Comparing the Visual Perception According to the Performance Using the Eye-Tracking Technology in High-Fidelity Simulation Settings
Abstract
:1. Introduction
2. Methods
2.1. Scenario
2.2. Data Collection
2.3. Heat Map and Gaze-Trajectories Analysis
2.4. Statistical Methods
3. Results
4. Discussion
4.1. Key Results
4.2. Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Gibson, J.J. The Perception of the Visual World; Houghton Mifflin: Boston, MA, USA, 1950. [Google Scholar]
- Duchowski, A.T. A breadth-first survey of eye-tracking applications. Behav. Res. Methods Instrum. Comput. 2002, 34, 455–470. [Google Scholar] [CrossRef]
- Valtakari, N.V.; Hooge, I.T.C.; Viktorsson, C.; Nystrom, P.; Falck-Ytter, T.; Hessels, R.S. Eye tracking in human interaction: Possibilities and limitations. Behav. Res. Methods 2021, 1–17. [Google Scholar] [CrossRef]
- Hussain, Z.; Simonovic, B.; Stupple, E.J.N.; Austin, M. Using Eye Tracking to Explore Facebook Use and Associations with Facebook Addiction, Mental Well-being, and Personality. Behav. Sci. 2019, 9, 19. [Google Scholar] [CrossRef] [Green Version]
- Schulz, C.M.; Schneider, E.; Fritz, L.; Vockeroth, J.; Hapfelmeier, A.; Wasmaier, M.; Kochs, E.F.; Schneider, G. Eye tracking for assessment of workload: A pilot study in an anaesthesia simulator environment. Br. J. Anaesth 2011, 106, 44–50. [Google Scholar] [CrossRef] [Green Version]
- Tatsuru, K.; Keisuke, Y.; Shun, O.; Mayu, M.; Ayaka, N.; Masakazu, M.; Koshiro, S.; Toshio, H.; Koji, Y.; Waka, Y.; et al. The evaluation of eye gaze using an eye tracking system in simulation training of real-time ultrasound-guided venipuncture. J. Vasc. Access 2021, 2021, 1129729820987362. [Google Scholar]
- Van De Luecht, M.R.; Reed, W.M. The cognitive and perceptual processes that affect observer performance in lung cancer detection: A scoping review. J. Med. Radiat. Sci. 2021. [Google Scholar] [CrossRef] [PubMed]
- Capogna, E.; Capogna, G.; Raccis, D.; Salvi, F.; Velardo, M.; Del Vecchio, A. Eye tracking metrics and leader’s behavioral performance during a post-partum hemorrhage high-fidelity simulated scenario. Adv. Simul. 2021, 6, 4. [Google Scholar] [CrossRef] [PubMed]
- Di Flumeri, G.; De Crescenzio, F.; Berberian, B.; Ohneiser, O.; Kramer, J.; Arico, P.; Borghini, G.; Babiloni, F.; Bagassi, S.; Piastra, S. Brain-Computer Interface-Based Adaptive Automation to Prevent Out-Of-The-Loop Phenomenon in Air Traffic Controllers Dealing With Highly Automated Systems. Front. Hum. Neurosci. 2019, 13, 296. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Castner, N.; Appel, T.; Eder, T.; Richter, J.; Scheiter, K.; Keutel, C.; Huttig, F.; Duchowski, A.; Kasneci, E. Pupil diameter differentiates expertise in dental radiography visual search. PLoS ONE 2020, 15, e0223941. [Google Scholar]
- Haider, H.; Frensch, P. Eye Movement During Skill Acquisition: More Evidence for the Information-Reduction Hypothesis. J. Exp. Psychol. 1999, 25, 172–190. [Google Scholar] [CrossRef]
- Van der Gijp, A.; Ravesloot, C.J.; Jarodzka, H.; van der Schaaf, M.F.; van der Schaaf, I.C.; van Schaik, J.P.J.; Ten Cate, T.J. How visual search relates to visual diagnostic performance: A narrative systematic review of eye-tracking research in radiology. Adv. Health Sci. Educ. Theory Pract. 2017, 22, 765–787. [Google Scholar] [CrossRef] [Green Version]
