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Abstract: Understanding whether and how children with typical development adapt their reaches
for different functional tasks could inform a more targeted design of rehabilitation interventions
to improve upper extremity function in children with motor disabilities. This prospective study
compares timing and coordination of a reach-to-drink, reach-to-eat, and a bilateral reaching task in
typically developing school-aged children. Average speed, straightness, and smoothness of hand
movements were measured in a convenience sample of 71 children, mean age 8.77 ± 0.48 years.
Linear mixed models for repeated measures compared the variables by task, phases of the reach, task
x phase interactions, and dominant versus non-dominant hands. There were significant main effects
for task and phase, significant task x phase interactions (p < 0.05), and a significant difference between
the dominant and non-dominant hand for straightness. Hand movements were fastest and smoothest
for the reach-to-eat task, and least straight for the bilateral reaching task. Hand movements were also
straighter in the object transport phases than the prehension and withdrawal phases. These results
indicate that children with typical development change their timing and coordination of reach based
on the task they are performing. These results can inform the design of rehabilitation interventions
targeting arm and hand function.

Keywords: upper extremity; technology; pediatric; functional reach; assessment

1. Introduction

Functional reach is essential for children to complete tasks like feeding, self-care,
school participation, and leisure activities. Intentional reach is essential for driving other
areas of development, such as cognitive and fine motor, in young children. Intentional
reach-to-grasp skills emerge between 4–6 months of age in typical development as in-
fants begin reaching for toys [1,2] and reach adult-like performance by 8–11 years [3–5].
Reaching and grasping are challenging skills for many children with motor disabilities,
such as cerebral palsy (CP), and often a major focus of rehabilitation. The most common
measures of functional upper extremity use in this population apply clinical observa-
tion and subjective scoring of performance, which have limitations in precision and rater
bias [6,7]. Kinematic variables collected using three-dimensional (3D) motion capture offer
an objective and quantitative measurement of upper extremity movements in early child
development [3,8–16] such as reach and grasp. Timing and coordination of reach and grasp
in infants and children are well-documented in the literature [3,5,9,14,16–20].

When quantifying upper extremity movement, a reach is typically defined as a move-
ment towards an object, ending when the hand contacts the object. Straightness and
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smoothness are variables that quantify the coordination of a reach [17]. Straightness de-
scribes the trajectory of the hand, with a straighter movement following a shorter trajectory
from the start- to end-point of the movement. Smoothness describes the shape of the
velocity profile of the hand, with fewer peaks in the velocity profile indicating a smoother
movement. A volitional reach in a healthy adult typically presents with a single velocity
peak and a near-straight trajectory with a single, shallow curve [18]. Speed of the reach is
calculated to measure timing of the reach movement and both average velocity and peak
velocity are frequently used. Speed of a reach increases with maturity [3].

In the past decade, a few studies have applied 3D kinematics to objectively measure
reach in a functional task, such as reaching for food to eat or a cup to drink [17,19–21].
Butler et al. [17,20] published the Reach and Grasp Cycle, a protocol developed to objec-
tively measure upper extremity movement during a functional reach-to-drink task. Butler
et al. [17,20] and Machado et al. [19] have applied this protocol in samples of children with
typical development and children with cerebral palsy with upper extremity motor impair-
ments. Hung et al. [21] used a similar reach-grasp-eat task, which involved reaching to
eat a cracker, to evaluate functional upper extremity movement in children with CP. These
studies provide detailed information about reach and grasp during discrete functional
tasks in populations of children with typical development and CP. They did not compare
differences in reach kinematics with the type of task and use of the dominant versus non-
dominant upper extremity. Previous research in adults has investigated differences in
kinematics when reaching for different objects; however, these did not include functional,
multi-phase reaching tasks [22–24]. This study aims to fill the gap in understanding about
how children with typical development change their reaches for different functional tasks.
This will inform more precise treatment planning for the improvement of functional upper
extremity use and coordination in children with motor impairments.

