The Use of Executive Fluency Tasks to Detect Cognitive Impairment in Individuals with Subjective Cognitive Decline
Abstract
:1. Introduction
2. Methods
2.1. Participants
2.2. Clinical Assessment and Group Characterization
- Are you worried about how your memory is working?
- Do you think your memory has changed in the last 10 years?
- 2.1
- If yes, how long have you observed a decline in memory functioning?
- Do you feel that your memory is worse than that of other people your age?
- 3.1
- If yes, and it is worse, do you feel that you have always had a poorer memory than other people your age?
- 3.2
- If no, and it is the same, would you say that, in the past, your memory was at the same level as or better than most other people your age?
2.3. Experimental Tasks
2.4. Statistical Analyses
3. Results
3.1. Free Action Fluency
3.2. Alternating Fluency
3.3. Orthographic Constraint Fluency
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Annual Demographic Estimates: Canada, Provinces and Territories; Statistics Canada: Ottawa, ON, Canada, 2021.
- Wolters, F.J.; Ikram, M.A. Epidemiology of Dementia: The Burden on Society, the Challenges for Research. Methods Mol. Biol. 2018, 1750, 3–14. [Google Scholar] [CrossRef] [PubMed]
- Diagnostic and Statistical Manual of Mental Disorders (DSM-5®); American Psychiatric Publishing: Arlington, VA, USA, 2013.
- Jessen, F.; Amariglio, R.E.; van Boxtel, M.; Breteler, M.; Ceccaldi, M.; Chételat, G.; Dubois, B.; Dufouil, C.; Ellis, K.A.; van der Flier, W.M.; et al. A conceptual framework for research on subjective cognitive decline in preclinical Alzheimer’s disease. Alzheimer’s Dement. 2014, 10, 844–852. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Petersen, R.C. Mild Cognitive Impairment. Contin. Lifelong Learn. Neurol. 2016, 22, 404–418. [Google Scholar] [CrossRef][Green Version]
- Villemagne, V.L.; Burnham, S.; Bourgeat, P.; Brown, B.; Ellis, K.A.; Salvado, O.; Szoeke, C.; Macaulay, S.L.; Martins, R.; Maruff, P.; et al. Amyloid β deposition, neurodegeneration, and cognitive decline in sporadic Alzheimer’s disease: A prospective cohort study. Lancet Neurol. 2013, 12, 357–367. [Google Scholar] [CrossRef] [PubMed]
- Visser, P.J.; Verhey, F.; Knol, D.L.; Scheltens, P.; Wahlund, L.-O.; Freund-Levi, Y.; Tsolaki, M.; Minthon, L.; Wallin, Å.K.; Hampel, H.; et al. Prevalence and prognostic value of CSF markers of Alzheimer’s disease pathology in patients with subjective cognitive impairment or mild cognitive impairment in the DESCRIPA study: A prospective cohort study. Lancet Neurol. 2009, 8, 619–627. [Google Scholar] [CrossRef]
- Hallam, B.; Petersen, I.; Cooper, C.; Avgerinou, C.; Walters, K. Time Trends in Incidence of Reported Memory Concerns and Cognitive Decline: A Cohort Study in UK Primary Care. Clin. Epidemiol. 2022, 14, 395–408. [Google Scholar] [CrossRef]
- Jessen, F.; Amariglio, R.E.; Buckley, R.F.; van der Flier, W.M.; Han, Y.; Molinuevo, J.L.; Rabin, L.; Rentz, D.M.; Rodriguez-Gomez, O.; Saykin, A.J.; et al. The characterisation of subjective cognitive decline. Lancet Neurol. 2020, 19, 271–278. [Google Scholar] [CrossRef]
- Slavin, M.J.; Brodaty, H.; Kochan, N.A.; Crawford, J.D.; Trollor, J.N.; Draper, B.; Sachdev, P.S. Prevalence and Predictors of “Subjective Cognitive Complaints” in the Sydney Memory and Ageing Study. Am. J. Geriatr. Psychiatry 2010, 18, 701–710. [Google Scholar] [CrossRef]
