Impact of Tectonic, Glacial and Contour Current Processes on the Late Cenozoic Sedimentary Development of the Southeast Greenland Margin
Abstract
:1. Introduction
2. Regional Setting
3. Material and Methods
4. Results
4.1. Shelf
4.2. Slope
5. Interpretation and Discussion
5.1. Shelf Architecture
5.2. Geomorphology and Internal Structure of the Slope
6. Conclusions
- The geomorphological difference between the northern and southern part of the Southeast Greenland margin originates from the first stages of the development of the Irminger Sea basin and the Southeast Greenland margin. The regional pattern of tectonic uplift versus oceanic subsidence had a major impact on sediment accommodation space and ocean boundary current circulation.
- The prominent difference in shelf width resulted in the deposition of Oligocene-earliest Miocene turbidite fan complexes along the steeper slope of the southern margin and absence thereof along the northern margin. Due to weak bottom-current activity, these pre-glacial fan complexes were preserved and now form the core of the sediment drift ridges that, contrary to most contourite deposits, are striking perpendicular to the slope. Topographic steering of strong bottom currents since the Early Miocene by these slope-perpendicular sedimentary bodies resulted in further enhancement of these features.
- A general intensification of the boundary current activity occurred ca. 19 Ma ago. During late Miocene-early Pliocene, tidewater glacier began to advance and glacio-fluvial prograding wedges started to develop on the shelf.
- Acoustic basement boundary data (ABB) suggests that the pattern of the large, glacial cross-shelf trough system on the wider northern shelf may be linked to an underlying, pre-glacial morphology where fluvial delta fan sediments had been present.
- Although the general sedimentation pattern documents downslope sediment transport prevailing during glacial stages and along-slope transport during warmer climate, a change in the relative significance of both regimes is concluded to have occurred about 1 Ma ago. This change is marked by the appearance of relatively narrow, V-shaped channels observed on the slope to both the north and south. Their morphological appearance in these two areas is, however, different, which is concluded to indicate stronger channel flow and more sediment bypassing in the channels found associated with the steeper, southern slope.
- The morphological character of the V-shaped channels further indicates that they form an active conduit for cascading dense winter water or sediment-laden meltwater from the shelf, also today.
- The occurrence of a marked moat system on the southern slope and lack of such more to the north are in support of oceanographic studies that report intensification and deepening of the deep Boundary Current on its way from Denmark Strait to the Cape Farewell area.
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Larsen, H.C. Geological perspectives of the East Greenland continental margin. Bull. Geol. Soc. Denmark 1980, 29, 77–101. [Google Scholar]
- Coffin, M.F.; Eldholm, O. Large igneous provinces: Crustal structure, dimensions, and external consequences. Rev. Geophys. 1994, 32, 1–36. [Google Scholar] [CrossRef]
- Larsen, H.C.; Saunders, A.D.; Clift, P.D.; Ali, J.R.; Beget, J.E.; Cambray, H.; Demant, A.; Fitton, J.G.; Fram, M.S.; Fukuma, K.; et al. Proceedings of the Ocean Drilling Program, Initial Reports; Ocean Drilling Program: College Station, TX, USA, 1994. [Google Scholar]
- Hopper, J.R.; Lizarralde, D.; Larsen, H.C. Seismic investigations offshore South-East Greenland. Geol. Greenl. Surv. Bull. 1998, 180, 145–151. [Google Scholar]
- Nielsen, T.; De Santis, L.; Dahlgren, K.I.T.; Kuijpers, A.; Laberg, J.S.; Nygård, A.; Praeg, D.; Stoker, M.S. A comparison of the NW European glaciated margin with other glaciated margins. Mar. Petrol. Geol. 2005, 22, 1149–1183. [Google Scholar] [CrossRef]