We adapted the set-up, procedure, and movement sequence from the Reach and Grasp
Cycle [20] to three different tasks: a reach-to-drink, reach-to-eat, and a bilateral reach. Our
purpose was to measure kinematics of functional reach in typically developing school-aged
children when performing various everyday tasks to identify differences in spatiotemporal
characteristics of reach. We measured straightness, smoothness, and average speed of hand
movement for each phase of the Reach and Grasp Cycle. We hypothesized that there would
be significant differences in all three kinematic variables by type of task, phases of the
Reach and Grasp Cycle, and between the dominant and non-dominant hands for unilateral
tasks. Specifically, we expected the initial reach (prehension) to be less straight, less smooth,
and slower than the other 3 phases. We expected movements in the first 3 phases to be
straighter, smoother, and slower in the reach-to-drink task compared to the other two tasks.
We also expected movements to be less straight, less smooth, and slower in the bilateral
reach, due to the bilateral coordination aspect. Last, we expected movements with the
dominant hand to be straighter, smoother, and faster than with the non-dominant hand.

2. Materials and Methods
2.1. Participants

Participants were 71 typically developing children (38 male, 33 female), 7–10 years
old (mean 8.77 ± 0.48), with 10 left-hand dominant and 61 right-hand dominant, as de-
termined by the child’s preferred writing hand. Participants were a convenience sample
of children recruited from low-resource neighborhoods in Central Ohio, USA. Children
were excluded if they were unable to follow instructions given in English, or if they had a
motor impairment that prevented them from being able to perform the reach and grasp
tasks. Given the exploratory nature of this investigation, the sample size was determined
based on recommendations for normative datasets in pediatric populations [25].

This study was approved by the Institutional Review Board at The Ohio State Uni-
versity (2017B0110). Parents or legal guardians provided informed consent, and all child
participants provided verbal assent.
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2.2. Procedure

Participants were assessed at the Pediatric and Rehabilitation (PEARL) Laboratory at
The Ohio State University. Retroreflective markers (8 mm) were placed on the children on
their sternum, bilateral acromia, lateral epicondyles, radial and ulnar styloid processes, and
heads of the third metacarpals. Markers were also placed on the 4 corners of the table, the
back of the chair, and the objects that the children were reaching for (Figure 1). Children
were seated at the table with the chair positioned so that their hips, knees, and ankles were
flexed to 90◦. The objects for which children were reaching (a 5.6 cm diameter cup of water,
a 4.6 cm diameter Ritz cracker, or a 21.6 cm diameter ball) were positioned in front of the
child at 75% of their arm’s length away, consistent with the set-up from Butler et al. and
Machado et al. [19,20]. This position was marked with tape on the table for each participant.
The participants began with their hands resting on the table, shoulders neutral, elbows
flexed to 90◦, and wrists neutral. The resting hand placement was marked on the table with
hand-shaped outlines, within which the children placed their hands. For the reach-to-drink
and reach-to-eat tasks, children were instructed: “With your [left/right] hand, reach for the
[object], pick up the [object], take a [drink/bite], return the [object] to the marked position
on the table, and return your hand to the start position. Do this twice.” For the bilateral
task, the children were instructed: “Reach for the ball with both hands, pick it up, touch
it to your chin, return the ball to the marked position, and return your hands to the start
position. Do this twice.” Participants were allowed one practice trial per hand with each
object. Two repetitions were recorded for each condition with a 10-camera VICON Motion
Capture system at 120 Hz and filtered with a low-pass Butterworth filter at 4 Hz.
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Figure 1. Marker placement and child positioning; (a) view from behind; (b) view from front.

2.3. Data Analysis

Phases of the movement (Figure 2) were visually identified and marked as events in
the Vicon recordings. The task was divided into the following 4 phases of movement, based
on the Reach and Grasp Cycle created by Butler et al. [20]:

1. Prehension: The movement begins with the hand(s) in the marked start position and
ends when the hand(s) contact the object.

2. Transport 1: The movement begins with the hand(s) lifting the object from the table
and ends with the object contacting the mouth or chin.

3. Transport 2: The movement begins with the object leaving the mouth or chin and
ends with the object contacting the table at its marked position.
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4. Withdrawal: The movement begins with the hand(s) releasing the object and ends
with the hands contacting the marked start position on the table.
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Figure 2. Four phases of the reaching task: (1) Prehension; (2) Transport 1; (3) Transport 2; (4) Withdrawal.