- van Harten, A.C.; Mielke, M.M.; Swenson-Dravis, D.M.; Hagen, C.E.; Edwards, K.K.; Roberts, R.O.; Geda, Y.E.; Knopman, D.S.; Petersen, R.C. Subjective cognitive decline and risk of MCI: The Mayo Clinic Study of Aging. Neurology 2018, 91, e300–e312. [Google Scholar] [CrossRef]
- Silva, D.; Guerreiro, M.; Faria, C.; Marôco, J.; Schmand, B.A.; de Mendonça, A. Significance of Subjective Memory Complaints in the Clinical Setting. J. Geriatr. Psychiatry Neurol. 2014, 27, 259–265. [Google Scholar] [CrossRef]
- Reisberg, B.; Shulman, M.B.; Torossian, C.; Leng, L.; Zhu, W. Outcome over seven years of healthy adults with and without subjective cognitive impairment. Alzheimer’s Dement. 2010, 6, 11–24. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Hill, N.L.; Mogle, J.; Wion, R.; Munoz, E.; DePasquale, N.; Yevchak, A.M.; Parisi, J.M. Subjective Cognitive Impairment and Affective Symptoms: A Systematic Review. Gerontologist 2016, 56, e109–e127. [Google Scholar] [CrossRef] [PubMed][Green Version]
- John, A.; Patel, U.; Rusted, J.; Richards, M.; Gaysina, D. Affective problems and decline in cognitive state in older adults: A systematic review and meta-analysis. Psychol. Med. 2019, 49, 353–365. [Google Scholar] [CrossRef] [PubMed][Green Version]
- McKhann, G.M.; Knopman, D.S.; Chertkow, H.; Hyman, B.T.; Jack, C.R., Jr.; Kawas, C.H.; Klunk, W.E.; Koroshetz, W.J.; Manly, J.J.; Mayeux, R.; et al. The diagnosis of dementia due to Alzheimer’s disease: Recommendations from the National Institute on Aging-Alzheimer’s association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement. J. Alzheimers Assoc. 2011, 7, 263–269. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Albert, M.S.; DeKosky, S.T.; Dickson, D.; Dubois, B.; Feldman, H.H.; Fox, N.C.; Gamst, A.; Holtzman, D.M.; Jagust, W.J.; Petersen, R.C.; et al. The diagnosis of mild cognitive impairment due to Alzheimer’s disease: Recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimer’s Dement. 2011, 7, 270–279. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Maruta, C.; Martins, I.P. May Subjective Language Complaints Predict Future Language Decline in Community-Dwelling Subjects? Front. Psychol. 2019, 10, 1974. [Google Scholar] [CrossRef] [PubMed]
- Brailean, A.; Steptoe, A.; Batty, G.D.; Zaninotto, P.; Llewellyn, D.J. Are subjective memory complaints indicative of objective cognitive decline or depressive symptoms? Findings from the English Longitudinal Study of Ageing. J. Psychiatr. Res. 2019, 110, 143–151. [Google Scholar] [CrossRef]
- De Simone, M.S.; Rodini, M.; De Tollis, M.; Fadda, L.; Caltagirone, C.; Carlesimo, G.A. The diagnostic usefulness of experimental memory tasks for detecting subjective cognitive decline: Preliminary results in an Italian sample. Neuropsychology 2022. [Google Scholar] [CrossRef]
- Park, S.; Lee, J.-H.; Lee, J.; Cho, Y.; Park, H.G.; Yoo, Y.; Youn, J.-H.; Ryu, S.-H.; Hwang, J.Y.; Kim, J.; et al. Interactions between subjective memory complaint and objective cognitive deficit on memory performances. BMC Geriatr. 2019, 19, 294. [Google Scholar] [CrossRef]
- Jessen, F.; Wiese, B.; Cvetanovska, G.; Fuchs, A.; Kaduszkiewicz, H.; Kölsch, H.; Luck, T.; Mösch, E.; Pentzek, M.; Riedel-Heller, S.G.; et al. Patterns of subjective memory impairment in the elderly: Association with memory performance. Psychol. Med. 2007, 37, 1753–1762. [Google Scholar] [CrossRef]
