Accessing Neuromarketing Scientific Performance: Research Gaps and Emerging Topics
Abstract
:1. Introduction
- (1)
- To determine the overall performance of neuromarketing research;
- (2)
- To determine the performance of the most cited articles;
- (3)
- To identify the most prominent topics within the neuromarketing field;
- (4)
- To identify the prominent Scival topics on neuromarketing; and
- (5)
- To identify the best Scival topics on neuromarketing by percentile.
2. Mapping Neuromarketing Science
2.1. Bibliometric Studies on Neuromarketing
2.2. Mapping Research Topics through Bibliometric Studies
3. Materials and Methods
3.1. Indicators and Methods Used
3.2. Data Collection and Organization Procedures
3.3. Data Analysis Techniques and Procedures
4. Results
4.1. Neuromarketing: Overall Research Performance
4.2. Performance of the Most Cited Neuromarketing Articles
4.3. Performance of Most Prominent Neuromarketing Topics: Author Word Network
4.4. Performance of Prominent Scival Neuromarketing Topics
4.5. Neuromarketing
5. Conclusions
- (1)
- To determine the overall performance of neuromarketing research;
- (2)
- To determine the performance of the most cited articles;
- (3)
- To identify the most prominent topics within the neuromarketing field;
- (4)
- To identify the prominent Scival topics on neuromarketing; and
- (5)
- To identify the best Scival topics on neuromarketing by percentile.
Contributions, Implications, and Future Research
Author Contributions
Funding
Conflicts of Interest
References
- Lopes, A.T.; de Aguiar, E.; De Souza, A.F.; Oliveira-Santos, T. Facial expression recognition with Convolutional Neural Networks: Coping with few data and the training sample order. Pattern Recognit. 2017, 61, 610–628. [Google Scholar] [CrossRef]
- Lim, M.W. Demystifying neuromarketing. J. Bus. Res. 2018, 91, 205–220. [Google Scholar] [CrossRef]
- Boyack, K.W. Mapping knowledge domains: Characterizing PNAS. Proc. Natl. Acad. Sci. USA 2004, 101 (Suppl 1.), 5192–5199. [Google Scholar] [CrossRef] [Green Version]
- Koseoglu, M.A.; Rahimi, R.; Okumus, F.; Liu, J. Bibliometric studies in tourism. Ann. Tour. Res. 2016, 61, 180–198. [Google Scholar] [CrossRef]
- Alsharif, A.H.; Salleh, N.Z.M.; Baharun, R.; Safaei, M. Neuromarketing Approach: An Overview and Future Research Directions. J. Theor. Appl. Inf. Technol. 2020, 9, 991–1001. [Google Scholar]
- Sousa, C.; Lara, E.J. State of the art of national and international publications on neuromarketing and neuroeconomics. Braz. J. Mark.—BJM Rev. Bras. Mark. 2016, 15, 28–41. [Google Scholar] [CrossRef]
- Wannyn, W. Le marketing du Neuromarketing: Enjeux académiques d’un domaine de recherche controversé. Soc. Sci. Inf. 2017, 56, 619–639. [Google Scholar] [CrossRef]
- Cardoso, L.; Silva, R.; Almeida, G.G.F.; Santos, L.A. Bibliometric Model to Analyze Country Research Performance: SciVal Topic Prominence Approach in Tourism, Leisure and Hospitality. Sustainability 2020, 12, 9897. [Google Scholar] [CrossRef]
- Cardoso, L.; Araújo, N.; Almeida, G.G.F.; Soliman, M. Swiss Tourism Leisure and Hospitality Management Research—Topic Prominence Analysis. Adv. Tour. Res. (AHTR) 2020, 12, 144–169. [Google Scholar]
- Cardoso, L.; Araújo, A.F.; Lima Santos, L.; Schegg, R.; Breda, Z.; Costa, C. Country Performance Analysis of Swiss Tourism, Leisure and Hospitality Management Research. Sustainability 2021, 13, 2378. [Google Scholar] [CrossRef]
- Khushaba, R.N.; Wise, C.; Kodagoda, S.; Louviere, J.; Kahn, B.E.; Townsend, C. Consumer neuroscience: Assessing the brain response to marketing stimuli using electroencephalogram (EEG) and eye tracking. Expert Syst. Appl. 2013, 40, 3803–3812. [Google Scholar] [CrossRef]