A custom MATLAB script was used to calculate spatial and temporal variables of
reach for each phase of the Reach and Grasp Cycle. The variables were calculated based
on the hand position, which was defined as the center point between the markers on the
3rd metacarpal, ulnar styloid process, and radial styloid process. The spatial and temporal
variables were defined as:

• Straightness (ratio): ratio of the hand path length (total path the hand travels) to the
movement length (difference between start- and end-points of the movement), with a
value closer to one indicating a straighter movement.

• Smoothness (count): measured as the number of velocity peaks in a movement, with
fewer velocity peaks indicating a smoother movement.

• Average speed (mm/s): calculated at each position of the marker using a 4-point
central difference numerical differentiation.

A generalized linear mixed model for repeated measures for Gaussian distributions
was applied using the SAS GLIMMIX procedure to compare each kinematic variable by task,
phase, task x phase interactions, and dominant versus non-dominant hand for unilateral
tasks (reach-to-drink and reach-to-eat). The model was created using a restricted maximum
likelihood estimation technique, and the Kenward–Roger degrees of freedom method and
fixed effects standard error adjustment. The alpha level was set to α = 0.05. This model
was chosen because it accounts for correlations between dependent variables, as well as
a response that is not normally distributed. This is the case for straightness ratio and
smoothness, for which values can only be >1. Least squared means were calculated for
post hoc testing of task x phase interactions. The Bonferroni correction was applied for post
hoc comparisons, setting α = 0.0005.

3. Results

Means and standard deviation for kinematic variables of interest by task, type, and
phase were calculated (Table 1).
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Table 1. Mean and standard deviation of straightness ratio, smoothness, and average speed of hand
movement by task type and phase.

Task Type Phase Variable Mean Std. Deviation

Bilateral

Prehension
Straightness Ratio 1.18 0.109

Smoothness 1.70 3.59
Speed (mm/s) 465 125

Transport 1
Straightness Ratio 1.06 0.049

Smoothness 1.75 2.68
Speed (mm/s) 467 113

Transport 2
Straightness Ratio 1.10 0.0528

Smoothness 1.97 3.44
Speed (mm/s) 450 99.9

Withdrawal
Straightness Ratio 1.25 0.150

Smoothness 1.43 1.31
Speed (mm/s) 407 114

Reach-to-eat

Prehension
Straightness Ratio 1.11 0.0792

Smoothness 1.10 0.357
Speed (mm/s) 460 104

Transport 1
Straightness Ratio 1.04 0.0294

Smoothness 1.14 0.415
Speed (mm/s) 514 116

Transport 2
Straightness Ratio 1.05 0.0799

Smoothness 1.11 0.345
Speed (mm/s) 514 105

Withdrawal
Straightness Ratio 1.28 0.171

Smoothness 1.18 0.435
Speed (mm/s) 423 121

Reach-to-drink

Prehension
Straightness Ratio 1.10 0.0692

Smoothness 1.19 0.852
Speed (mm/s) 429 93.6

Transport 1
Straightness Ratio 1.02 0.0174

Smoothness 1.34 1.70
Speed (mm/s) 420 87.4

Transport 2
Straightness Ratio 1.03 0.0185

Smoothness 1.48 2.07
Speed (mm/s) 389 76.3

Withdrawal
Straightness Ratio 1.21 0.175

Smoothness 1.33 0.807
Speed (mm/s) 399 128

3.1. Straightness Ratio

There were significant main effects of straightness ratio for type of task (F(2) = 107.26,
p < 0.0001), phase of task (F(3) = 801.98, p < 0.0001), type x phase interaction (F(6) = 12.59,
p < 0.0001), and hand dominance (F(1) = 13.05, p = 0.0003), with straighter movement on
the dominant side (Table 2; Figure 3a). Post hoc analysis revealed significant differences
(p < 0.0005) for all comparisons, except: the prehension, transport 1, and transport 2 phases
between the reach-to-drink versus the reach-to-eat tasks; the transport 1 and withdrawal
phases between the bilateral versus reach-to-eat tasks; and within the reach-to-drink and
reach-to-eat tasks, the transport 1 versus transport 2 phases; these comparisons showed no
significant differences (Table 3).
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Table 2. Main effects for least squares means.