- Kormas, C.; Zalonis, I.; Evdokimidis, I.; Kapaki, E.; Potagas, C. Face–Name Associative Memory Performance Among Cognitively Healthy Individuals, Individuals with Subjective Memory Complaints, and Patients with a Diagnosis of aMCI. Front. Psychol. 2020, 11, 2173. [Google Scholar] [CrossRef] [PubMed]
- Markova, H.; Mazancova, A.F.; Jester, D.J.; Cechova, K.; Matuskova, V.; Nikolai, T.; Nedelska, Z.; Uller, M.; Andel, R.; Laczó, J.; et al. Memory Binding Test and Its Associations with Hippocampal Volume Across the Cognitive Continuum Preceding Dementia. Assessment 2022, 10731911211069676. [Google Scholar] [CrossRef]
- Sanabria, A.; The FACEHBI study group; Alegret, M.; Rodriguez-Gomez, O.; Valero, S.; Sotolongo-Grau, O.; Rubio, G.C.M.; Abdelnour, C.; Espinosa, A.; Ortega, G.; et al. The Spanish version of Face-Name Associative Memory Exam (S-FNAME) performance is related to amyloid burden in Subjective Cognitive Decline. Sci. Rep. 2018, 8, 3828. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Koppara, A.; Wagner, M.; Polcher, A.; Frommann, I.; Klockgether, T.; Jessen, F.; Mario, P.A. P2-240: Impaired Visual Feature Binding in Patients at Risk for Alzheimer’s Disease: Evidence from Patients with Subjective Cognitive Decline (SCD) and from Patients with MCI. Alzheimer’s Dement. 2014, 10, 564. [Google Scholar] [CrossRef]
- Rabin, L.A.; Chi, S.Y.; Wang, C.; Fogel, J.; Kann, S.J.; Aronov, A. Prospective memory on a novel clinical task in older adults with mild cognitive impairment and subjective cognitive decline. Neuropsychol. Rehabil. 2014, 24, 868–893. [Google Scholar] [CrossRef][Green Version]
- Nikolai, T.; Bezdicek, O.; Markova, H.; Stepankova, H.; Michalec, J.; Kopecek, M.; Dokoupilova, M.; Hort, J.; Vyhnalek, M. Semantic verbal fluency impairment is detectable in patients with subjective cognitive decline. Appl. Neuropsychol. Adult 2018, 25, 448–457. [Google Scholar] [CrossRef] [PubMed]
- Nutter-Upham, K.E.; Saykin, A.J.; Rabin, L.A.; Roth, R.M.; Wishart, H.A.; Pare, N.; Flashman, L.A. Verbal fluency performance in amnestic MCI and older adults with cognitive complaints. Arch. Clin. Neuropsychol. 2008, 23, 229–241. [Google Scholar] [CrossRef][Green Version]
- López-Higes, R.; Prados, J.M.; Rubio, S.; Montejo, P.; Del Río, D. Executive functions and linguistic performance in SCD older adults and healthy controls. Aging Neuropsychol. Cogn. 2017, 24, 717–734. [Google Scholar] [CrossRef]
- Macoir, J.; Lafay, A.; Hudon, C. Reduced Lexical Access to Verbs in Individuals with Subjective Cognitive Decline. Am. J. Alzheimer’s Dis. Other Dement. 2019, 34, 5–15. [Google Scholar] [CrossRef]
- Costa, S.; George, R.J.S.; McDonald, J.S.; Wang, X.; Alty, J. Diagnostic Accuracy of the Overlapping Infinity Loops, Wire Cube, and Clock Drawing Tests in Subjective Cognitive Decline, Mild Cognitive Impairment and Dementia. Geriatrics 2022, 7, 72. [Google Scholar] [CrossRef]
- Tahmasebi, R.; Zehetmayer, S.; Pusswald, G.; Kovacs, G.; Stögmann, E.; Lehrner, J. Identification of odors, faces, cities and naming of objects in patients with subjective cognitive decline, mild cognitive impairment and Alzheimer’s disease: A longitudinal study. Int. Psychogeriatr. 2019, 31, 537–549. [Google Scholar] [CrossRef]