- Johnson, G.L.; Sommerhoff, G.; Egloff, J. Structure and morphology of the west Reykjanes Basin and southeast Greenland continental margin. Mar. Geol. 1975, 18, 175–196. [Google Scholar] [CrossRef]
- Sommerhoff, G. Geomorphologische Prozesse in der Labrador- und Irmingersee. Ein Beitrag zur submarinen Geomorphologie einer subpolaren Meeresregion. Polarforschung 1981, 51, 175–191. [Google Scholar]
- Clausen, L. Late Neogene and Quaternary sedimentation on the continental slope and upper rise offshore southeast Greenland: Interplay of contour and turbidity processes. In Proceedings of the Ocean Drilling Program, Scientific Results; Saunders, A.D., Larsen, H.C., Wise, S.W., Jr., Eds.; Ocean Drilling Program Texas A& M Univesity: College Station, TX, USA, 1998; pp. 3–18. [Google Scholar]
- Clausen, L. The Southeast Greenland glaciated margin: 3D stratal architecture of shelf and deep sea. In Geological Processes on Continental Margins: Sedimentation, Mass-Wasting and Stability, Geological Society; Stoker, M., Evans, D., Cramp, A., Eds.; Special Publications: London, UK, 1998; Volume 129, pp. 173–203. [Google Scholar]
- Funck, T.; Andrup-Henriksen, G.; Dehler, S.A.; Louden, K.E. The crustal structure of the Eirik Ridge at the southern Greenland continental margin. In Proceedings of the Geological Association of Canada-Mineralogical Association of Canada Joint Annual Meeting, St. John’s, NL, Canada, 27–29 May 2012. [Google Scholar]
- Hunter, S.E.; Wilkinson, D.; Stanford, J.; Stow, D.A.V.; Bacon, S.; Akhmetzhanov, A.M.; Kenyon, N.H. The Eirik Drift: A Long-Term Barometer of North Atlantic Deepwater Flux South of Cape Farewell, Greenland, Economic and Palaeoceanographic Significance of Contourite Deposits; The Geological Society of London: London, UK, 2007; pp. 245–263. [Google Scholar] [CrossRef]
- Müller-Michaelis, A.; Uenzelmann-Neben, G.; Stein, R. A revised Early Miocene age for the instigation of the Eirik Drift, offshore southern Greenland: Evidence from high-resolution seismic reflection data. Mar. Geol. 2013, 340, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Fagel, N.; Hillaire-Marcel, C.; Robert, C. Changes in the Western Boundary Undercurrent outflow since the Last Glacial Maximum, from smectite/illite ratios in deep Labrador Sea Sediments. Paleoceanography 1997, 12, 79–96. [Google Scholar] [CrossRef]
- Linthout, K.; Troelstra, S.R.; Kuijpers, A. Provenance of coarse ice-rafted detritus near the SE Greenland margin. Neth. J. Geosci. 2000, 79, 109–121. [Google Scholar] [CrossRef] [Green Version]
- Faugères, J.-C.; Stow, D.A.V.; Imbert, P.; Viana, A. Seismic features diagnostic of 618 contourite drifts. Mar. Geol. 1999, 162, 1–38. [Google Scholar] [CrossRef]
- Rasmussen, S.; Lykke-Andersen, H.; Kuijpers, A.; Troelstra, S.R. Post-Miocene sedimentation at the continental rise of Southeast Greenland: The interplay between turbidity and contour currents. Mar. Geol. 2003, 196, 37–52. [Google Scholar] [CrossRef]
- Rebesco, M.; Camerlenghi, A. Contourites; Elsevier: Amsterdam, The Netherlands, 2008. [Google Scholar]
- Jakobsson, M.; Mayer, L.A.; Coakley, B.; Dowdeswell, J.A.; Forbes, S.; Fridman, B.; Hodnesdal, H.; Noormets, R.; Pedersen, R.; Rebesco, M.; et al. The International Bathymetric Chart of the Arctic Ocean (IBCAO) Version 3.0. Geophys. Res. Lett. 2012, 39, L12609. [Google Scholar] [CrossRef]
- Bridgwater, D.; Davies, F.B.; Gill, R.C.O.; Gorman, B.E.; Myer, J.S.; Pedersen, S.; Taylor, P. Precambrian and Tertiary geology between Kangerdlugssuaq and Angmagssalik, East Greenland. A preliminary report. Rapp. Grønl. Geol. Unders. 1978, 83, 1–17. [Google Scholar]
- Larsen, H.C. Geology of the East Greenland Shelf. In Petroleum Geology of the North European Margin; Spencer, A.M., Holter, E., Johnson, S.O., Mørk, A., Nysæther, E., Sognstad, P., Spinnanger, Å., Eds.; Graham and Trotman: London, UK, 1984; pp. 329–339. [Google Scholar]
- Surlyk, F.; Clemmensen, L.B.; Larsen, H.C. Post-Paleozoic Evolution of the East Greenland Continental Margin. In Geology of the North Atlantic Borderlands; Kerr, J.W., Ferguson, A.J., Eds.; Canadian Society of Petroleum Geologists Memoir: Calgary, AB, Canada, 1981; Volume 7, pp. 611–645. [Google Scholar]