Straightness Ratio Smoothness Speed

Effect Num DF Den DF F p-Value Den DF F p-Value Den DF F p-Value

Task 2 3124 107.26 <0.0001 * 3122 21.06 <0.0001 * 3112 176.31 <0.0001 *
Phase 3 3113 801.98 <0.0001 * 3114 2.26 0.0798 3109 64.87 <0.0001 *
Task x
Phase 6 3111 12.59 <0.0001 * 3113 1.68 0.1230 3109 25.38 <0.0001 *

Hand 1 3124 13.05 0.0003 3122 1.03 0.3107 3112 0.18 0.6674

* Significant effect.

Table 3. Differences of task x phase least squares means.

Straightness Ratio Smoothness Speed

Task Phase Task Phase t Value p-Value t Value p-Value t Value p-Value

Ball 1 Ball 2 14.88 <0.0001 * −0.31 0.7596 −0.33 0.7386
Ball 1 Ball 3 10.06 <0.0001 * −2.02 0.0438 2.11 0.0352
Ball 1 Ball 4 −9.02 <0.0001 * 1.55 0.1208 8.13 <0.0001 *
Ball 2 Ball 3 −4.75 <0.0001 * −1.69 0.0902 2.42 0.0158
Ball 2 Ball 4 −23.44 <0.0001 * 1.84 0.0664 8.39 <0.0001 *
Ball 3 Ball 4 −18.73 <0.0001 * 3.50 0.0005 * 6.00 <0.0001 *

Cracker 1 Cracker 2 9.71 <0.0001 * −0.25 0.8026 −7.60 <0.0001 *
Cracker 1 Cracker 3 7.84 <0.0001 * −0.04 0.9664 −7.63 <0.0001 *
Cracker 1 Cracker 4 −19.94 <0.0001 * −0.76 0.4476 4.82 <0.0001 *
Cracker 2 Cracker 3 −1.86 0.0626 0.21 0.8365 −0.03 0.9773
Cracker 2 Cracker 4 −29.31 <0.0001 * −0.51 0.6102 12.22 <0.0001 *
Cracker 3 Cracker 4 −27.47 <0.0001 * −0.71 0.4757 12.25 <0.0001 *

Cup 1 Cup 2 10.72 <0.0001 * −1.04 0.2992 1.17 0.2426
Cup 1 Cup 3 9.78 <0.0001 * −1.96 0.0499 5.52 <0.0001 *
Cup 1 Cup 4 −13.65 <0.0001 * −0.92 0.3589 3.74 0.0002 *
Cup 2 Cup 3 −0.93 0.3546 −0.92 0.3585 4.33 <0.0001 *
Cup 2 Cup 4 −24.13 <0.0001 * 0.11 0.9129 2.57 0.0102
Cup 3 Cup 4 −23.21 <0.0001 * 1.02 0.3085 −1.71 0.0868
Ball 1 Cracker 1 8.41 <0.0001 * 3.40 0.0007 0.68 0.4961
Ball 1 Cup 1 9.75 <0.0001 * 2.78 0.0054 5.06 <0.0001 *

Cracker 1 Cup 1 1.29 0.1987 −0.62 0.5331 4.33 <0.0001 *
Ball 2 Cracker 2 3.41 0.0007 3.39 0.0007 −6.60 <0.0001 *
Ball 2 Cup 2 5.62 <0.0001 * 2.00 0.0452 6.47 <0.0001 *

Cracker 2 Cup 2 2.17 0.0301 −1.39 0.1641 13.00 <0.0001 *
Ball 3 Cracker 3 6.22 <0.0001 * 5.26 <0.0001 * −9.01 <0.0001 *
Ball 3 Cup 3 9.40 <0.0001 * 2.77 0.0057 8.39 <0.0001 *

Cracker 3 Cup 3 3.12 0.0018 −2.51 0.0121 17.33 <0.0001 *
Ball 4 Cracker 4 −2.91 0.0037 0.99 0.3226 −2.46 0.0139
Ball 4 Cup 4 4.76 <0.0001 * 0.25 0.8019 0.58 0.5595

Cracker 4 Cup 4 7.65 <0.0001 * −0.74 0.4569 3.05 0.0023

* Significant effect.

