Task-Related Differences in End-Point Kinematics in School-Age Children with Typical Development
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Procedure
2.3. Data Analysis
- Prehension: The movement begins with the hand(s) in the marked start position and ends when the hand(s) contact the object.
- Transport 1: The movement begins with the hand(s) lifting the object from the table and ends with the object contacting the mouth or chin.
- Transport 2: The movement begins with the object leaving the mouth or chin and ends with the object contacting the table at its marked position.
- Withdrawal: The movement begins with the hand(s) releasing the object and ends with the hands contacting the marked start position on the table.
- Straightness (ratio): ratio of the hand path length (total path the hand travels) to the movement length (difference between start- and end-points of the movement), with a value closer to one indicating a straighter movement.
- Smoothness (count): measured as the number of velocity peaks in a movement, with fewer velocity peaks indicating a smoother movement.
- Average speed (mm/s): calculated at each position of the marker using a 4-point central difference numerical differentiation.
3. Results
3.1. Straightness Ratio
3.2. Smoothness
3.3. Speed
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Coluccini, M.; Maini, E.S.; Martelloni, C.; Sgandurra, G.; Cioni, G. Kinematic characterization of functional reach to grasp in normal and in motor disabled children. Gait Posture 2007, 25, 493–501. [Google Scholar] [CrossRef] [PubMed]
- Thelen, E.; Corbetta, D.; Spencer, J.P. Development of reaching during the first year: Role of movement speed. J. Exp. Psychol. Hum. Percept. Perform. 1996, 22, 1059–1076. [Google Scholar] [CrossRef] [PubMed]
- Simon-Martinez, C.; dos Santos, G.L.; Jaspers, E.; Vanderschueren, R.; Mailleux, L.; Klingels, K.; Ortibus, E.; Desloovere, K.; Feys, H. Age-related changes in upper limb motion during typical development. PLoS ONE 2018, 13, e0198524. [Google Scholar] [CrossRef] [PubMed]
- Schneiberg, S.; Sveistrup, H.; McFadyen, B.; McKinley, P.; Levin, M.F. The development of coordination for reach-to-grasp movements in children. Exp. Brain Res. 2002, 146, 142–154. [Google Scholar] [CrossRef] [PubMed]
- Gilliaux, M.; Dierckx, F.; Vanden Berghe, L.; Lejeune, T.M.; Sapin, J.; Dehez, B.; Stoquart, G.; Detrembleur, C. Age Effects on Upper Limb Kinematics Assessed by the REAplan Robot in Healthy School-Aged Children. Ann. Biomed. Eng. 2015, 43, 1123–1131. [Google Scholar] [CrossRef]
- DeMatteo, C.; Law, M.; Russell, D.; Pollock, N.; Rosenbaum, P.; Walter, S. QUEST: Quality of Upper Extremity Skills Test; McMaster University, CanChild Centre for Childhood Disability Research: Hamilton, ON, Canada, 1992. [Google Scholar]