- Eivazi, S.; Hafez, A.; Fuhl, W.; Afkari, H.; Kasneci, E.; Lehecka, M.; Bednarik, R. Optimal eye movement strategies: A comparison of neurosurgeons gaze patterns when using a surgical microscope. Acta Neurochir. 2017, 159, 959–966. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gegenfurtner, A.; Lehtinen, E.; Säljö, R. Expertise Differences in the Comprehension of Visualizations: A Meta-Analysis of Eye-Tracking Research in Professional Domains. Educ. Psychol. Rev. 2011, 23, 523–552. [Google Scholar] [CrossRef]
- Tien, T.; Pucher, P.H.; Sodergren, M.H.; Sriskandarajah, K.; Yang, G.Z.; Darzi, A. Differences in gaze behaviour of expert and junior surgeons performing open inguinal hernia repair. Surg. Endosc. 2015, 29, 405–413. [Google Scholar] [CrossRef]
- Robitaille, A.; Perron, R.; Germain, J.F.; Tanoubi, I.; Georgescu, M. High-fidelity simulation of transcutaneous cardiac pacing: Characteristics and limitations of available high-fidelity simulators, and description of an alternative two-mannequin model. Simul. Healthc. 2015, 10, 122–127. [Google Scholar] [CrossRef]
- Ahn, J.; Kharasch, M.; Aronwald, R.; Menon, S.; Du, H.; Calabrese, N.; Gitelis, M.; Aitchson, P.; Wang, E. Assessing the accreditation council for graduate medical education requirement for temporary cardiac pacing procedural competency through simulation. Simul. Healthc. 2013, 8, 78–83. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Ley, A.; Koch, S.; Hays, J.; Holmqvist, K.; Alexa, M. Computational discrimination between natural images based on gaze during mental imagery. Sci. Rep. 2020, 10, 13035. [Google Scholar] [CrossRef] [PubMed]
- Effect Size Calculators. Available online: https://lbecker.uccs.edu (accessed on 15 January 2018).
- Cooper, L.; Gale, L.; Darker, L.; Toms, A.; Saada, J. Radiology image perception and observer performance: How does expertise and clinical information alter interpretation? Stroke detection explored through eye-tracking. In Proceedings of the Medical Imaging 2009: Image Perception, Observer Performance, and Technology Assessment 2009, Lake Buena Vista (Orlando Area), FL, USA, 7–12 February 2009; Volume 7263. [Google Scholar]
- Turgeon, D.P.; Lam, E.W. Influence of Experience and Training on Dental Students’ Examination Performance Regarding Panoramic Images. J. Dent. Educ. 2016, 80, 156–164. [Google Scholar] [CrossRef] [PubMed]
- Wilson, M.; McGrath, J.; Vine, S.; Brewer, J.; Defriend, D.; Masters, R. Psychomotor control in a virtual laparoscopic surgery training environment: Gaze control parameters differentiate novices from experts. Surg. Endosc. 2010, 24, 2458–2464. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Capogna, E.; Salvi, F.; Delvino, L.; Di Giacinto, A.; Velardo, M. Novice and Expert Anesthesiologists’ Eye-Tracking Metrics During Simulated Epidural Block: A Preliminary, Brief Observational Report. Local Reg. Anesth. 2020, 13, 105–109. [Google Scholar] [CrossRef]
- Shojima, M.; Okamoto, Y.; Niizuma, K.; Ohta, M.; Ishikawa, O.; Fujisawa, A.; Tsukihara, H.; Sakai, N.; Tominaga, T. Preliminary study of eye tracking to investigate the differences in gaze behaviors depending on the experience of neuroendovascular therapy. Surg. Neurol. Int. 2020, 11, 351. [Google Scholar] [CrossRef] [PubMed]
- Sahraian, S.; Yousem, D.; Beheshtian, E.; Jalilianhasanpour, R.; Morales, R.E.; Krupinski, E.A.; Zhan, H. Improving Radiology Trainees’ Perception Using Where’s Waldo? Acad. Radiol. 2020. [Google Scholar] [CrossRef]
- Emhardt, S.N.; Kok, E.M.; Jarodzka, H.; Brand-Gruwel, S.; Drumm, C.; van Gog, T. How Experts Adapt Their Gaze Behavior When Modeling a Task to Novices. Cognit. Sci. 2020, 44, e12893. [Google Scholar] [CrossRef]