3.2. Smoothness

There was a significant main effect of smoothness for type of task (F(2) = 21.06,
p < 0.0001). Main effects for phase, type x phase interaction, and dominant versus non-
dominant hand were not significant (Table 2; Figure 3b). Post hoc analysis revealed that
the reaching movements for the bilateral task were significantly less smooth than in the
reach-to-eat task for transport 2 (p < 0.0005). The reaching movement for transport 2 was
also significantly less smooth than withdrawal for the bilateral task (p = 0.0005). All other
comparisons were not significantly different (Table 3).
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3.3. Speed

There were significant main effects of speed for type of task (F(2) = 176.31, p < 0.0001),
phase of task (F(3) = 64.87, p < 0.0001), and type x phase interaction (F(6) = 25.38, p < 0.0001),
but not for dominant versus non-dominant hand (Table 2; Figure 3c). Post hoc testing
revealed the following phase differences within each task: reaching movements in the
prehension phase were faster than transport 2 and withdrawal, and reaching movements
in the transport 1 phase were faster than transport 2; for the reach-to-eat task, reaching
movements were faster in the prehension phase than the three other phases, and withdrawal
was slower than all three other phases; reaching movements in the bilateral reach were
significantly slower in the withdrawal phase than all other phases (Table 3). The following
differences between tasks by phase were also found: for prehension and transport 1, reach
movement was faster in both the bilateral and reach-to-eat tasks versus the reach-to-drink
task; reaching movement in the reach-to-eat task was also significantly faster than the
bilateral task for both transport phases.

4. Discussion

The objective of this study was to evaluate the coordination and timing of reaching
movements in typically developing school-aged children when performing functional
reaching tasks, applying the Reach and Grasp Cycle [20]. We were able to measure the
straightness, smoothness, and speed of reaching movements of 71 children performing
three different tasks: reach-to-drink, reach-to-eat, and a bilateral reach. The results from this
study support our main hypothesis, indicating that reaching movement varies significantly
based on the task being performed, even when the individual is following the same reaching
pattern of the Reach and Grasp Cycle [20]. Support for our specific hypotheses was mixed.
The prehension movement was slower and straighter than the two transport phases, as
predicted, but not the withdrawal phase. Additionally, there was no significant difference
in smoothness between the phases. This might have been due to a ceiling effect, as the
mean was close to 1 for all phases. As we expected, bilateral movements were less straight
than the other two tasks. The bilateral movements were also slower than the reach-to-eat
movements, but not reach-to-drink, providing partial support for that hypothesis. Last,
the dominant hand did move significantly straighter than the non-dominant hand, but
not smoother nor faster. These results highlight the complex interplay of task and object
characteristics that impact the timing and coordination of reaching behaviors in children.
Since most of the research on the impacts of varying task and object constraints on reach
kinematics has focused on an adult population, we will compare and contrast our results
with those.

Research in adults has demonstrated changes in reaching behaviors with different task
constraints. For example, when adults reach for an empty cup of water, their movements
are significantly faster than reaches toward a full cup of water [24,27]. It is not yet known if
these effects are the same in a pediatric population. In support of our hypotheses, some of
the results in this study were consistent with these findings, such as: reaches were faster in
the prehension and transport 1 phases for the reach-to-eat and bilateral tasks than for the
reach-to-drink task. This is likely due to greater constraints on the reach-to-drink task, with
the need for precision to keep the water in the cup. Consistent with this theory, movements
in the two transport phases were straightest for the reach-to-drink task, although only
significantly different from the bilateral task. This type of task requires feedback motor
control to maintain a straight movement to keep the water from spilling out of the cup [23],
meaning that the sensory systems are providing real-time feedback on the position of the
cup, water, hand, etc., which the motor system then uses to guide the movement of the
upper extremity to complete the task successfully. The children likely slowed their speed
in the reach-to-drink task to allow time for this sensory processing to occur.