- Alsakaa, A.A.; Borawska, A.; Borawski, M.; Łatuszyńska, M.; Piwowarski, M.; Babiloni‖, F.; Nermend, K. Cognitive neuroscience techniques in determining the right time of advertising. In Proceedings of the IOP Conference Series: Materials Science and Engineering, Kerbala, Iraq, 4–6 November 2019. [Google Scholar]
- Sánchez-Fernández, R.; Iniesta-Bonillo, M.Á. Consumer perception of value: Literature review and a new conceptual framework. J. Consum. Satisf. Dissatisfaction Complain. Behav. 2006, 19, 40–58. [Google Scholar]
- Serrano, L.; Sianes, A.; Ariza-Montes, A. Using Bibliometric Methods to Shed Light on the Concept of Sustainable Tourism. Sustainability 2019, 11, 6964. [Google Scholar] [CrossRef] [Green Version]
- Huang, M.-H.; Lin, C.-S.; Chen, D.-Z. Counting methods, country rank changes, and counting inflation in the assessment of national research productivity and impact. J. Am. Soc. Inf. Sci. Technol. 2011, 62, 2427–2436. [Google Scholar] [CrossRef]
- Severt, D.E.; Tesone, D.V.; Bottorff, T.J.; Carpenter, M.L. A world ranking of the top 100 hospitality and tourism programs. J. Hosp. Tour. Res. 2009, 33, 451–470. [Google Scholar] [CrossRef]
- Hanssen, T.S.; Jørgensen, F.; Larsen, B. The relation between the quality of research, researchers’ experience, and their academic environment. Scientometrics 2018, 114, 933–950. [Google Scholar] [CrossRef]
- Howey, R.M.; Savage, K.S.; Verbeeten, M.J.; Van Hoof, H.B. Tourism and hospitality research journals: Cross-citations among research communities. Tour. Manag. 1999, 20, 133–139. [Google Scholar] [CrossRef]
- Frechtling, D.C. Assessment of tourism/hospitality journals’ role in knowledge transfer: An exploratory study. J. Travel Res. 2004, 43, 100–107. [Google Scholar] [CrossRef]
- Huang, S.; Hsu, C.H.C. Recent tourism and hospitality research in China. Int. J. Hosp. Tour. Adm. 2008, 9, 267–287. [Google Scholar] [CrossRef]
- Harris, P.J.; Brown, J.B. Research and development in hospitality accounting and financial management. Int. J. Hosp. Manag. 1998, 17, 161–182. [Google Scholar] [CrossRef]
- Park, K.; Phillips, W.J.; Canter, D.D.; Abbott, J. Hospitality and tourism research rankings by author, university, and country using six major journals. J. Hosp. Tour. Res. 2011, 35, 381–416. [Google Scholar] [CrossRef] [Green Version]
- Ye, Q.; Song, H.; Li, T. Cross-institutional collaboration networks in tourism and hospitality research. Tour. Manage. Perspect. 2012, 2–3, 55–64. [Google Scholar] [CrossRef]
- Chen, Y.; Dellea, D.; Bianchi, G. Knowledge creation and research production in Swiss hotel schools: A case study of the EcoleHôtelière de Lausanne. J. Hosp. Tour. Educ. 2019, 31, 10–22. [Google Scholar] [CrossRef] [Green Version]
- Lima Santos, L.; Cardoso, L.; Araújo-Vila, N.; Fraiz-Brea, J.A. Sustainability Perceptions in Tourism and Hospitality: A Mixed-Method Bibliometric Approach. Sustainability 2020, 12, 8852. [Google Scholar] [CrossRef]
- Klavans, R.; Boyack, K.W. Research portfolio analysis and topic prominence. J. Informetr. 2017, 11, 1158–1174. [Google Scholar] [CrossRef] [Green Version]
- Bornmann, L.; Leydesdorff, L.; Mutz, R. The use of percentiles and percentile rank classes in the analysis of bibliometric data: Opportunities and limits. J. Informetr. 2013, 7, 158–165. [Google Scholar] [CrossRef] [Green Version]
- Waltman, L.; Schreiber, M. On the calculation of percentile-based bibliometric indicators. J. Am. Soc. Inf. Sci. Technol. 2013, 64, 372–379. [Google Scholar] [CrossRef] [Green Version]
- EP, Elsevier Publisher. Topic Prominence in Science. 2020. Available online: https://www.elsevier.com/solutions/scival/releases/topic-prominence-in-science (accessed on 14 June 2020).