- Kirova, A.-M.; Bays, R.B.; Lagalwar, S. Working Memory and Executive Function Decline across Normal Aging, Mild Cognitive Impairment, and Alzheimer’s Disease. BioMed Res. Int. 2015, 2015, 748212. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Webster-Cordero, F.; Giménez-Llort, L. The Challenge of Subjective Cognitive Complaints and Executive Functions in Middle-Aged Adults as a Preclinical Stage of Dementia: A Systematic Review. Geriatrics 2022, 7, 30. [Google Scholar] [CrossRef] [PubMed]
- Gaubert, S.; Raimondo, F.; Houot, M.; Corsi, M.-C.; Naccache, L.; Sitt, J.D.; Hermann, B.; Oudiette, D.; Gagliardi, G.; Habert, M.-O.; et al. EEG evidence of compensatory mechanisms in preclinical Alzheimer’s disease. Brain 2019, 142, 2096–2112. [Google Scholar] [CrossRef]
- Erk, S.; Spottke, A.; Meisen, A.; Wagner, M.; Walter, H.; Jessen, F. Evidence of Neuronal Compensation During Episodic Memory in Subjective Memory Impairment. Arch. Gen. Psychiatry 2011, 68, 845–852. [Google Scholar] [CrossRef] [PubMed]
- Burmester, B.; Leathem, J.; Merrick, P. Subjective Cognitive Complaints and Objective Cognitive Function in Aging: A Systematic Review and Meta-Analysis of Recent Cross-Sectional Findings. Neuropsychol. Rev. 2016, 26, 376–393. [Google Scholar] [CrossRef] [PubMed]
- Nasreddine, Z.S.; Phillips, N.A.; Bédirian, V.; Charbonneau, S.; Whitehead, V.; Collin, I.; Cummings, J.L.; Chertkow, H. The Montreal Cognitive Assessment, MoCA: A Brief Screening Tool For Mild Cognitive Impairment. J. Am. Geriatr. Soc. 2005, 53, 695–699. [Google Scholar] [CrossRef] [PubMed]
- Larouche, E.; Tremblay, M.-P.; Potvin, O.; Laforest, S.; Bergeron, D.; LaForce, R.; Monetta, L.; Boucher, L.; Tremblay, P.; Belleville, S.; et al. Normative Data for the Montreal Cognitive Assessment in Middle-Aged and Elderly Quebec-French People. Arch. Clin. Neuropsychol. 2016, 31, 819–826. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Dion, M.; Tremblay, I.; Hudon, C. Questionnaire de Dépistage de La Plainte Cognitive; Université Laval: Québec, QC, Canada, 2004. [Google Scholar]
- Yesavage, J.A. Geriatric Depression Scale. Psychopharmacol. Bull. 1988, 24, 709–711. [Google Scholar] [CrossRef] [PubMed]
- Byrne, G.J.; Pachana, N.A. Development and validation of a short form of the Geriatric Anxiety Inventory—The GAI-SF. Int. Psychogeriatr. 2011, 23, 125–131. [Google Scholar] [CrossRef]
- Davis, D.H.J.; Creavin, S.T.; Yip, J.L.Y.; Noel-Storr, A.H.; Brayne, C.; Cullum, S. Montreal Cognitive Assessment for the diagnosis of Alzheimer’s disease and other dementias. Cochrane Database Syst. Rev. 2015, 2015, CD010775. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Macoir, J.; Fossard, M.; Lefebvre, L.; Monetta, L.; Renard, A.; Tran, T.M.; Wilson, M.A. Detection Test for Language Impairments in Adults and the Aged—A New Screening Test for Language Impairment Associated with Neurodegenerative Diseases: Validation and Normative Data. Am. J. Alzheimer’s Dis. Other Dement. 2017, 32, 382–392. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Piatt, A.L.; Fields, J.A.; Paolo, A.M.; Tröster, A.I. Action (verb naming) fluency as an executive function measure: Convergent and divergent evidence of validity. Neuropsychologia 1999, 37, 1499–1503. [Google Scholar] [CrossRef] [PubMed]
- Downes, J.J.; Sharp, H.M.; Costall, B.M.; Sagar, H.J.; Howe, J. Alternating fluency in Parkinson’s disease. An Evaluation of the Attentional Control Theory of Cognitive Impairment. Brain 1993, 116, 887–902. [Google Scholar] [CrossRef]
- The Jamovi Project (2022). Jamovi (Version 2.3) [Computer Software]. Available online: https://www.jamovi.org (accessed on 24 October 2022).
