Evidence of Anxiety, Depression and Learning Impairments following Prenatal Hypertension
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preclinical Models of HDP
2.2. Behavioral Test
2.2.1. Post-Partum Depression and Anhedonia
2.2.2. Post-Partum Anxiety
2.2.3. Post-Partum Learning and Memory
2.3. Mean Arterial Pressure Measurement and Organ Collection
2.4. Inflammation Assessments
2.5. Statistical Analysis
3. Results
3.1. Depressive-Like Behavior Is Evident among HDP Dams
3.2. Anxiety-Like Behavior Is Increased in Response to a HDP
3.3. Spatial Learning Is Decreased among HDP Rats
3.4. HDP Did Not Impact Birth Outcomes but Did Increase Post-Partum Hypertension
3.5. S100B Is Increased in PreE Rats, While HDP Decreases BDNF
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Hutcheon, J.; Lisonkova, S.; Joseph, K. Epidemiology of pre-eclampsia and the other hypertensive disorders of pregnancy. Best Pract. Res. Clin. Obstet. Gynaecol. 2011, 25, 391–403. [Google Scholar] [CrossRef] [PubMed]
- Febres-Cordero, D.; Young, B. Hypertensive Disorders of Pregnancy. Neoreviews 2021, 22, e760–e766. [Google Scholar] [CrossRef] [PubMed]
- Engelhard, I.; Van Rij, M.; Boullart, I.; Ekhart, T.; Spaanderman, M.; Van Den Hout, M.; Peeters, L. Posttraumatic stress disorder after pre-eclampsia: An exploratory study. Gen. Hosp. Psychiatry 2002, 24, 260–264. [Google Scholar] [CrossRef]
- Baecke, M.; Spaanderman, M.; Van Der Werf, S. Cognitive function after pre-eclampsia: An explorative study. J. Psychosom. Obstet. Gynaecol. 2009, 30, 58–64. [Google Scholar] [CrossRef] [PubMed]
- Stramrood, C.; Wessel, I.; Doornbos, B.; Aarnoudse, J.; Van Den Berg, P.; Schultz, W.; Van Pampus, M. Posttraumatic stress disorder following preeclampsia and PPROM: A prospective study with 15 months follow-up. Reprod. Sci. 2011, 18, 645–653. [Google Scholar] [CrossRef]
- Ye, Y.; Chen, L.; Xu, J.; Dai, Q.; Luo, X.; Shan, N.; Qi, H. Preeclampsia and its complications exacerabate development of postpartum depression: A Retrospective Cohort Study. BioMed Res. Int. 2021, 2021, 6641510. [Google Scholar] [CrossRef]
- Brusse, I.; Duvekot, J.; Jongerling, J.; Steegers, E.; De Koning, I. Impaired maternal cognitive functioning after pregnancies complicated by severe pre-eclampsia: A pilot case-control study. Acta Obstet. Gynecol. Scand. 2008, 87, 408–412. [Google Scholar] [CrossRef]
- Chapuis-de-Andrade, S.; Moret-Tatay, C.; De Paula, T.; Irigaray, T.; Antonello, I.; da Costa, B. Psychological factors and coping strategies in pregnancies complicated by hypertension: A cluster-analytic approach. J. Affect. Disord. 2022, 296, 89–94. [Google Scholar] [CrossRef]
- Fields, J.; Garovic, V.; Mielke, M.; Kantarci, K.; Jayachandran, M.; White, W.; Butts, A.; Graff-Radford, J.; Lahr, B.; Bailey, K.; et al. Preeclampsia and cognitive impairment later in life. Am. J. Obstet. Gynecol. 2017, 217, 74.e1–74.e11. [Google Scholar] [CrossRef] [Green Version]
- Miller, K.; Miller, V.; Barnes, J. Pregnancy History, Hypertension, and Cognitive Impairment in Postmenopausal Women. Curr. Hypertens. Rep. 2019, 21, 93. [Google Scholar] [CrossRef] [Green Version]
- Habli, M.; Eftekhari, N.; Wiebracht, E.; Bombrys, A.; Khabbaz, M.; How, H.; Sibai, B. Long-term maternal and subsequent pregnancy outcomes 5 years after hemolysis, elevated liver enzymes, and low platelets (HELLP) syndrome. Am. J. Obstet. Gynecol. 2009, 201, e381–e385. [Google Scholar] [CrossRef] [PubMed]