- Talwani, M.; Eldholm, O. Evolution of the Norwegian-Greenland Sea. Geol. Soc. Am. Bull. 1977, 88, 969–999. [Google Scholar] [CrossRef]
- Larsen, B. Geology of the Greenland-Iceland ridge in the Denmark Strait. In Structure and Development of the Greenland-Scotland Ridge: New methods and concepts; Saxov, B., Thiede, T., Eds.; Plenum Publisher Corporation: New York, NY, USA, 1983; pp. 425–444. [Google Scholar]
- Larsen, H.C.; Saunders, A.D.; Clift, P.D.; Beget, J.; Wei, W.; Spezzaferri, S. ODP Leg 152 Scientific Party. Seven Million Years of Glaciation in Greenland. Science 1994, 264, 952–955. [Google Scholar] [CrossRef] [PubMed]
- Helland, P.E.; Holmes, M.A. Surface textural analysis of quartz sand grains from ODP Site 918 off the southeast coast of Greenland suggests glaciation of southern Greenland at 11 Ma. Palaeogeogr. Palaeoclimatol. Palaeoecol. 1997, 135, 109–121. [Google Scholar] [CrossRef] [Green Version]
- Kuijpers, A.; Troelstra, S.R.; Prins, M.A.; Linthout, K.; Akhmetzhanov, A.; Bouryak, S.; Bachmann, M.F.; Lassen, S.; Rasmussen, S.; Jensen, J.B. Late Quaternary sedimentary processes and ocean circulation changes at the Southeast Greenland margin. Mar. Geol. 2003, 195, 109–129. [Google Scholar] [CrossRef]
- Vanneste, K.; Uenzelmann-Neben, G.; Miller, H. Seismic evidence for long-term history of glaciation on central East Greenland shelf south of Scoresby Sund. Geo-Mar. Lett. 1995, 15, 63–70. [Google Scholar] [CrossRef]
- Perez, F.L.; Nielsen, T. Asynchronous ice-sheet development along the central East Greenland margin: A GLANAM project contribution. Geol. Surv. Den. Greenl. Bull. 2017, 38, 61–64. [Google Scholar]
- Perez, F.L.; Nielsen, T.; Knutz, P.C.; Kuijpers, A.; Damm, V. Large-scale evolution of the central-east Greenland margin: New insights to the North Atlantic glaciation history. Glob. Planet. Chang. 2018, 163, 141–157. [Google Scholar] [CrossRef]
- Sommerhoff, G. Formenschatz und morphologische Gliederung des südostgrönlandischen Schelfgebietes und Kontinentalabhanges. “Meteor” Forsch-Ergebnisse Reihe C 1973, 15, 1–54. [Google Scholar]
- Batchelor, L.; Dowdeswell, J.A. The physiography of High Arctic cross-shelf troughs. Quat. Sci. Rev. 2014, 92, 68–96. [Google Scholar] [CrossRef]
- Dickson, R.R.; Brown, J. The production of North Atlantic Deep Water: Sources, rates, and pathways. J. Geophys. Res. Oceans 1994, 99, 12319–12341. [Google Scholar] [CrossRef]
- von Appen, W.-J.; Koszalka, I.M.; Pickart, R.S.; Haine, T.W.N.; Mastropole, D.; Magaldi, M.G.; Valdimarsson, H.; Girton, J.; Jochumsen, K.; Krahmann, G. The East Greenland Spill Jet as an important component of the Atlantic Meridional Overturning Circulation. Deep Sea Res. Part I Oceanogr. Res. Pap. 2014, 92, 75–84. [Google Scholar] [CrossRef] [Green Version]
- Lauderdale, J.M.; Bacon, S.; Naveira Garabato, A.C.; Holliday, N.P. Intensified turbulent mixing in the boundary current system of southern Greenland. Geophys. Res. Lett. 2008, 35, L04611. [Google Scholar] [CrossRef]
- Jochumsen, K.; Köllner, M.; Quadfasel, D.; Dye, S.; Rudels, B.; Valdimarsson, H. On the origin and propagation of Denmark Strait overflow water anomalies in the Irminger Basin. J. Geophys. Res. Oceans 2015, 120, 1841–1855. [Google Scholar] [CrossRef] [Green Version]
- Müller-Michaelis, A.; Uenzelmann-Neben, G. Development of the Western Boundary Undercurrent at Eirik Drift related to changing climate since the early Miocene. Deep Sea Res. Part I Oceanogr. Res. Pap. 2014, 93, 21–34. [Google Scholar] [CrossRef] [Green Version]
- Uenzelmann-Neben, G.; Gruetzner, J. Chronology of Greenland Scotland Ridge overflow: What do we really know? Mar. Geol. 2018, 406, 109–118. [Google Scholar] [CrossRef]
- National Oceanographic and Atmospheric Administration (NOAA). Trackline Geophysical Data Viewer. 2014. Available online: http://maps.ngdc.noaa.gov/viewers/geophysics/ (accessed on 1 February 2019).