- Wang, J.; Shapira, P. Is there a relationship between research sponsorship and publication impact? An analysis of funding acknowledgments in nanotechnology papers. PLoS ONE 2015, 10, e0117727. [Google Scholar] [CrossRef] [PubMed]
- Ohniwa, R.L.; Hibino, A. Generating process of emerging topics in the life sciences. Scientometrics 2019, 121. [Google Scholar] [CrossRef]
- Small, H.; Boyack, K.W.; Klavans, R. Identifying emerging topics in science and technology. Res. Policy 2014, 43, 1450–1467. [Google Scholar] [CrossRef]
- Alsharif, A.H.; Salled, N.Z.M.; Baharun, R. Research trends of neuromarketing: A bibliometric analysis. J. Theor. Appl. Inf. Technol. 2020, 98, 2948–2962. [Google Scholar]
- Aria, M.; Cuccurrullo, C. Bibliometrix: An R-tool for comprehensive science mapping analysis. J. Informetr. 2017, 11, 959–975. [Google Scholar] [CrossRef]
- Karmarkar, U.R. Note on Neuromarketing; Harvard Business School Background Note 512-031; HBS Case Collection; Harvard Business School: Boston, MA, USA, 2011. [Google Scholar]
- Harrell, E. Neuromarketing: What you Need to Know; Harvard Business Review; Harvard Business Publishing: Brighton, MA, USA, 2019; Volume 97, pp. 64–70. [Google Scholar]
- Berns, G.; Moore, S.E. A Neural Predictor of Cultural Popularity. SSRN Electron. J. 2010, 1–9. [Google Scholar] [CrossRef]
- Boksem, M.A.S.; Smidts, A. Brain Responses to Movie Trailers Predict Individual Preferences for Movies and Their Population-Wide Commercial Success. J. Mark. Res. 2015, 52, 482–492. [Google Scholar] [CrossRef] [Green Version]
- Lee, N.; Broderick, A.J.; Chamberlain, L. What is ‘neuromarketing’? A discussion and agenda for future research. Int. J. Psichophisiology 2007, 63, 200–204. [Google Scholar] [CrossRef] [PubMed]
- Plassmann, H.; Zoëga Ramsøy, T.; Milosavljevic, M. Branding the brain: A critical review and outlook. J. Consum. Psychol. 2012, 22, 18–36. [Google Scholar] [CrossRef]
- Dimoka, A.; Pavlou, P.A.; Davis, F.D. NeuroIS: The Potential of Cognitive Neuroscience for Information Systems Research. Inf. Syst. Res. 2011, 22, 687–702. [Google Scholar] [CrossRef]
- Reimann, M.; Zaichkowsky, J.; Neuhaus, C.; Bender, T.; Weber, B. Aesthetic package design: A behavioral, neural, and psychological investigation. J. Consum. Psychol. 2010, 20, 431–441. [Google Scholar] [CrossRef]
- Falk, E.B.; Berkman, E.T.; Lieberman, M.D. From Neural Responses to Population Behavior: Neural Focus Group Predicts Population-Level Media Effects. Psychol. Sci. 2012, 23, 439–445. [Google Scholar] [CrossRef]
- Ohme, R.; Reykowska, D.; Wiener, D.; Choromanska, A. Analysis of neurophysiological reactions to advertising stimuli by means of EEG and galvanic skin response measures. J. Neurosci. Psychol. Econ. 2009, 2, 21–31. [Google Scholar] [CrossRef] [Green Version]
- Lee, E.-J. Empathy can increase customer equity related to pro-social brands. J. Bus. Res. 2016, 69, 3748–3754. [Google Scholar] [CrossRef]
- Ma, Q.G.; Hu, L.F.; Pei, G.X.; Ren, P.Y.; Ge, P. Applying Neuroscience to Tourism Management: A Primary Exploration of Neurotourism. Appl. Mech. Mater. 2014, 670, 1637–1640. [Google Scholar] [CrossRef]
- Mañas-Viniegra, L.; González-Villa, I.-A.; Llorente-Barroso, C. The Corporate Purpose of Spanish Listed Companies: Neurocommunication Research Applied to Organizational Intangibles. Front. Psychol. 2020, 11. [Google Scholar] [CrossRef]