- Mommersteeg, P.; Drost, J.; Ottervanger, J.; Maas, A. Long-term follow-up of psychosocial distress after early onset preeclampsia: The Preeclampsia Risk Evaluation in FEMales cohort study. J. Psychosom. Obstet. Gynaecol. 2016, 37, 101–109. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hoedjes, M.; Berks, D.; Vogel, I.; Franx, A.; Bangma, M.; Darlington, A.; Visser, W.; Duvekot, J.; Habbema, J.; Steegers, E.; et al. Postpartum depression after mild and severe preeclampsia. J. Womens Health 2011, 20, 1535–1542. [Google Scholar] [CrossRef] [PubMed]
- Blom, E.; Jansen, P.V.; Verhulst, F.C.; Hofman, A.; Raat, H.; Jaddoe, V.; Coolman, M.; Steegers, E.; Tiemeier, H. Perinatal complications increase the risk of postpartum depression. The Generation R Study. Br. J. Obstet. Gynaecol. 2010, 117, 1390–1398. [Google Scholar] [CrossRef]
- Adank, M.; Hussainalli, R.; Oosterveer, L.; Ikram, M.; Steegers, E.; Miller, E.; Schalekamp-Timmermans, S. Hypertensive Disorders of Pregnancy and Cognitive Impairment: A Prospective Cohort Study. Neurology 2021, 96, e709–e718. [Google Scholar] [CrossRef] [PubMed]
- Shaaban, C.; Rosano, C.; Cohen, A.; Huppert, T.; Butters, M.; Hengenius, J.; Parks, W.; Catov, J. Cognition and cerebrovascular reactivity in midlife women with history of preeclampsia and placental evidence of maternal vascular malperfusion. Front. Aging Neurosci. 2021, 13, 637574. [Google Scholar] [CrossRef]
- Amaral, L.; Wallace, K.; Owens, M.; Lamarca, B. Pathophysiology and Current Clinical Management of Preeclampsia. Curr. Hypertens. Rep. 2017, 19, 61. [Google Scholar] [CrossRef] [Green Version]
- Wallace, K.; Harris, S.; Addison, A.; Bean, C. HELLP Syndrome: Pathophysiology and Current Therapies. Curr. Pharm. Biotechnol. 2018, 19, 816–826. [Google Scholar] [CrossRef]
- Margioula-Siarkou, G.; Margioula-Siarkou, C.; Petousis, S.; Margaritis, K.; Vavoulidis, E.; Gullo, G.; Alexandratou, M.; Dinas, K.; Sotiriadis, A.; Mavromatidis, G. The role of endoglin and its soluble form in pathogenesis of preeclampsia. Mol. Cell. Biochem. 2021, 477, 479–491. [Google Scholar] [CrossRef]
- Maynard, S.; Karumanchi, S. Angiogenic factors and preeclampsia. Semin. Nephrol. 2011, 31, 33–46. [Google Scholar] [CrossRef] [Green Version]
- Wallace, K.; Morris, R.; Kyle, P.; Cornelius, D.; Darby, M.; Scott, J.; Moseley, J.; Chatman, K.; Lamarca, B. Hypertension, inflammation and T lymphocytes are increased in a rat model of HELLP syndrome. Hypertens. Pregnancy 2014, 33, 41–54. [Google Scholar] [CrossRef] [PubMed]
- Wallace, K.; Martin, J.N.; Tam, K.T.; Wallukat, G.; Dechend, R.; Lamarca, B.; Owens, M. Seeking the Mechanisms of Action for Corticosteroids in HELLP Syndrome: SMASH Study. Am. J. Obstet. Gynecol. 2013, 208, e1–e8. [Google Scholar] [CrossRef] [PubMed]
- Rana, S.; Burke, S.; Karumanchi, S. Imbalances in circulating angiogenic factors in the pathophysiology of preeclampsia and related disorders. Am. J. Obstet. Gynecol. 2020, in press. [Google Scholar] [CrossRef] [PubMed]
- Amburgey, O.; Chapman, A.; May, V.; Bernstein, I.; Cipolla, M. Plasma from preeclamptic women increases blood-brain barrier permeability. Hypertension 2010, 56, 1003–1008. [Google Scholar] [CrossRef] [Green Version]
- Wallace, K.; Tremble, S.; Owens, M.; Morris, R.; Cipolla, M. Plasma from patients with HELLP Syndrome Increases Blood-brain barrier permeability. Reprod. Sci. 2015, 22, 278–284. [Google Scholar] [CrossRef] [Green Version]