- Richardson, J.T.E. Eta squared and partial eta squared as measures of effect size in educational research. Educ. Res. Rev. 2011, 6, 135–147. [Google Scholar] [CrossRef]
- Loewenstein, D.A.; Curiel, R.E.; Greig, M.T.; Bauer, R.M.; Rosado, M.; Bowers, D.; Wicklund, M.; Crocco, E.; Pontecorvo, M.; Joshi, A.D.; et al. A Novel Cognitive Stress Test for the Detection of Preclinical Alzheimer Disease: Discriminative Properties and Relation to Amyloid Load. Am. J. Geriatr. Psychiatry 2016, 24, 804–813. [Google Scholar] [CrossRef][Green Version]
- Polcher, A.; Frommann, I.; Koppara, A.; Wolfsgruber, S.; Jessen, F.; Wagner, M. Face-Name Associative Recognition Deficits in Subjective Cognitive Decline and Mild Cognitive Impairment. J. Alzheimer’s Dis. 2017, 56, 1185–1196. [Google Scholar] [CrossRef]
- Singh-Manoux, A.; Kivimaki, M.; Glymour, M.M.; Elbaz, A.; Berr, C.; Ebmeier, K.P.; Ferrie, J.E.; Dugravot, A. Timing of onset of cognitive decline: Results from Whitehall II prospective cohort study. BMJ 2012, 344, d7622. [Google Scholar] [CrossRef][Green Version]
- Oosterman, J.M.; Vogels, R.L.C.; Van Harten, B.; Gouw, A.A.; Poggesi, A.; Scheltens, P.; Kessels, R.P.C.; Scherder, E.J.A. Assessing mental flexibility: Neuroanatomical and neuropsychological correlates of the trail making test in elderly people. Clin. Neuropsychol. 2010, 24, 203–219. [Google Scholar] [CrossRef]
- Wecker, N.S.; Kramer, J.H.; Hallam, B.J.; Delis, D.C. Mental Flexibility: Age Effects on Switching. Neuropsychology 2005, 19, 345–352. [Google Scholar] [CrossRef]
- Martin, A.K.; Barker, M.S.; Gibson, E.C.; Robinson, G.A. Response initiation and inhibition and the relationship with fluid intelligence across the adult lifespan. Arch. Clin. Neuropsychol. 2021, 36, 231–242. [Google Scholar] [CrossRef] [PubMed]
- Kiselica, A.M.; Benge, J.F. Quantitative and qualitative features of executive dysfunction in frontotemporal and Alzheimer’s dementia. Appl. Neuropsychol. Adult 2021, 28, 449–463. [Google Scholar] [CrossRef] [PubMed]
- van Harten, A.C.; Smits, L.L.; Teunissen, C.E.; Visser, P.J.; Koene, T.; Blankenstein, M.A.; Scheltens, P.; van der Flier, W.M. Preclinical AD predicts decline in memory and executive functions in subjective complaints. Neurology 2013, 81, 1409–1416. [Google Scholar] [CrossRef] [PubMed]
- Shao, Z.; Janse, E.; Visser, K.; Meyer, A.S. What do verbal fluency tasks measure? Predictors of verbal fluency performance in older adults. Front. Psychol. 2014, 5, 772. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Henry, J.D.; Crawford, J.R. A meta-analytic review of verbal fluency deficits in schizophrenia relative to other neurocognitive deficits. Cogn. Neuropsychiatry 2005, 10, 1–33. [Google Scholar] [CrossRef]
- Östberg, P.; Fernaeus, S.-E.; Hellström, Å.; Bogdanovic, N.; Wahlund, L.-O. Impaired verb fluency: A sign of mild cognitive impairment. Brain Lang. 2005, 95, 273–279. [Google Scholar] [CrossRef]
- Fagundo, A.B.; López, S.; Romero, M.; Guarch, J.; Marcos, T.; Salamero, M. Clustering and switching in semantic fluency: Predictors of the development of Alzheimer’s disease. Int. J. Geriatr. Psychiatry 2008, 23, 1007–1013. [Google Scholar] [CrossRef]