- Hsu, M.Y.-T.; Cheng, J.M.-S. fMRI neuromarketing and consumer learning theory. Eur. J. Mark. 2018, 52, 199–223. [Google Scholar] [CrossRef]
- Zhao, M.; Wang, J.; Zhang, H.; Zhao, G. ERP Perspective Analysis of PSS Component and Decision-Making. Sustainability 2019, 11, 1063. [Google Scholar] [CrossRef] [Green Version]
- Libert, A.; Van Hulle, M.M. Predicting Premature Video Skipping and Viewer Interest from EEG Recordings. Entropy 2019, 21, 1014. [Google Scholar] [CrossRef] [Green Version]
- Chung, K.; Park, J.Y.; Park, K.; Kim, Y. Which Visual Modality Is Important When Judging the Naturalness of the Agent (Artificial Versus Human Intelligence) Providing Recommendations in the Symbolic Consumption Context? Sensors 2020, 20, 5016. [Google Scholar] [CrossRef] [PubMed]
- Mañas-Viniegra, L.; García-García, A.; Martín-Moraleda, I.J. Audience Attention and Emotion in News Filmed with Drones: A Neuromarketing Research. Media Commun. 2020, 8, 123–136. [Google Scholar] [CrossRef]
- Fan, J.; Touyama, H. Computer-Generated Emotional Face Retrieval with P300 Signals of Multiple Subjects. J. Adv. Comput. Intell. Intell. Inform. 2016, 20, 902–909. [Google Scholar] [CrossRef]
- Fujita, K.; Touyama, H. Majority Rule Using Collaborative P300 by Auditory Stimulation. J. Adv. Comput. Intell. Intell. Inform. 2017, 21, 1312–1320. [Google Scholar] [CrossRef]
- Heinonen, J.; Briesemeister, B. Conjoint fMRI method for shortening analysis time. Cogent Psychol. 2018, 5. [Google Scholar] [CrossRef]
- Çakir, M.P.; Çakar, T.; Girisken, Y.; Yurdakul, D. An investigation of the neural correlates of purchase behavior through fNIRS. Eur. J. Mark. 2018, 52, 224–243. [Google Scholar] [CrossRef]
- Rodas-Areiza, J.A.; Montoya-Restrepo, L.A. Methodological proposal for the analysis and measurement of sensory marketing integrated to the consumer experience. DYNA 2018, 85, 54–59. [Google Scholar] [CrossRef]
- Zavadskas, E.K.; Bausys, R.; Kaklauskas, A.; Raslanas, S. Hedonic shopping rent valuation by one-to-one neuromarketing and neutrosophic PROMETHEE method. Appl. Soft Comput. 2019, 85, 1–14. [Google Scholar] [CrossRef]
- Chi Qin, L.; Haidi, I.; Mohd Zaid, A.; Jafri Malin, A.; Suandi, S.A.; Azman, A. Current Practical Applications of Electroencephalography (EEG). J. Comput. Theor. Nanosci. 2019, 16, 4943–4953. [Google Scholar]
- Rapp, J.; Hill, R.P.; Gaines, J.; Wilson, R.M. Advertising and Consumer Privacy. J. Advert. 2009, 38, 51–61. [Google Scholar] [CrossRef]
MAIN INFORMATION ABOUT DATA | Results |
---|---|
Timespan | 2007:2020 |
Sources (Scopus Journals) | 212 |
Documents | 318 |
Average years from publication | 3.86 |
Average citations per document | 14.78 |
Average citations per year per document | 2313 |
References | 15.246 |
DOCUMENT TYPE | |
Article | 318 |
DOCUMENT CONTENTS | |
Keywords Plus (ID) | 989 |
Author’s Keywords (DE) | 913 |
AUTHORS | |
Authors | 850 |
Author Appearances | 1072 |
Authors of single-authored documents | 50 |
Authors of multi-authored documents | 800 |
AUTHOR COLLABORATION | |
Single-authored documents | 52 |
Documents per Author | 0.374 |
Authors per Document | 2.67 |
Co-authors per Document | 3.37 |
Collaboration Index | 3.01 |
SCIVAL TOPIC PROMINENCE | 315 |
Rank | Journal | Articles | Rank | Publisher | Articles |
---|---|---|---|---|---|
1 | Frontiers in Neuroscience | 9 | 1 | Emerald Group Publishing LTD. | 20 |