- Tourangeau, M.; Tanoubi, I.; Perron, R.; Expert, R.T.M.S.T.; Belanger, M.E.; Sodoke, K.; Drolet, P.; Robitaille, A.; Georgescu, L.M. Comparing the visual perception of novice and expert clinicians: An exploratory simulation-based study. Anaesth. Crit. Care Pain Med. 2020, 39, 247–249. [Google Scholar] [CrossRef] [PubMed]
- Dreyfus, H.; Dreyfus, H.; Athanasiou, T. Mind over Machine; The Free Press: New York, NY, USA, 1986. [Google Scholar]
- Arocha, J.F.; Patel, V.L.; Patel, Y.C. Hypothesis generation and the coordination of theory and evidence in novice diagnostic reasoning. Med. Decis. Mak. 1993, 13, 198–211. [Google Scholar] [CrossRef] [PubMed]
- Wu, W.; Hall, A.K.; Braund, H.; Bell, C.R.; Szulewski, A. The Development of Visual Expertise in ECG Interpretation: An Eye-Tracking: Augmented Re Situ Interview Approach. Teach. Learn. Med. 2020, 2020, 1–20. [Google Scholar] [CrossRef]
- Thomas, L.; Wickens, C. Eye-tracking and individual differences in off-normal event detection with flying with a synthetic vision system display. In Proceedings of the Human Factors and Ergonomics Society 48th Annual Meeting, New Orleans, LA, USA, 20–24 September 2004; pp. 223–228. [Google Scholar]
- De Rivecourt, M.; Kuperus, M.N.; Post, W.J.; Mulder, L.J. Cardiovascular and eye activity measures as indices for momentary changes in mental effort during simulated flight. Ergonomics 2008, 51, 1295–1319. [Google Scholar] [CrossRef] [Green Version]
- Thompson, V.A. Eye-tracking IQ: Cognitive capacity and strategy use on a ratio-bias task. Cognition 2020, 208, 104523. [Google Scholar] [CrossRef] [PubMed]
- Liao, D.; Ishii, M.; Ishii, L.E. Where Do We Look? Assessing Gaze Patterns in Cosmetic Face-Lift Surgery with Eye Tracking Technology. Plast. Reconstr. Surg. 2020, 146, 820e–821e. [Google Scholar] [CrossRef]
- Hofmaenner, D.A.; Herling, A.; Klinzing, S.; Wegner, S.; Lohmeyer, Q.; Schuepbach, R.A.; Buehler, P.K. Use of eye tracking in analyzing distribution of visual attention among critical care nurses in daily professional life: An observational study. J. Clin. Monit. Comput. 2020, 1–8. [Google Scholar] [CrossRef]
- Richter, J.; Scheiter, K.; Eder, T.F.; Huettig, F.; Keutel, C. How massed practice improves visual expertise in reading panoramic radiographs in dental students: An eye tracking study. PLoS ONE 2020, 15, e0243060. [Google Scholar] [CrossRef]
- Zhang, T.; Yang, J.; Liang, N.; Pitts, B.J.; Prakah-Asante, K.O.; Curry, R.; Duerstock, B.S.; Wachs, J.P.; Yu, D. Physiological Measurements of Situation Awareness: A Systematic Review. Hum. Factors 2020, 2020, 18720820969071. [Google Scholar]
- Auffermann, W.F.; Drew, T.; Krupinski, E.A. Special Section Guest Editorial: Medical Image Perception and Observer Performance. J. Med. Imaging (Bellingham) 2020, 7, 022401. [Google Scholar] [CrossRef] [Green Version]
- Di Flumeri, G.; Arico, P.; Borghini, G.; Sciaraffa, N.; Di Florio, A.; Babiloni, F. The Dry Revolution: Evaluation of Three Different EEG Dry Electrode Types in Terms of Signal Spectral Features, Mental States Classification and Usability. Sensors 2019, 19, 1365. [Google Scholar] [CrossRef] [Green Version]
- Dimigen, O.; Sommer, W.; Hohlfeld, A.; Jacobs, A.M.; Kliegl, R. Coregistration of eye movements and EEG in natural reading: Analyses and review. J. Exp. Psychol. Gen. 2011, 140, 552–572. [Google Scholar] [CrossRef] [Green Version]