- Vogel, A.P.; Poole, M.L.; Pemberton, H.; Caverlé, M.W.J.; Boonstra, F.M.C.; Low, E.; Darby, D.; Brodtmann, A. Motor speech signature of behavioral variant frontotemporal dementia: Refining the Phenotype. Neurology 2017, 89, 837–844. [Google Scholar] [CrossRef][Green Version]
- Baldo, J.V.; Shimamura, A.P.; Delis, D.C.; Kramer, J.; Kaplan, E. Verbal and design fluency in patients with frontal lobe lesions. J. Int. Neuropsychol. Soc. 2001, 7, 586–596. [Google Scholar] [CrossRef][Green Version]
- Rey, A.; Ziegler, J.C.; Jacobs, A.M. Graphemes are perceptual reading units. Cognition 2000, 75, B1–B12. [Google Scholar] [CrossRef]
- Kandel, S.; Spinelli, E. Processing complex graphemes in handwriting production. Mem. Cogn. 2010, 38, 762–770. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Jessen, F.; Wolfsgruber, S.; Wiese, B.; Bickel, H.; Mösch, E.; Kaduszkiewicz, H.; Pentzek, M.; Riedel-Heller, S.G.; Luck, T.; Fuchs, A.; et al. AD dementia risk in late MCI, in early MCI, and in subjective memory impairment. Alzheimer’s Dement. 2014, 10, 76–83. [Google Scholar] [CrossRef] [PubMed]
- Wagner, M.; Wolfsgruber, S.; Kleineidam, L.; Koppara, A.; Riedel-Heller, S.G.; Maier, W.; Scherer, M.; Jessen, F. P3-211: Differential risk of incident Alzheimer’s disease dementia in stable versus unstable patterns of subjective cognitive decline. Alzheimer’s Dement. 2015, 11, P713. [Google Scholar] [CrossRef]
- Mitchell, A.J.; Beaumont, H.; Ferguson, D.; Yadegarfar, M.; Stubbs, B. Risk of dementia and mild cognitive impairment in older people with subjective memory complaints: Meta-analysis. Acta Psychiatr. Scand. 2014, 130, 439–451. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Wolfsgruber, S.; Jessen, F.; Koppara, A.; Kleineidam, L.; Schmidtke, K.; Frölich, L.; Kurz, A.; Schulz, S.; Hampel, H.; Heuser, I.; et al. Subjective cognitive decline is related to CSF biomarkers of AD in patients with MCI. Neurology 2015, 84, 1261–1268. [Google Scholar] [CrossRef]
- Vogel, J.W.; Doležalová, M.V.; La Joie, R.; Marks, S.M.; Schwimmer, H.D.; Landau, S.M.; Jagust, W.J. Subjective cognitive decline and β-amyloid burden predict cognitive change in healthy elderly. Neurology 2017, 89, 2002–2009. [Google Scholar] [CrossRef]
- Dubois, B.; Epelbaum, S.; Nyasse, F.; Bakardjian, H.; Gagliardi, G.; Uspenskaya, O.; Houot, M.; Lista, S.; Cacciamani, F.; Potier, M.-C.; et al. Cognitive and neuroimaging features and brain β-amyloidosis in individuals at risk of Alzheimer’s disease (INSIGHT-preAD): A longitudinal observational study. Lancet Neurol. 2018, 17, 335–346. [Google Scholar] [CrossRef] [PubMed]
- Hollands, S.; Lim, Y.Y.; Buckley, R.; Pietrzak, R.H.; Snyder, P.J.; Ames, D.; Ellis, K.A.; Harrington, K.; Lautenschlager, N.; Martins, R.N.; et al. Amyloid-β Related Memory Decline is not Associated with Subjective or Informant Rated Cognitive Impairment in Healthy Adults. J. Alzheimer’s Dis. 2015, 43, 677–686. [Google Scholar] [CrossRef]
- Markova, H.; Andel, R.; Stepankova, H.; Kopecek, M.; Nikolai, T.; Hort, J.; Thomas-Antérion, C.; Vyhnalek, M. Subjective Cognitive Complaints in Cognitively Healthy Older Adults and Their Relationship to Cognitive Performance and Depressive Symptoms. J. Alzheimer’s Dis. 2017, 59, 871–881. [Google Scholar] [CrossRef][Green Version]
