Koller, M.; Conceicao, E.L.; Anna di Palma, M. Robustbase: Basic Robust Statistics. 2021. Available online: http://robustbase.r-forge.r-project.org/ (accessed on 19 May 2021).
- Rizopoulos, D. ltm: An R package for latent variable modeling and item response analysis. J. Stat. Softw. 2007, 17, 1–25. [Google Scholar] [CrossRef]
- Woods, A.D.; Gerasimova, D.; Van Dusen, B.; Nissen, J.; Bainter, S.; Uzdavines, A.; Davis-Kean, P.E.; Halvorson, M.; King, K.M.; Logan, J.A.R.; et al. Best practices for addressing missing data through multiple imputation. Infant Child Dev. 2023, 33, e2407. [Google Scholar] [CrossRef]
- White, I.R.; Royston, P.; Wood, A.M. Multiple imputation using chained equations: Issues and guidance for practice. Stat. Med. 2011, 30, 377–399. [Google Scholar] [CrossRef]
- Caprio, S.; Daniels, S.R.; Drewnowski, A.; Kaufman, F.R.; Palinkas, L.A.; Rosenbloom, A.L.; Schwimmer, J.B. Influence of race, ethnicity, and culture on childhood obesity: Implications for prevention and treatment. Diabetes Care 2008, 31, 2211–2221. [Google Scholar] [CrossRef]
- Belton, S.; O’ Brien, W.; Meegan, S.; Woods, C.; Issartel, J. Youth-Physical Activity Towards Health: Evidence and background to the development of the Y-PATH physical activity intervention for adolescents. BMC Public Health 2014, 14, 122. [Google Scholar] [CrossRef]
- Wright, J.; Burrows, L. “Being Healthy”: The discursive construction of health in New Zealand children’s responses to the National Education Monitoring Project. Discourse Stud. Cult. Polit. Educ. 2004, 25, 211–230. [Google Scholar] [CrossRef]
- Benes, D.; Dowling, J.; Crawford, S.; Hayman, L.L. Social and Environmental Influences on Physical Activity Levels in Latina Adolescents. Public Health Nurs. Boston Mass 2017, 34, 101–111. [Google Scholar] [CrossRef]
- Chen, T.J.; Watson, K.B.; Michael, S.L.; Carlson, S.A. Sex-stratified trends in meeting physical activity guidelines, participating in sports, and attending physical education among US adolescents, Youth Risk Behavior Survey 2009-2019. J. Phys. Act. Health 2021, 18, S102–S113. [Google Scholar] [CrossRef] [PubMed]
- Merlo, C.L.; Jones, S.E.; Michael, S.L.; Chen, T.J.; Sliwa, S.A.; Lee, S.H.; Brener, N.D.; Lee, S.M.; Park, S. Dietary and physical activity behaviors among high school students—Youth Risk Behavior Survey, United States, 2019. MMWR Suppl. 2020, 69, 64–76. [Google Scholar] [CrossRef]
- Boiché, J.; Escalera, M.Y.; Chanal, J. Students physical activity assessed by accelerometers and motivation for physical education during class: Should we consider lessons as a whole or only active periods? PLoS ONE 2020, 15, e0229046. [Google Scholar] [CrossRef]
- LeBlanc, A.G.W.; Janssen, I. Difference between self-reported and accelerometer measured moderate-to-vigorous physical activity in youth. Pediatr. Exerc. Sci. 2010, 22, 523–534. [Google Scholar] [CrossRef] [PubMed]
- Narayanan, A.; Desai, F.; Stewart, T.; Duncan, S.; Mackay, L. Application of raw accelerometer data and machine-learning techniques to characterize human movement behavior: A systematic scoping review. J. Phys. Act. Health 2020, 17, 360–383. [Google Scholar] [CrossRef] [PubMed]
- Degroote, L.; DeSmet, A.; De Bourdeaudhuij, I.; Van Dyck, D.; Crombez, G. Content validity and methodological considerations in ecological momentary assessment studies on physical activity and sedentary behaviour: A systematic review. Int. J. Behav. Nutr. Phys. Act. 2020, 17, 35. [Google Scholar] [CrossRef] [PubMed]
- Rhodes, R.E.; Kaushal, N.; Quinlan, A. Is physical activity a part of who I am? A review and meta-analysis of identity, schema and physical activity. Health Psychol. Rev. 2016, 10, 204–225. [Google Scholar] [CrossRef]
- Porter, C.D.; Groves, C.I.; Huong, C.; Brown, D.M.Y. Predicting physical activity behavior among university students using the multi-process action control framework. Psychol. Sport Exerc. 2024, 75, 102716. [Google Scholar] [CrossRef]
- Porter, C.; Kwan, M.; Meca, A.; Brown, D. Exercise identity and physical activity behavior during late adolescence: A four wave cross-lagged panel model. Psychol. Sport Exerc. 2024, 73, 102641. [Google Scholar] [CrossRef]