- Kamienkowski, J.E.; Ison, M.J.; Quiroga, R.Q.; Sigman, M. Fixation-related potentials in visual search: A combined EEG and eye tracking study. J. Vis. 2012, 12, 4. [Google Scholar] [CrossRef] [PubMed]
- Borghini, G.; Arico, P.; Di Flumeri, G.; Sciaraffa, N.; Colosimo, A.; Herrero, M.T.; Bezerianos, A.; Thakor, N.V.; Babiloni, F. A New Perspective for the Training Assessment: Machine Learning-Based Neurometric for Augmented User’s Evaluation. Front. Neurosci. 2017, 11, 325. [Google Scholar] [CrossRef]
- Seagull, J.; Xiao, Y.; MacKenzie, C.; Jaberi, M.; Dutton, R. Monitoring Behavior: A Pilot Study Using an Ambulatory Eye-Tracker in Surgical Operating Rooms. In Proceedings of the Human Factors and Ergonomics Society 43rd Annual Meeting, Houston, TX, USA, 27 September–1 October 1999; Volume 43, pp. 850–854. [Google Scholar]
- Browning, M.; Cooper, S.; Cant, R.; Sparkes, L.; Bogossian, F.; Williams, B.; O’Meara, P.; Ross, L.; Munro, G.; Black, B. The use and limits of eye-tracking in high-fidelity clinical scenarios: A pilot study. Int. Emerg. Nurs. 2016, 25, 43–47. [Google Scholar] [CrossRef] [PubMed]
- Pennaforte, T.; Moussa, A.; Loye, N.; Charlin, B.; Audetat, M.C. Exploring a New Simulation Approach to Improve Clinical Reasoning Teaching and Assessment: Randomized Trial Protocol. JMIR Res. Protoc. 2016, 5, e26. [Google Scholar] [CrossRef] [PubMed]
Compared AOIs | Mean First AOI | Mean Second AOI | Mean Diff. | Adjusted p-Value |
---|---|---|---|---|
Participants who passed the scenario | ||||
Monitor vs. Defibrillator (sec) | 11.00 | 28.42 | −17.42 | 0.0002 |
Monitor vs. Head of the patient (sec) | 11.00 | 16.08 | −5.08 | 0.7118 |
Defibrillator vs. Head of the patient (sec) | 28.42 | 16.08 | 12.33 | 0.0124 |
Participants who did not pass the scenario | ||||
Monitor vs. Defibrillator (sec) | 5.33 | 15.50 | −10.17 | 0.0029 |
Monitor vs. Head of the patient (sec) | 5.33 | 7.66 | −2.33 | >0.9999 |
Defibrillator vs. Head of the patient (sec) | 15.50 | 7.66 | 7.83 | 0.0331 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tanoubi, I.; Tourangeau, M.; Sodoké, K.; Perron, R.; Drolet, P.; Bélanger, M.-È.; Morris, J.; Ranger, C.; Paradis, M.-R.; Robitaille, A.; et al. Comparing the Visual Perception According to the Performance Using the Eye-Tracking Technology in High-Fidelity Simulation Settings. Behav. Sci. 2021, 11, 31. https://doi.org/10.3390/bs11030031
Tanoubi I, Tourangeau M, Sodoké K, Perron R, Drolet P, Bélanger M-È, Morris J, Ranger C, Paradis M-R, Robitaille A, et al. Comparing the Visual Perception According to the Performance Using the Eye-Tracking Technology in High-Fidelity Simulation Settings. Behavioral Sciences. 2021; 11(3):31. https://doi.org/10.3390/bs11030031
Chicago/Turabian StyleTanoubi, Issam, Mathieu Tourangeau, Komi Sodoké, Roger Perron, Pierre Drolet, Marie-Ève Bélanger, Judy Morris, Caroline Ranger, Marie-Rose Paradis, Arnaud Robitaille, and et al. 2021. "Comparing the Visual Perception According to the Performance Using the Eye-Tracking Technology in High-Fidelity Simulation Settings" Behavioral Sciences 11, no. 3: 31. https://doi.org/10.3390/bs11030031
APA StyleTanoubi, I., Tourangeau, M., Sodoké, K., Perron, R., Drolet, P., Bélanger, M. -È., Morris, J., Ranger, C., Paradis, M. -R., Robitaille, A., & Georgescu, M. (2021). Comparing the Visual Perception According to the Performance Using the Eye-Tracking Technology in High-Fidelity Simulation Settings. Behavioral Sciences, 11(3), 31. https://doi.org/10.3390/bs11030031