- Euser, A.; Bullinger, L.; Cipolla, M. Magnesium sulphate treatment decreases blood-brain barrier permeability during acute hypertension in pregnant rats. Exp. Physiol. 2008, 93, 254–261. [Google Scholar] [CrossRef]
- Bean, C.; Spencer, S.; Bowles, T.; Kyle, P.; Williams, J.; Gibbens, J.; Wallace, K. Inhibition of T cell-activation attenuates hypertension, TNF-alpha, IL-17 and blood-brain barrier permeability in pregnant rats with angiogenic imbalance. Am. J. Reprod. Immunol. 2016, 76, 272–279. [Google Scholar] [CrossRef] [Green Version]
- Wallace, K.; Bean, C.; Bowles, T.; Spencer, S.; Randle, W.; Kyle, P.; Shaffery, J. Hypertension, Anxiety, and Blood-Brain Barrier Permeability are Increased in post-partum rats with a history of Severe Preeclampsia/Hemolysis, Elevated Liver Enzymes and Low Platelet Syndrome. Hypertension 2018, 72, 946–954. [Google Scholar] [CrossRef]
- Novotny, S.; Wallace, K.; Herse, F.; Moseley, J.; Darby, M.; Heath, J.; Gill, J.; Wallukat, G.; Martin, J., Jr.; Dechend, R.; et al. CD4+ T cells play a critical role in mediating hypertension in response to placental ischemia. J. Hypertens. 2013, 2, 14873. [Google Scholar]
- Chourbaji, S.; Hoyer, C.; Richter, S.; Brandwein, C.; Pfeiffer, N.; Vogt, M.; Vollmayr, B.; Gass, P. Differences in mouse maternal care behavior—Is there a genetic impact of the glucocorticoid receptor? PLoS ONE 2011, 6, e19218. [Google Scholar] [CrossRef] [Green Version]
- Castagne, V.; Moser, P.; Roux, S.; Porsolt, R. Rodent models of depression: Forced swim and tail suspension behavioral despair tests in rats and mice. Curr. Protoc. Neurosci. 2011, 49, 5–8. [Google Scholar] [CrossRef] [PubMed]
- Sutcliffe, J.; Marshall, K.; Neill, J. Influence of gender on working and spatial memory in the novel object recogntion task in the rat. Behav. Brain Res. 2007, 177, 117–125. [Google Scholar] [CrossRef] [PubMed]
- Barnes, C. Memory deficits associated with senescence: A Neurophysiological and behavioral study in the rat. J. Comp. Physiol. Psychol. 1979, 93, 74–104. [Google Scholar] [CrossRef] [PubMed]
- Salari, A.; Fatehi-Gharehlar, L.; Motayagheni, N.; Homberg, J. Fluoxetine normalizes the effects of prenatal maternal stress on depression- and anxiety-like behaviors in mouse dams and male offspring. Behav. Brain Res. 2016, 311, 354–367. [Google Scholar] [CrossRef]
- Kessler, R.; Ormel, J.; Demler, O.; Stang, P. Comorbid mental disorders account for the role impairment of commonly occurring chronic physical disorders: Results from the National Comorbidity Survey. J. Occup. Environ. Med. 2003, 45, 1257–1266. [Google Scholar] [CrossRef]
- Bussotti, M.; Sommaruga, M. Anxiety and depression in patients with pulmonary hypertension: Impact and management challenges. Vasc. Health Risk Manag. 2018, 14, 349–360. [Google Scholar] [CrossRef] [Green Version]
- McConnell, S.; Jacka, F.; Williams, L.; Dodd, S.; Berk, M. The relationship between depression and cardiovascular disease. Int. J. Psychiatry Clin. Pract. 2005, 9, 157–167. [Google Scholar] [CrossRef]
- Li, M.; Chou, S.-Y. Modeling postpartum depression in rats: Theoretic and methodological issues. Dongwuxue Yanjiu 2016, 37, 229–236. [Google Scholar]
- Perani, C.; Slattery, D. Using animal models to study post-partum psychiatric disorders. Br. J. Pharm. 2014, 171, 4539–4555. [Google Scholar] [CrossRef] [Green Version]
- Molendijk, M.; De Kloet, E. Coping with the forced swim stressor: Current state-of-the-art. Behav. Brain Res. 2019, 364, 1–10. [Google Scholar] [CrossRef]