- Krumlinde-Sundholm, L.; Eliasson, A.C. Development of the assisting hand assessment: A Rasch-built measure intended for children with unilateral upper limb impairments. Scand. J. Occup. Ther. 2003, 10, 16–26. [Google Scholar] [CrossRef]
- Chen, C.-Y.; Tafone, S.; Lo, W.; Heathcock, J.C. Perinatal stroke causes abnormal trajectory and laterality in reaching during early infancy. Res. Dev. Disabil. 2015, 38, 301–308. [Google Scholar] [CrossRef]
- Bhat, A.N.; Galloway, J.C. Toy-oriented changes during early arm movements: Hand kinematics. Infant Behav. Dev. 2006, 29, 358–372. [Google Scholar] [CrossRef]
- Corbetta, D.; Thelen, E. Lateral Biases and Fluctuations in Infants’ Spontaneous Arm Movements and Reaching. Dev. Psychobiol. 1999, 34, 237–255. [Google Scholar] [CrossRef]
- Rachwani, J.; Santamaria, V.; Saavedra, S.L.; Wood, S.; Porter, F.; Woollacott, M.H. Segmental trunk control acquisition and reaching in typically developing infants. Exp. Brain Res. 2013, 228, 131–139. [Google Scholar] [CrossRef] [Green Version]
- Nelson, E.L.; Konidaris, G.D.; Berthier, N.E. Hand preference status and reach kinematics in infants. Infant Behav. Dev. 2014, 37, 615–623. [Google Scholar] [CrossRef]
- Marchi, V.; Belmonti, V.; Cecchi, F.; Coluccini, M.; Ghirri, P.; Grassi, A.; Sabatini, A.M.; Guzzetta, A. Movement analysis in early infancy: Towards a motion biomarker of age. Early Hum. Dev. 2020, 142, 104942. [Google Scholar] [CrossRef]
- Lynch, A.; Lee, H.M.; Bhat, A.; Galloway, J.C. No stable arm preference during the pre-reaching period: A comparison of right and left hand kinematics with and without a toy present. Dev. Psychobiol. 2008, 50, 390–398. [Google Scholar] [CrossRef] [PubMed]
- Karch, D.; Kim, K.; Wochner, K.; Pietz, J.; Dickhaus, H.; Philippi, H. Quantification of the segmental kinematics of spontaneous infant movements. J. Biomech. 2008, 41, 2860–2867. [Google Scholar] [CrossRef]
- Lee, M.; Ranganathan, R.; Newell, K.M. Changes in Object-Oriented Arm Movements that Precede the Transition to Goal-Directed Reaching in Infancy. Dev. Psychobiol. 2011, 53, 685–693. [Google Scholar] [CrossRef] [PubMed]
- Butler, E.E.; Ladd, A.L.; LaMont, L.E.; Rose, J. Temporal-spatial parameters of the upper limb during a Reach & Grasp Cycle for children. Gait Posture 2010, 32, 301–306. [Google Scholar] [CrossRef] [PubMed]
- Morasso, P. Spatial Control of Arm Movements. Exp. Brain Res. 1981, 42, 223–227. [Google Scholar] [CrossRef]
- Machado, L.R.; Heathcock, J.; Carvalho, R.P.; Pereira, N.D.; Tudella, E. Kinematic characteristics of arm and trunk when drinking from a glass in children with and without cerebral palsy. Clin. Biomech. 2019, 63, 201–206. [Google Scholar] [CrossRef]
- Butler, E.E.; Ladd, A.L.; Louie, S.A.; LaMont, L.E.; Wong, W.; Rose, J. Three-dimensional kinematics of the upper limb during a Reach and Grasp Cycle for children. Gait Posture 2010, 32, 72–77. [Google Scholar] [CrossRef]