2 | Frontiers in Psychology | 9 | 2 | Frontiers Media S.A. | 15 |
3 | Profesional de la Informacion | 7 | 3 | Elsevier INC. | 10 |
4 | Comunicar | 6 | 4 | MDPI AG | 10 |
5 | Journal of Neuroscience Psychology and Economics | 6 | 5 | Elsevier LTD | 9 |
6 | Cogent Psychology | 5 | 6 | Routledge | 7 |
7 | Journal of Business Research | 5 | 7 | Cogent OA | 5 |
8 | Revista Latina de Comunicacion Social | 5 | 8 | Sage Publications INC. | 5 |
9 | Asia Pacific Journal of Marketing and Logistics | 4 | 9 | Springer New York LLC | 5 |
10 | Behavioral Sciences | 4 | 10 | American Psychological Association INC. | 4 |
Country | Absolute Frequency | Country | Absolute Frequency |
---|---|---|---|
Spain | 154 | Canada | 14 |
USA | 124 | Ecuador | 13 |
China | 75 | Slovakia | 11 |
Italy | 57 | Colombia | 10 |
Germany | 54 | Mexico | 10 |
UK | 52 | Ukraine | 10 |
South Korea | 43 | Austria | 9 |
Turkey | 38 | Portugal | 8 |
Australia | 33 | Saudi arabia | 7 |
Brazil | 33 | Belgium | 6 |
Lithuania | 28 | Czech Republic | 6 |
Netherlands | 26 | Chile | 5 |
Iran | 25 | Singapore | 5 |
Japan | 25 | Switzerland | 5 |
Malaysia | 23 | Vietnam | 5 |
Romania | 21 | Bangladesh | 4 |
Denmark | 20 | Cyprus | 4 |
France | 19 | Finland | 4 |
India | 16 | New Zealand | 4 |
Poland | 15 | Peru | 3 |
Authors Institutions Affiliations | Articles |
---|---|
Complutense Madrid University, Spain | 21 |
Rome la Sapienza University, Italy | 19 |
Zhejiang University, China | 19 |
Sungkyunkwan University, South Korea | 15 |
Vilnius Gediminas Tech University, Lithuania | 14 |
Ningbo University, China | 13 |
Islamic Azad University, Iran | 12 |
Granada University, Spain | 12 |
Swinburne Polytechnic University, Australia | 8 |
Oxford University, the UK | 8 |
Valencia Polytechnic University, Spain | 8 |
Vigo University, Spain | 8 |
Authors | Articles | Articles Fractionalized | First Authorship Papers | Affiliation |
---|---|---|---|---|
Babiloni F. | 9 | 1.20 | No | Sapienza University of Rome, Italy |
Ma Q. | 9 | 2.45 | 6 | Zhejiang University, China |
Vecchiato G. | 8 | 1.22 | 7 | Sapienza University of Rome, Italy |
Crespo-Pereira V. | 7 | 3.33 | 4 | Pontificia Universidad Católica del Ecuador, Ecuador |
Lee N. | 7 | 2.19 | 2 | University of Warwick, Coventry, United Kingdom |
Chamberlain L. | 6 | 1.69 | No | Aston University, United Kingdom |
Grigaliunaite V. | 6 | 3.00 | 2 | Vytautas Magnus University, Lithuania |
Kaklauskas A. | 6 | 1.07 | 5 | Vilnius Gediminas Technical University, Lithuania |
Maglione A. | 6 | 0,90 | No | Department Economics and Marketing, “IULM” University |
Pileliene L. | 6 | 3.00 | 2 | Vytauto Didziojo Universitetas, Lithuania |
Ramsoy T. | 6 | 2.45 | No | Neurons Inc, Copenhagen, Denmark |
Wang X. | 6 | 1.53 | No | Zhejiang University, China |
Cherubino P. | 5 | 0.65 | No | BrainSigns, Italy |
Kong W. | 5 | 0.98 | 1 | Hangzhou Dianzi University, China |
Authors | Number of Citations | Affiliations | Topic Area | Application Area | Neuroscience Technology Used | Research Aim or Research Gap |
---|---|---|---|---|---|---|
Lee et al. (2007) | 307 | Aston Business School, Aston University, UK | Introduction and review | not applicable | not applicable | To provide a scholarly perspective on neuromarketing |
Lopes et al. (2017) | 290 | Universidade Federal do Espírito Santo, Brazil | Methodology improvement | Fascial expression recognition | not applicable | To propose a new method for improving the accuracy of facial expression recognition |