- Navarre, B.; Laggart, J.; Craft, R. Anhedonia in postpartum rats. Physiol. Behav. 2010, 99, 59–66. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Araji, S.; Griffin, A.; Dixon, L.; Spencer, S.; Peavie, C.; Wallace, K. An Overview of Maternal Anxiety During Pregnancy and the Post-partum Period. J. Ment. Health Clin. Psychol. 2020, 4, 47–56. [Google Scholar]
- Van Esch, J.; Bolte, A.; Vandenbussche, F.; Schippers, D.; De Weerth, C.; Beijers, R. Differences in hair cortisol concentrations and reported anxiety in women with preeclampsia versus uncomplicated pregnancies. Pregnancy Hypertens. 2020, 21, 200–202. [Google Scholar] [CrossRef] [PubMed]
- Papousek, I.; Weiss, E.; Moertl, M.; Schmid-Zaludek, K.; Krenn, E.; Lessiak, V.; Lackner, H. Unaffected memory and inhibitory functioning several weeks postpartum in women with pregnancy complicated by preeclamspia. Behav. Sci. 2021, 11, 55. [Google Scholar] [CrossRef]
- Elharram, M.; Dayan, N.; Kaur, A.; Landry, T.; Pilote, L. Long-term cognitive impairment after preeclampsia: A systematic review and meta-analysis. Obstet. Gynecol. 2018, 132, 355–364. [Google Scholar] [CrossRef]
- Bergman, L.; Thorgeirsdottir, L.; Elden, H.; Hesselman, S.; Schell, S.; Ahlm, E.; Aukes, A.; Cluver, C. Cognitive impairment in preeclampsia complicated by eclampsia and pulmonary edema after delivery. Acta Obstet. Gynecol. Scand. 2021, 100, 1280–1287. [Google Scholar] [CrossRef]
- Ijomone, O.; Shallie, P.; Naicker, T. Changes in the structure and function of the brain years after pre-eclampsia. Ageing Res. Rev. 2018, 47, 49–54. [Google Scholar] [CrossRef]
- Wu, J.; Sheng, X.; Zhou, S.; Fang, C.; Song, Y.; Wang, H.; Jia, Z.; Jia, X.; You, Y. Clinical significance of S100B protein in pregnant woman with early- onset severe preeclampsia. Ginekol. Pol. 2021. [Google Scholar] [CrossRef]
- Artunc-Ulkumen, B.; Guvnec, Y.; Goker, A.; Gozukara, C. Maternal serum S100-B, PAPP-A and IL-6 levels in severe preeclampsia. Arch. Gynecol. Obstet. 2015, 292, 97–102. [Google Scholar] [CrossRef]
- Perucci, L.; Vieira, E.; Teixeira, A.; Gomes, K.; Dusse, L.; Sousa, L. Decreased plasma concentrations of brain-derived neurotrophic factor in preeclampsia. Clin. Chim. Acta 2017, 464, 142–147. [Google Scholar] [CrossRef]
- Wallace, K.; Cornelius, D.; Scott, J.; Heath, J.; Moseley, J.; Chatman, K.; LaMarca, B. CD4+ T cells are important mediators of oxidative stress that cause hypertension in response to placental ischemia. Hypertension 2014, 64, 1151–1158. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bean, C.; Spencer, S.; Pabbidi, M.; Szczepanski, J.; Araji, S.; Dixon, S.; Wallace, K. Peripheral anti-angiogenic imbalance during pregnancy impairs myogenic tone and increases cerebral edema in a rodent model of HELLP Syndrome. Brain Sci. 2018, 8, 216. [Google Scholar] [CrossRef] [Green Version]
- Hong, M.; Zheng, J.; Ding, Z.; Chen, J.; Yu, L.; Niu, Y.; Hua, Y.; Wang, L. Imbalance between Th17 and Treg cells may play an important role in the development of chronic unpredictable mild stress-induced depression in mice. Neuroimmunomodulation 2013, 20, 39–50. [Google Scholar] [CrossRef] [PubMed]
- Parrish, M.; Murphy, S.; Rutland, S.; Wallace, K.; Wenzel, K.; Wallukat, G.; Keiser, S.; Ray, L.; Dechend, R.; Martin, J.; et al. The effect of immune factors, Tumor Necrosis Factor-alpha, and agonistic autoantibodies to the Angiotensin II Type I Receptor on Soluble fms-Like Tyrosine-1 and Soluble Endoglin production in response to hypertension during pregnancy. Am. J. Hypertens. 2010, 23, 911–916. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Venkatesha, S.; Toporsian, M.; Lam, C.; Hanai, J.; Mammoto, T.; Kim, Y.; Bdolah, Y.; Lim, K.; Yuan, K.; Libermann, T.; et al. Soluble endoglin contributes to the pathogenesis of preeclampsia. Nat. Med. 2006, 12, 642–649. [Google Scholar] [CrossRef]