- Hung, Y.-C.; Henderson, E.R.; Akbasheva, F.; Valte, L.; Ke, W.S.; Gordon, A.M. Planning and coordination of a reach-grasp-eat task in children with hemiplegia. Res. Dev. Disabil. 2012, 33, 1649–1657. [Google Scholar] [CrossRef] [PubMed]
- Summerside, E.M.; Shadmehr, R.; Ahmed, A.A. Vigor of reaching movements: Reward discounts the cost of effort. J. Neurophysiol. 2018, 119, 2347–2357. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Berthier, N.E.; Clifton, R.K.; Gullapalli, V.; McCall, D.D.; Robin, D.J. Visual Information and Object Size in the Control of Reaching. J. Mot. Behav. 1996, 28, 187–197. [Google Scholar] [CrossRef]
- Flindall, J.W.; Doan, J.B.; Gonzalez, C.L.R. Manual asymmetries in the kinematics of a reach-to-grasp action. Laterality Asymmetries Body Brain Cogn. 2014, 19, 489–507. [Google Scholar] [CrossRef] [PubMed]
- Bridges, A.J.; Holler, K.A. How Many is Enough? Determining Optimal Sample Sizes for Normative Studies in Pediatric Neuropsychology. Child Neuropsychol. 2007, 13, 528–538. [Google Scholar] [CrossRef] [PubMed]
- Allen, M.; Poggiali, D.; Whitaker, K.; Marshall, T.R.; Kievit, R.A. Raincloud plots: A multi-platform tool for robust data visualization. Wellcome Open Res. 2019, 4, 63. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nelson, E.L.; Berthier, N.E.; Konidaris, G.D. Handedness and Reach-to-Place Kinematics in Adults: Left-Handers Are Not Reversed Right-Handers. J. Mot. Behav. 2018, 50, 381–391. [Google Scholar] [CrossRef]
- Grosskopf, A.; Kuhtz-Buschbeck, J.P. Grasping with the left and right hand: A kinematic study. Exp. Brain Res. 2006, 168, 230–240. [Google Scholar] [CrossRef]
- Bryden, P.J.; Roy, E.A. Preferential reaching across regions of hemispace in adults and children. Dev. Psychobiol. 2006, 48, 121–132. [Google Scholar] [CrossRef]
- Steenbergen, B. Achieving Coordination in Prehension: Joint Freezing and Postural Contributions. J. Mot. Behav. 1995, 27, 333. [Google Scholar] [CrossRef]
- Gentilucci, M. Object motor representation and reaching-grasping control. Neuropsychologia 2002, 40, 1139–1153. [Google Scholar] [CrossRef]
- Mosberger, A.C.; De Clauser, L.; Kasper, H.; Schwab, M.E. Motivational state, reward value, and Pavlovian cues differentially affect skilled forelimb grasping in rats. Learn. Mem. 2016, 23, 289–302. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Takikawa, Y.; Kawagoe, R.; Itoh, H.; Nakahara, H.; Hikosaka, O. Modulation of saccadic eye movements by predicted reward outcome. Exp. Brain Res. 2002, 142, 284–291. [Google Scholar] [CrossRef] [PubMed]
- Mir, P.; Trender-Gerhard, I.; Edwards, M.J.; Schneider, S.A.; Bhatia, K.P.; Jahanshahi, M. Motivation and movement: The effect of monetary incentive on performance speed. Exp. Brain Res. 2011, 209, 551–559. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mackey, A.H.; Walt, S.E.; Stott, N.S. Deficits in upper-limb task performance in children with hemiplegic cerebral palsy as defined by 3-dimensional kinematics. Arch. Phys. Med. Rehabil. 2006, 87, 207–215. [Google Scholar] [CrossRef] [PubMed]