- Montemurro, S.; Mondini, S.; Arcara, G. Heterogeneity of effects of cognitive reserve on performance in probable Alzheimer’s disease and in subjective cognitive decline. . Neuropsychology 2021, 35, 876–888. [Google Scholar] [CrossRef]
- Liew, T.M. Subjective cognitive decline, anxiety symptoms, and the risk of mild cognitive impairment and dementia. Alzheimer’s Res. Ther. 2020, 12, 107. [Google Scholar] [CrossRef] [PubMed]
- van Oijen, M.; de Jong, F.J.; Hofman, A.; Koudstaal, P.J.; Breteler, M.M.B. Subjective memory complaints, education, and risk of Alzheimer’s disease. Alzheimer’s Dement. 2007, 3, 92–97. [Google Scholar] [CrossRef] [PubMed]
- Aghjayan, S.L.; Buckley, R.F.; Vannini, P.; Rentz, D.M.; Jackson, J.D.; Sperling, R.A.; Johnson, K.A.; Amariglio, R.E. The influence of demographic factors on subjective cognitive concerns and beta-amyloid. Int. Psychogeriatr. 2017, 29, 645–652. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Lenehan, M.E.; Summers, M.J.; Saunders, N.L.; Summers, J.J.; Vickers, J.C. Relationship between education and age-related cognitive decline: A review of recent research. Psychogeriatrics 2015, 15, 154–162. [Google Scholar] [CrossRef]
- Rodríguez-Gómez, O.; Abdelnour, C.; Jessen, F.; Valero, S.; Boada, M. Influence of Sampling and Recruitment Methods in Studies of Subjective Cognitive Decline. J. Alzheimer’s Dis. 2015, 48, S99–S107. [Google Scholar] [CrossRef]
- Snitz, B.E.; Wang, T.; Cloonan, Y.K.; Jacobsen, E.; Chang, C.-C.H.; Hughes, T.F.; Kamboh, M.I.; Ganguli, M. Risk of progression from subjective cognitive decline to mild cognitive impairment: The role of study setting. Alzheimer’s Dement. 2018, 14, 734–742. [Google Scholar] [CrossRef]
- Kuhn, E.; Moulinet, I.; Perrotin, A.; La Joie, R.; Landeau, B.; Tomadesso, C.; Bejanin, A.; Sherif, S.; De La Sayette, V.; Desgranges, B.; et al. Cross-sectional and longitudinal characterization of SCD patients recruited from the community versus from a memory clinic: Subjective cognitive decline, psychoaffective factors, cognitive performances, and atrophy progression over time. Alzheimer’s Res. Ther. 2019, 11, 61. [Google Scholar] [CrossRef]
- Rohrer, J.D.; Nicholas, J.M.; Cash, D.M.; van Swieten, J.; Dopper, E.; Jiskoot, L.; van Minkelen, R.; Rombouts, S.A.; Cardoso, M.J.; Clegg, S.; et al. Presymptomatic cognitive and neuroanatomical changes in genetic frontotemporal dementia in the Genetic Frontotemporal dementia Initiative (GENFI) study: A cross-sectional analysis. Lancet Neurol. 2015, 14, 253–262. [Google Scholar] [CrossRef]
- Kjeldsen, P.L.; Damholdt, M.F. Subjective cognitive complaints in patients with Parkinson’s disease. Acta Neurol. Scand. 2019, 140, 375–389. [Google Scholar] [CrossRef]
- Simjanoski, M.; Jansen, K.; Mondin, T.C.; Moreira, F.P.; Vieira, I.S.; da Silva, R.A.; Souza, L.D.d.M.; Frey, B.N.; Cardoso, T.d.A.; Kapczinski, F. Cognitive complaints in individuals recently diagnosed with bipolar disorder: A cross-sectional study. Psychiatry Res. 2021, 300, 113894. [Google Scholar] [CrossRef]
HC (n = 60) | SCD (n = 60) | ||||||
---|---|---|---|---|---|---|---|