Khushaba et al. (2013) | 195 | University of Technology, Sydney (UTS), Australia | prediction of consumer behavior | Crackers | EEG and eye tracking | To analyze EEG spectral changes in a choice context to measure specific features of the choice options |
Reimann et al. (2010) | 194 | University of Southern California, USA | Consumer choice preference | Packaging | fMRI | The neural underpinnings of aesthetic packaging experiences is nonexistent in the literature |
Plassmann et al. (2012) | 172 | INSEAD, France | Literature review | not applicable | not applicable | How neuroscience can advance consumer psychology concerning brands |
Dimoka et al. (2011) | 149 | Temple University, Philadelphia, USA | Research commentary | not applicable | not applicable | To introduce cognitive neuroscience theories, methods, and tools to IS researchers |
Falk et al. (2012) | 144 | University of Michigan, USA | Consumer responses | TV campaigns | fMRI | Can the neural responses of individuals predict the behavior of a population? |
Berns & Moore (2010) | 121 | Emory University, Atlanta, USA | Prediction of consumer behavior | The music industry | fMRI | Can the neural responses of individuals predict subsequent market results? |
Boksem and Smidts (2015) | 106 | Rotterdam School of Management, Netherland | Consumer choice preference | Movie traiers | EEG | To investigate whether neural measures contribute to the prediction of commercial success beyond stated preference measures |
Ohme et al. (2009) | 104 | Polish Academy of Sciences, Poland | Consumer responses | TV Ads | EEG, EMG, and skin conductance | To investigate whether neurophysiological measures can capture differences in consumer reactions |
R | Scival Topic Prominence: | AF | RF | SP | Publication Year | TOP 1 Journal |
---|---|---|---|---|---|---|
1 | Neuromarketing | Neurosciences | TV Commercial | 175 | 0.55 | 94.432 | 2020-19; 2019-37; 2018-15; 2017-28; 2016-10; 2015-13; 2014-10; 2013-8; 2012-13; 2011-6; 2010-6; 2009-3; 2008-4; 2007-3 | Frontiers in Neuroscience-5Frontiers In Psychology-5 |
2 | Celebrity Endorsement | VIP | Purchase Intention | 6 | 0.019 | 95.662 | 2020-2; 2017-2; 2016-1; 2010-1 | Scientific Annals of Economics and Business-2 |
3 | Emotion Recognition | Electroencephalography | Brain Computer Interface | 6 | 0.019 | 98.281 | 2018-2; 2016-3; 2014-1 | Acta Universitatis Agriculturae et Silviculturae Mendelianae Brunensis-1 |
4 | Near-infrared Spectroscopy | Diffuse Optical Tomography | brain Computer Interface | 6 | 0.019 | 98.186 | 2020-1; 2019-1; 2018-2; 2017-1; 2016-1 | Advances In Experimental Medicine and Biology-1 |
5 | Motor Imagery | Brain Computer Interface | Visual Evoked Potentials | 5 | 0.015 | 99.769 | 2019-2; 2017-1; 2016;1; 2015-1 | Journal Of Advanced Computational Intelligence and Intelligent Informatics-2 |
6 | Implicit Association Test | Implicit Measures | Avoidance Conditioning | 3 | 0.009 | 98.521 | 2020-1; 2016-1; 2013-1 | Behavioral Sciences, MDPI-1 |
7 | Message Sensation Value | Sensation Seeking | Public Service Announcements | 3 | 0.009 | 78.288 | 2017-1; 2013-2 | Historia Y Comunicacion Social-1 |
8 | Sentence Comprehension | Left Anterior Negativity | Syntactic Processing | 3 | 0.009 | 96.494 | 2019-1; 2016-1; 2012-1 | Neuroscience Letters-2 |