- Yang, Y.; Zhao, S.; Yang, X.; Lie, W.; Si, J.; Yang, X. The antidepressant potential of lactobacillus casei in the postpartum depression rat model mediated by the microbiota-gut-brain axis. Neurosci. Lett. 2022, 774, 136474. [Google Scholar] [CrossRef]
- Campos, A.; Goncalves, A.; Massa, A.; Amaral, P.; Silva, P.; Aguilar, S. HELLP Syndrome a severe form of preeclampsia: A comparative study of clinical and laboratorial parameters. Am. J. Exp. Clin. Res. 2016, 3, 170–174. [Google Scholar]
- Roberts, L.; Davis, G.; Horner, C. Depression, anxiety and post-traumatic stress disorder following a hypertensive disorder of pregnancy: A narrative literature review. Front. Cardiovasc. Med. 2019, 6, 147. [Google Scholar] [CrossRef]
- Gavin, N.; Gaynes, B.; Lohr, K.; Meltzer-Brody, S.; Gartlehner, G.; Swinson, T. Perinatal depression: A systematic review of prevalence and incidence. Obstet. Gynecol. 2005, 106, 1071–1083. [Google Scholar] [CrossRef]
- Rubertsson, C.; Wickberg, B.; Gustavsson, P.; Radestad, I. Depressive symptoms in early pregnancy, two months and one year postpartum—Prevlance and psychosocial risk factors in a national Swedish sample. Arch. Womens Ment. Health 2005, 8, 97–104. [Google Scholar] [CrossRef]
- Kikuchi, S.; Murakami, K.; Obara, T.; Ishikuro, M.; Ueno, F.; Noda, A.; Onuma, T.; Kobayashi, N.; Sugawara, J.; Yamamoto, M.; et al. One-year trajectories of postpartum depressive symptoms and associated psychosocial factors: Findings from the Tohoku Medical Megabank Project Birth and Three-Generation Cohort Study. J. Affect. Disord. 2021, 295, 632–638. [Google Scholar] [CrossRef] [PubMed]
Variables | NP | PreE | HELLP | NP + O | PreE + O | HELLP + O | p Value 1 |
---|---|---|---|---|---|---|---|
Pup Birth Wt (g) | 7.05 ± 0.03 | 7.1 ± 0.2 | 6.7 ± 0.2. | 6.7 ± 0.2 | 7.1 ± 0.2 | 7.2 ± 0.2 | 0.62 |
Litter # | 9.7 ± 1 | 9.8 ± 0.8 | 9.5 ± 0.9 | 10.8 ± 0.7 | 8.7 ± 0.8 | 10.3 ± 1.3 | 0.53 |
MAP (mmHg) | 111.3 ± 3.9 a | 116 ± 3.6 a | 127.1 ± 2.6 | 118.3 ± 3.5 | 111.75 ± 3.2 a | 117 ± 3.7 | 0.01 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wallace, K.; Bowles, T.; Griffin, A.; Robinson, R.; Solis, L.; Railey, T.; Shaffery, J.P.; Araji, S.; Spencer, S.-K. Evidence of Anxiety, Depression and Learning Impairments following Prenatal Hypertension. Behav. Sci. 2022, 12, 53. https://doi.org/10.3390/bs12020053
Wallace K, Bowles T, Griffin A, Robinson R, Solis L, Railey T, Shaffery JP, Araji S, Spencer S-K. Evidence of Anxiety, Depression and Learning Impairments following Prenatal Hypertension. Behavioral Sciences. 2022; 12(2):53. https://doi.org/10.3390/bs12020053
Chicago/Turabian StyleWallace, Kedra, Teylor Bowles, Ashley Griffin, Reanna Robinson, Lucia Solis, Teryn Railey, James P. Shaffery, Sarah Araji, and Shauna-Kay Spencer. 2022. "Evidence of Anxiety, Depression and Learning Impairments following Prenatal Hypertension" Behavioral Sciences 12, no. 2: 53. https://doi.org/10.3390/bs12020053
APA StyleWallace, K., Bowles, T., Griffin, A., Robinson, R., Solis, L., Railey, T., Shaffery, J. P., Araji, S., & Spencer, S. -K. (2022). Evidence of Anxiety, Depression and Learning Impairments following Prenatal Hypertension. Behavioral Sciences, 12(2), 53. https://doi.org/10.3390/bs12020053