M (SD) | min–max | M (SD) | min–max | F | p | Effect Size | |
Age | 66.5 (4.99) | 55–75 | 66.6 (4.92) | 56–75 | 3.39 × 10−4 | 0.985 | n2 = 0.000 |
Education | 15.9 (2.58) | 11–22 | 17.7 (3.30) | 11–25 | 11.30 | 0.001 *** | n2 = 0.087 |
Males/females | 29/31 | 28/32 | 0.033 t | 0.85 | |||
MoCA (30) | 27.8 (1.59) | 24–30 | 27.1 (1.78) | 24–30 | 3.78 | 0.54 | n2 = 0.031 |
DTLA (100) | 95.3 (5.79) | 77–100 | 95.6 (5.12) | 83–100 | 0.10 | 0.75 | n2 = 0.001 |
GDS (30) | 5.55 (4.68) | 0–16 | 8.17 (4.56) | 0–20 | 9.62 | 0.002 ** | n2 = 0.075 |
GAI (20) | 3.38 (3.94) | 0–17 | 4.35 (4.25) | 0–14 | 1.67 | 0.20 | n2 = 0.014 |
HCs (n = 60) | SCD (n = 60) | ||||||||
---|---|---|---|---|---|---|---|---|---|
Performance | Mean | SD | Range | Mean | SD | Range | F | p | Effect Size |
Total response | 20.6 | 5.21 | 10–33 | 19.6 | 6.23 | 7–37 | 1.10 | 0.30 | n2 = 0.009 |
Total errors | 0.62 | 1.01 | 0–4 | 0.45 | 0.675 | 0–2 | 1.13 | 0.29 | n2 = 0.009 |
Time interval | Mean | SD | Range | Mean | SD | Range | t | p | |
Interval 1 (1–29 s) | 12.3 | 3.27 | 6–19 | 11.1 | 3.62 | 3–20 | −1.96 | 0.315 | |
Interval 2 (30–59 s) | 8.33 | 2.81 | 2–14 | 8.48 | 3.19 | 3–17 | 0.27 | 1 |
HCs (n = 60) | SCD (n = 60) | ||||||||
---|---|---|---|---|---|---|---|---|---|
Performance | Mean | SD | Range | Mean | SD | Range | F | p | Effect size |
Total response | 20.4 | 3.53 | 12–28 | 17.9 | 4.07 | 10–29 | 12.4 | <0.001 *** | n2 = 0.095 |
Alternance errors | 0.57 | 1.23 | 0–6 | 0.68 | 0.85 | 0–3 | 0.37 | =0.55 | n2 = 0.003 |
Time interval | Mean | SD | Range | Mean | SD | Range | t | p | |
Interval 1 (1–29 s) | 9.4 | 2.19 | 5–14 | 8.27 | 2.00 | 4–14 | −2.96 | 0.055 | |
Interval 2 (30–59 s) | 5.95 | 1.60 | 3–10 | 5.05 | 1.69 | 0–10 | −2.995 | 0.050 | |
Interval 3 (60–90 s) | 5.02 | 1.32 | 2–8 | 4.58 | 1.59 | 0–8 | −1.63 | 1 |
HCs (n = 60) | SCD (n = 60) | ||||||||
---|---|---|---|---|---|---|---|---|---|
Performance | Mean | SD | Range | Mean | SD | Range | F | p | Effect size |
Total response | 13.6 | 3.63 | 4–26 | 12.1 | 3.33 | 7–21 | 5.69 | 0.019 * | n2 = 0.046 |
Constraint errors | 1.03 | 1.18 | 0–6 | 1.20 | 1.60 | 0–7 | 0.42 | 0.52 | n2 = 0.004 |
Time interval | Mean | SD | Range | Mean | SD | Range | t | p | |
Interval 1 (1–29 s) | 6.37 | 1.94 | 2–10 | 6.02 | 1.92 | 2–12 | −0.99 | 1 | |
Interval 2 (30–59 s) | 3.87 | 1.96 | 0–9 | 3.37 | 1.75 | 0–7 | −1.475 | 1 | |
Interval 3 (60–90 s) | 3.40 | 1.88 | 0–11 | 2.73 | 1.66 | 0–8 | −2.06 | 0.62 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Macoir, J.; Tremblay, P.; Hudon, C. The Use of Executive Fluency Tasks to Detect Cognitive Impairment in Individuals with Subjective Cognitive Decline. Behav. Sci. 2022, 12, 491. https://doi.org/10.3390/bs12120491
Macoir J, Tremblay P, Hudon C. The Use of Executive Fluency Tasks to Detect Cognitive Impairment in Individuals with Subjective Cognitive Decline. Behavioral Sciences. 2022; 12(12):491. https://doi.org/10.3390/bs12120491
Chicago/Turabian StyleMacoir, Joël, Pascale Tremblay, and Carol Hudon. 2022. "The Use of Executive Fluency Tasks to Detect Cognitive Impairment in Individuals with Subjective Cognitive Decline" Behavioral Sciences 12, no. 12: 491. https://doi.org/10.3390/bs12120491