9 | Sport Sponsorship | Ambush Marketing | Sponsor | 3 | 0.009 | 93.018 | 2020-1; 2019-1; 2018-1 | International Journal of Sports Marketing and Sponsorship-2 |
10 | Subjective Well-being | Happiness | Life Satisfaction | 3 | 0.009 | 98.770 | 2020-1; 2019-2 | Energies, MDPI-1 |
R | SP | NP | Topic | Authors | F | 1st and 2nd Author Affiliation |
---|---|---|---|---|---|---|
1 | 99.922 | 2 | Cause-related Marketing | corporate Social Performance | Corporate Philanthropy | Lee (2016); Mañas-Viniegra et al. (2020) | Yes-2 | Sungkyunkwan University—South Korea; Complutense University of Madrid—Spain |
2 | 99.941 | 1 | Electronic Word-of-mouth | Online Reviews | Brand Community | Hsu and Cheng (2018) | No | Minghsin University of Science and Technology—Taiwan |
3 | 99.858 | 1 | Product-service Systems | service Economy | Value Co-creation | Zhao et al. (2019) | Yes | Heilongjiang University—China Beihang University—China |
4 | 99.769 | 5 | Motor Imagery | brain Computer Interface | Visual Evoked Potentials | Wójcik et al. (2015) Fan and Touyama (2016) Fujita and Touyama (2017) Libert and Van Hulle (2019) Chi Qin et al. (2019) | Yes-1 No-4 | Maria Curie-Skłodowska University—Poland Toyama Prefectural University—Japan KU Leuven-University of Leuven—Belgium Universiti Sains Malaysia—Malaysia |
5 | 99.718 | 1 | Human-robot Interaction | Humanoid Robot | uncanny | Chung et al. (2020) | Yes | Yonsei University Health System, South Korea Seoul National University, South Korea |
6 | 99.568 | 2 | Prefrontal Cortex | prediction Error | Reward | Heinonen and Briesemeister. (2018). Çakir et al. (2018) | No | Laurea University of Applied Sciences, Espoo, Finland Middle East Technical University, Ankara, Turkey MEF University, Istanbul, Turkey |
7 | 99.470 | 1 | Privacy Concerns | online Shopping | Social Commerce | Rapp et al. (2009) | Yes | University of Nebraska, USA Villanova School of Business, USA |
8 | 99.393 | 1 | Emotion Recognition | Facial Expression | Smile | Lopes et al. (2017) | Yes | |
9 | 99.166 | 2 | Servicescape | Customer Experience | Mall | Rodas-Areiza and Montoya-Restrepo (2018) Zavadskas et al. (2019) | Yes-2 | Instituto Tecnológico Metropolitano, Medellín, Colombia Universidad Nacional de Colombia, Medellín, Colombia Vilnius Gediminas Technical University, Vilnius, Lithuania |
10 | 99.150 | 1 | Journalism | News Production | Journalistic Practices | Mañas-Viniegra et al. (2020) | Yes | Complutense University of Madrid, Spain |
Authors | Topic Area | Application Area | Neuroscience Technology Used | Research Aim or Research Gap |
---|---|---|---|---|
Lee (2016) | Audience response | Coffee | EEG | The emotional mechanism of empathy and the neural correlates underlying the positive consumer reactions to pro-social marketing |
Mañas-Viniegra et al. (2020) | Audience response | Corporate communication and brand image | Eye tracking and galvanic skin response | Do audiences have different attention and emotions toward corporate purpose message and corporate visual identity? |
Hsu and Cheng (2018) | Audience response | Hotels | EEG | To compare brainwave results when viewing videos with and without subliminal stimuli |
Zhao et al. (2019) | Audience response | Camera | EEG | To understand the roles of elements and design in meeting customer demand regarding product and service systems |