- Seidler, R.D.; Noll, D.C.; Thiers, G. Feedforward and feedback processes in motor control. Neuroimage 2004, 22, 1775–1783. [Google Scholar] [CrossRef]
Task Type | Phase | Variable | Mean | Std. Deviation |
---|---|---|---|---|
Bilateral | Prehension | Straightness Ratio | 1.18 | 0.109 |
Smoothness | 1.70 | 3.59 | ||
Speed (mm/s) | 465 | 125 | ||
Transport 1 | Straightness Ratio | 1.06 | 0.049 | |
Smoothness | 1.75 | 2.68 | ||
Speed (mm/s) | 467 | 113 | ||
Transport 2 | Straightness Ratio | 1.10 | 0.0528 | |
Smoothness | 1.97 | 3.44 | ||
Speed (mm/s) | 450 | 99.9 | ||
Withdrawal | Straightness Ratio | 1.25 | 0.150 | |
Smoothness | 1.43 | 1.31 | ||
Speed (mm/s) | 407 | 114 | ||
Reach-to-eat | Prehension | Straightness Ratio | 1.11 | 0.0792 |
Smoothness | 1.10 | 0.357 | ||
Speed (mm/s) | 460 | 104 | ||
Transport 1 | Straightness Ratio | 1.04 | 0.0294 | |
Smoothness | 1.14 | 0.415 | ||
Speed (mm/s) | 514 | 116 | ||
Transport 2 | Straightness Ratio | 1.05 | 0.0799 | |
Smoothness | 1.11 | 0.345 | ||
Speed (mm/s) | 514 | 105 | ||
Withdrawal | Straightness Ratio | 1.28 | 0.171 | |
Smoothness | 1.18 | 0.435 | ||
Speed (mm/s) | 423 | 121 | ||
Reach-to-drink | Prehension | Straightness Ratio | 1.10 | 0.0692 |
Smoothness | 1.19 | 0.852 | ||
Speed (mm/s) | 429 | 93.6 | ||
Transport 1 | Straightness Ratio | 1.02 | 0.0174 | |
Smoothness | 1.34 | 1.70 | ||
Speed (mm/s) | 420 | 87.4 | ||
Transport 2 | Straightness Ratio | 1.03 | 0.0185 | |
Smoothness | 1.48 | 2.07 | ||
Speed (mm/s) | 389 | 76.3 | ||
Withdrawal | Straightness Ratio | 1.21 | 0.175 | |
Smoothness | 1.33 | 0.807 | ||
Speed (mm/s) | 399 | 128 |
Straightness Ratio | Smoothness | Speed | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Effect | Num DF | Den DF | F | p-Value | Den DF | F | p-Value | Den DF | F | p-Value |
Task | 2 | 3124 | 107.26 | <0.0001 * | 3122 | 21.06 | <0.0001 * | 3112 | 176.31 | <0.0001 * |
Phase | 3 | 3113 | 801.98 | <0.0001 * | 3114 | 2.26 | 0.0798 | 3109 | 64.87 | <0.0001 * |
Task x Phase | 6 | 3111 | 12.59 | <0.0001 * | 3113 | 1.68 | 0.1230 | 3109 | 25.38 | <0.0001 * |
Hand | 1 | 3124 | 13.05 | 0.0003 | 3122 | 1.03 | 0.3107 | 3112 | 0.18 | 0.6674 |
Straightness Ratio | Smoothness | Speed | |||||||
---|---|---|---|---|---|---|---|---|---|
Task | Phase | Task | Phase | t Value | p-Value | t Value | p-Value | t Value | p-Value |
Ball | 1 | Ball | 2 | 14.88 | <0.0001 * | −0.31 | 0.7596 | −0.33 | 0.7386 |
Ball | 1 | Ball | 3 | 10.06 | <0.0001 * | −2.02 | 0.0438 | 2.11 | 0.0352 |
Ball | 1 | Ball | 4 | −9.02 | <0.0001 * | 1.55 | 0.1208 | 8.13 | <0.0001 * |
Ball | 2 | Ball | 3 | −4.75 | <0.0001 * | −1.69 | 0.0902 | 2.42 | 0.0158 |
Ball | 2 | Ball | 4 | −23.44 | <0.0001 * | 1.84 | 0.0664 | 8.39 | <0.0001 * |
Ball | 3 | Ball | 4 | −18.73 | <0.0001 * | 3.50 | 0.0005 * | 6.00 | <0.0001 * |
Cracker | 1 | Cracker | 2 | 9.71 | <0.0001 * | −0.25 | 0.8026 | −7.60 | <0.0001 * |