- Husband, C.J.; Wharf-Higgins, J.; Rhodes, R.E. A feasibility randomized trial of an identity-based physical activity intervention among university students. Health Psychol. Behav. Med. 2019, 7, 128–146. [Google Scholar] [CrossRef]
- Kok, G.; Gottlieb, N.H.; Peters, G.-J.Y.; Mullen, P.D.; Parcel, G.S.; Ruiter, R.A.C.; Fernández, M.E.; Markham, C.; Bartholomew, L.K. A taxonomy of behaviour change methods: An Intervention Mapping approach. Health Psychol. Rev. 2016, 10, 297–312. [Google Scholar] [CrossRef]
- Ruissen, G.R.; Zumbo, B.D.; Rhodes, R.E.; Puterman, E.; Beauchamp, M.R. Analysis of dynamic psychological processes to understand and promote physical activity behaviour using intensive longitudinal methods: A primer. Health Psychol. Rev. 2022, 16, 492–525. [Google Scholar] [CrossRef]
- Presseau, J.; McCleary, N.; Lorencatto, F.; Patey, A.M.; Grimshaw, J.M.; Francis, J.J. Action, actor, context, target, time (AACTT): A framework for specifying behaviour. Implement. Sci. 2019, 14, 102. [Google Scholar] [CrossRef]
1. | 2. | 3. | 4. | 5. | 6. | 7. | 8. | 9. | 10. | M (SD) | |
---|---|---|---|---|---|---|---|---|---|---|---|
1. Instrumental Attitudes | - | 5.29 (1.53) | |||||||||
2. Affective Attitudes | 0.78 | - | 4.88 (1.58) | ||||||||
3. Perceived Capability | 0.54 | 0.54 | - | 4.77 (1.54) | |||||||
4. Perceived Opportunity | 0.44 | 0.38 | 0.60 | - | 4.42 (0.91) | ||||||
5. Behavioral Regulation | 0.27 | 0.39 | 0.45 | 0.24 | - | 3.59 (1.49) | |||||
6. Habit | 0.33 | 0.46 | 0.48 | 0.30 | 0.48 | - | 3.99 (1.53) | ||||
7. Identity | 0.44 | 0.53 | 0.54 | 0.35 | 0.65 | 0.61 | - | 3.90 (1.51) | |||
8. Role Identity | 0.26 | 0.40 | 0.41 | 0.24 | 0.61 | 0.60 | 0.82 | - | 3.58 (1.73) | ||
9. PA Beliefs | 0.47 | 0.53 | 0.53 | 0.35 | 0.57 | 0.52 | 0.95 | 0.60 | - | 4.06 (1.64) | |
10. Daily MVPA | 0.26 | 0.31 | 0.31 | 0.18 | 0.33 | 0.40 | 0.37 | 0.37 | 0.32 | - | 68.67 (62.10) |
1. | 2. | 3. | 4. | 5. | 6. | 7. | 8. | 9. | 10. | 11. | 12. | M (SD) | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1. Instrumental Attitudes | - | 5.40 (1.49) | |||||||||||
2. Affective Attitudes | 0.77 | - | 5.03 (1.56) | ||||||||||
3. Perceived Capability | 0.48 | 0.52 | - | 5.03 (1.38) | |||||||||
4. Perceived Opportunity | 0.42 | 0.54 | 0.54 | - | 4.56 (0.84) | ||||||||
5. Behavioral Regulation | 0.23 | 0.40 | 0.42 | 0.21 | - | 3.75 (1.48) | |||||||
6. Habit | 0.27 | 0.44 | 0.41 | 0.25 | 0.59 | - | 4.15 (1.42) | ||||||
7. Identity | 0.44 | 0.54 | 0.54 | 0.32 | 0.63 | 0.58 | - | 4.06 (1.53) | |||||
8. Role Identity | 0.31 | 0.44 | 0.47 | 0.24 | 0.59 | 0.59 | 0.85 | - | 3.74 (1.74) | ||||
9. PA Beliefs | 0.46 | 0.53 | 0.52 | 0.32 | 0.58 | 0.51 | 0.96 | 0.66 | - | 4.22 (1.63) | |||
10. Daily MVPA | 0.01 | 0.04 | 0.07 | −0.05 | 0.09 | 0.08 | 0.07 | 0.09 | 0.05 | - | 15.10 (24.24) | ||
11. PA Volume | 0.09 | 0.09 | 0.00 | −0.08 | 0.03 | 0.01 | 0.07 | 0.09 | 0.05 | 0.83 | - | 35.14 (17.55) | |
12. Peak-60 PA | 0.06 | 0.09 | 0.07 | 0.00 | 0.11 | 0.03 | 0.10 | 0.12 | 0.08 | 0.79 | 0.78 | - | 110.22 (78.40) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Brown, D.M.Y.; Porter, C.D.; Huong, C.; Groves, C.I.; Kwan, M.Y.W. Predictive Utility of the Multi-Process Action Control Framework for Self-Reported and Device-Measured Physical Activity Behavior of Adolescents. Behav. Sci. 2024, 14, 841. https://doi.org/10.3390/bs14090841
Brown DMY, Porter CD, Huong C, Groves CI, Kwan MYW. Predictive Utility of the Multi-Process Action Control Framework for Self-Reported and Device-Measured Physical Activity Behavior of Adolescents. Behavioral Sciences. 2024; 14(9):841. https://doi.org/10.3390/bs14090841
Chicago/Turabian StyleBrown, Denver M. Y., Carah D. Porter, Christopher Huong, Claire I. Groves, and Matthew Y. W. Kwan. 2024. "Predictive Utility of the Multi-Process Action Control Framework for Self-Reported and Device-Measured Physical Activity Behavior of Adolescents" Behavioral Sciences 14, no. 9: 841. https://doi.org/10.3390/bs14090841
APA StyleBrown, D. M. Y., Porter, C. D., Huong, C., Groves, C. I., & Kwan, M. Y. W. (2024). Predictive Utility of the Multi-Process Action Control Framework for Self-Reported and Device-Measured Physical Activity Behavior of Adolescents. Behavioral Sciences, 14(9), 841. https://doi.org/10.3390/bs14090841