Wójcik et al. (2015) | Methodology improvement | Equipment failure | Not applicable | To recommend a solution for fixing an Emotive EEG technical problem |
Fan and Touyama (2016) | Methodology improvement | Emotional face retrieval | EEG | To improve the accuracy of emotional face retrieval classification |
Fujita and Touyama (2017) | Methodology improvement | Audio | EEG, eye tracking (EOG signals) | To develop a method of single-shot multimedia content evaluation based on collaborative P300 signals in order to improve accuracy |
Libert and Van Hulle (2019) | Methodology improvement | Video | EEG | To develop a method to predict video behavior and viewing interest |
Chi Qin et al. (2019) | Literature review | EEG | To explore and categorize EGG applications in research | |
Chung et al. (2020) | Audience responses | Recommendation agents | EEG | Do people prefer natural virtual agents (human) or artificial intelligences? |
Heinonen and Briesemeister (2018) | Methodology improvement | Research method | fMRI | To shorten fMRI time using conjoint analysis |
Çakir et al. (2018) | Methodology improvement | Supermarket products | fNIRS | To develop a neurophysiologically-informed model of purchasing behavior based on fNIRS measurements |
Rapp et al. (2009) | Commentary | Consumer privacy concerns | Not applicable | To review consumer privacy concerns and regulatory environment, and to make recommendations |
Lopes et al. (2017) | Methodology improvement | Facial expression recognition | Not applicable | To propose a new method to improve the accurancy of facial expression recognition |
Rodas-Areiza and Montoya-Restrepo (2018) | Methodology improvement | Fascial cream | Face reader, EEG, and eye tracking | To propose a framework to incorporate and measure the impact of sensory marketing |
Zavadskas et al. (2019) | Methodology improvement | A fair | Facial emotion tracker, temperature analysis device, a respiration sensor | The integration of the emotional and physiological states of potential buyers, their valence and arousal, and their affective attitudes into the analysis of the one-to-one marketing process. |
Mañas-Viniegra et al. (2020) | Audience response | Journalism | Eye tracking and galvanic skin response | The existence of differences between a drone recording and a conventional news recording and the cause of the difference |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cardoso, L.; Chen, M.-M.; Araújo, A.; de Almeida, G.G.F.; Dias, F.; Moutinho, L. Accessing Neuromarketing Scientific Performance: Research Gaps and Emerging Topics. Behav. Sci. 2022, 12, 55. https://doi.org/10.3390/bs12020055
Cardoso L, Chen M-M, Araújo A, de Almeida GGF, Dias F, Moutinho L. Accessing Neuromarketing Scientific Performance: Research Gaps and Emerging Topics. Behavioral Sciences. 2022; 12(2):55. https://doi.org/10.3390/bs12020055
Chicago/Turabian StyleCardoso, Lucília, Meng-Mei Chen, Arthur Araújo, Giovana Goretti Feijó de Almeida, Francisco Dias, and Luiz Moutinho. 2022. "Accessing Neuromarketing Scientific Performance: Research Gaps and Emerging Topics" Behavioral Sciences 12, no. 2: 55. https://doi.org/10.3390/bs12020055
APA StyleCardoso, L., Chen, M. -M., Araújo, A., de Almeida, G. G. F., Dias, F., & Moutinho, L. (2022). Accessing Neuromarketing Scientific Performance: Research Gaps and Emerging Topics. Behavioral Sciences, 12(2), 55. https://doi.org/10.3390/bs12020055