Changes in object size also affects reach speed in adults performing a reach and grasp
task, with slower reaches toward smaller objects [23,28]. In contrast, children in this study
had the fastest reaching speeds in the reach-to-eat task, even though the cracker was the
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smallest of the three objects. In this instance, there are likely other factors that had greater
influence on reach behavior than object size. One factor might be that reaching for a cup full
of water requires more precision and visuomotor feedback than reaching for a small object,
as described previously. An additional factor could be motivation to complete the task.
Motivation and reward can impact movement speed, amplitude, and variability in multiple
types of movement tasks in adults [22,29–31]. In the present study, it is possible that the
children found the reward of eating a cracker to be more motivating than drinking water
or touching a ball to their chin. This would be consistent with previous research, which
indicated that reaching movements were faster and less variable for tasks that offered a
reward, compared to tasks with no reward [22,29].

The differences between phases of the Reach and Grasp Cycle in this study were
partially consistent with our hypotheses and might indicate that familiarity with specific
movements has a strong influence on timing and coordination of the reach. For example,
reaches were fastest and straightest in the object transport phases, which is consistent
with previous research and our predictions [17,32]. It is possible that these movements,
or at least transport 1, can be completed using primarily feedforward control, which is
much faster than feedback control [33]. Feedforward motor control relies on stored motor
representations, which are created over many repetitions of a motor task, rather than
from processing of sensory information in real time. Children bring objects to and from
their mouth many times a day; however, the position of the object they are reaching for is
variable, and thus the prehension phase requires more feedback control to accomplish. We
had also hypothesized that movements would be faster and straighter in the withdrawal
phase compared to the prehension phase, which was not supported by our results. It is
possible that in the context of this study procedure, participants needed to use feedback
control for the withdrawal phase as well, because there was a marked position on which
they needed to place their hands. Overall, it is clear that there is a complex interplay of
task and object characteristics that impact timing and coordination of reaching behaviors in
children via motor control mechanisms.

Last, we found that the dominant hand movements were significantly straighter than
the non-dominant hand movements, as we expected. Contrary to our hypothesis, and
contrary to studies in adults, we found no differences in speed or smoothness of move-
ment between the dominant and non-dominant hands [34,35]. Given the age and typical
development of the participants (7–12 years old), we would expect them to demonstrate a
strong hand preference, and our result partially supported this [36]. It is possible that this
procedure is not sensitive enough to detect the difference in speed and smoothness between
the dominant and non-dominant hands in typical development; however, Butler et al. have
shown that it can detect differences between typical and motor-impaired movement [17].
Future investigations should determine the magnitude of difference required to detect a
meaningful change for each of these kinematic variables in the Reach and Grasp Cycle.
This would help determine whether measuring kinematics of functional reaching tasks
could be used to detect clinically important improvements with rehabilitation.

5. Conclusions

Kinematic measurement of coordination and timing of reaching movement in func-
tional reaching tasks is a promising objective, quantitative measure of upper extremity
function in a pediatric population, as it can provide detailed information about movement
timing and coordination. Results from this study provide insight into how task familiarity,
constraints, and motivation might impact the coordination and timing of reach in typically
developing children, and the role that motor control systems might play in those differ-
ences. This information could be used to further refine clinical rehabilitation approaches
for pediatric populations with upper extremity motor impairment. Application to clinical
practice could include: (1) routinely using kinematics as an outcome measure to track
progress; (2) using information about timing and coordination and task constraints to
target improvements in skills that are inherent to participation in daily life activities. Some
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examples of precise treatment planning based on the results of this study would be to
choose larger target objects or more motivating tasks to train increased reach speed, and to
use tasks that require feedback control, such as transporting a cup of water, to train straight-
ness and smoothness. Future research could further investigate the impact of specific task
characteristics on kinematics in a reach and grasp task in children. An important next
step would be to determine a minimal clinically important difference for average speed,
smoothness, and straightness of hand movement in the Reach and Grasp Cycle. In the
future, data could be used as a normative comparison for age-matched children with motor
disability to measure improvements in everyday reaching function with targeted upper
extremity therapy interventions.
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