Cracker | 1 | Cracker | 3 | 7.84 | <0.0001 * | −0.04 | 0.9664 | −7.63 | <0.0001 * |
Cracker | 1 | Cracker | 4 | −19.94 | <0.0001 * | −0.76 | 0.4476 | 4.82 | <0.0001 * |
Cracker | 2 | Cracker | 3 | −1.86 | 0.0626 | 0.21 | 0.8365 | −0.03 | 0.9773 |
Cracker | 2 | Cracker | 4 | −29.31 | <0.0001 * | −0.51 | 0.6102 | 12.22 | <0.0001 * |
Cracker | 3 | Cracker | 4 | −27.47 | <0.0001 * | −0.71 | 0.4757 | 12.25 | <0.0001 * |
Cup | 1 | Cup | 2 | 10.72 | <0.0001 * | −1.04 | 0.2992 | 1.17 | 0.2426 |
Cup | 1 | Cup | 3 | 9.78 | <0.0001 * | −1.96 | 0.0499 | 5.52 | <0.0001 * |
Cup | 1 | Cup | 4 | −13.65 | <0.0001 * | −0.92 | 0.3589 | 3.74 | 0.0002 * |
Cup | 2 | Cup | 3 | −0.93 | 0.3546 | −0.92 | 0.3585 | 4.33 | <0.0001 * |
Cup | 2 | Cup | 4 | −24.13 | <0.0001 * | 0.11 | 0.9129 | 2.57 | 0.0102 |
Cup | 3 | Cup | 4 | −23.21 | <0.0001 * | 1.02 | 0.3085 | −1.71 | 0.0868 |
Ball | 1 | Cracker | 1 | 8.41 | <0.0001 * | 3.40 | 0.0007 | 0.68 | 0.4961 |
Ball | 1 | Cup | 1 | 9.75 | <0.0001 * | 2.78 | 0.0054 | 5.06 | <0.0001 * |
Cracker | 1 | Cup | 1 | 1.29 | 0.1987 | −0.62 | 0.5331 | 4.33 | <0.0001 * |
Ball | 2 | Cracker | 2 | 3.41 | 0.0007 | 3.39 | 0.0007 | −6.60 | <0.0001 * |
Ball | 2 | Cup | 2 | 5.62 | <0.0001 * | 2.00 | 0.0452 | 6.47 | <0.0001 * |
Cracker | 2 | Cup | 2 | 2.17 | 0.0301 | −1.39 | 0.1641 | 13.00 | <0.0001 * |
Ball | 3 | Cracker | 3 | 6.22 | <0.0001 * | 5.26 | <0.0001 * | −9.01 | <0.0001 * |
Ball | 3 | Cup | 3 | 9.40 | <0.0001 * | 2.77 | 0.0057 | 8.39 | <0.0001 * |
Cracker | 3 | Cup | 3 | 3.12 | 0.0018 | −2.51 | 0.0121 | 17.33 | <0.0001 * |
Ball | 4 | Cracker | 4 | −2.91 | 0.0037 | 0.99 | 0.3226 | −2.46 | 0.0139 |
Ball | 4 | Cup | 4 | 4.76 | <0.0001 * | 0.25 | 0.8019 | 0.58 | 0.5595 |
Cracker | 4 | Cup | 4 | 7.65 | <0.0001 * | −0.74 | 0.4569 | 3.05 | 0.0023 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mazzarella, J.; Richie, D.; Chaudhari, A.M.W.; Tudella, E.; Spees, C.K.; Heathcock, J.C. Task-Related Differences in End-Point Kinematics in School-Age Children with Typical Development. Behav. Sci. 2023, 13, 528. https://doi.org/10.3390/bs13070528
Mazzarella J, Richie D, Chaudhari AMW, Tudella E, Spees CK, Heathcock JC. Task-Related Differences in End-Point Kinematics in School-Age Children with Typical Development. Behavioral Sciences. 2023; 13(7):528. https://doi.org/10.3390/bs13070528
Chicago/Turabian StyleMazzarella, Julia, Daniel Richie, Ajit M. W. Chaudhari, Eloisa Tudella, Colleen K. Spees, and Jill C. Heathcock. 2023. "Task-Related Differences in End-Point Kinematics in School-Age Children with Typical Development" Behavioral Sciences 13, no. 7: 528. https://doi.org/10.3390/bs13070528
APA StyleMazzarella, J., Richie, D., Chaudhari, A. M. W., Tudella, E., Spees, C. K., & Heathcock, J. C. (2023). Task-Related Differences in End-Point Kinematics in School-Age Children with Typical Development. Behavioral Sciences, 13(7), 528. https://doi.org/10.3390/bs13070528