- Gerlings, J.; Hopper, J.R.; Fyhn, M.B.W.; Frandsen, N. Mesozoic and older rift basins on the SE Greenland Shelf offshore Ammassalik. Geol. Soc. Lond. Spec. Publ. 2017, 447, 375–392. [Google Scholar] [CrossRef]
- Japsen, P.; Green, P.F.; Bonow, J.M.; Nielsen, T.F.D.; Chalmers, J.A. From volcanic plains to glaciated peaks: Burial, uplift and exhumation history of southern East Greenland after opening of the NE Atlantic. Glob. Planet. Chang. 2014, 116, 91–114. [Google Scholar] [CrossRef]
- Dowdeswell, J.A.; Evans, J.; Ó Cofaigh, C. Submarine landforms and shallow acoustic stratigraphy of a 400 km-long fjord-shelf-slope transect, Kangerlussuaq margin, East Greenland. Quat. Sci. Rev. 2010, 29, 3359–3369. [Google Scholar] [CrossRef] [Green Version]
- Kuijpers, A.; Werner, F. Extremely deep-draft iceberg scouring in the glacial North Atlantic Ocean. Geo-Mar. Lett. 2007, 27, 383–389. [Google Scholar] [CrossRef]
- Clift, P. Plume tectonics as a cause of mass wasting on the southeast Greenland continental margin. Mar. Petrol. Geol. 1996, 13, 771–780. [Google Scholar] [CrossRef]
- Clift, P.D.; Carter, A.; Hurford, A.J. Constraints on the evolution of the East Greenland Margin: Evidence from detrital apatite in offshore sediments. Geology 1996, 24, 1013–1016. [Google Scholar] [CrossRef]
- Lykke-Andersen, H. Neogene-Quaternary depositional history of the east Greenland shelf in the vicinity of Leg 152 shelf sites. In Proceedings of the Ocean Drilling Program, Scientific Results; Saunders, A.D., Larsen, H.C., Wise, S.W., Jr., Eds.; National Science Foundation: Alexandria, VA, USA, 1998; pp. 29–38. [Google Scholar] [CrossRef]
- Ó Cofaigh, C.; Taylor, J.; Dowdeswell, J.A.; Pudsey, C.J. Palaeo-ice streams, trough mouth fans and high latitude continental slope sedimentation. Boreas 2003, 32, 37–55. [Google Scholar] [CrossRef]
- Wilken, M.; Mienert, J. Submarine glacigenic debris flows, deep sea channels and past ice-stream behaviour of the East Greenland marin. Quat. Sci. Rev. 2006, 25, 784–810. [Google Scholar] [CrossRef]
- Piper, D.J.W.; Normark, W.R. The processes that initiate turbidity currents and their influence on turbidites: A Marine Geology perspective. J. Sediment. Res. 2009, 79, 347–362. [Google Scholar] [CrossRef]
- Elliott, G.M.; Shannon, P.M.; Haughton, P.D.W.; Praeg, D.; O’Reilly, B. Mid- to Late Cenozoic canyon development on the eastern margin of the Rockall Trough, offshore Ireland. Mar. Geol. 2006, 229, 113–132. [Google Scholar] [CrossRef]
- Sacchetti, F.; Benetti, S.; Georgiopoulou, A.; Shannon, P.M.; O’Reilly, B.M.; Dunlop, P.; Quinn, R.; Ó Cofaigh, C. Deep-water geomorphology of the glaciated Irish margin from high-resolution marine geophysical data. Mar. Geol. 2012, 291–294, 113–131. [Google Scholar] [CrossRef]
- Roche, D.M.; Renssen, H.; Weber, S.L.; Goosse, H. Could meltwater pulses have been sneaked unnoticed into the deep ocean during the last glacial? Geophys. Res. Lett. 2007, 34, L24708. [Google Scholar] [CrossRef]
- Lohmann, G.; Grosfeld, K.; Butzin, M.; Huybrechts, P.; Zweck, C. Minor effect of meltwater on the ocean circulation during deglaciation. Earth Syst. Dyn. Discuss. 2012, 3. [Google Scholar] [CrossRef]
- Sarafanov, A.F.; Sarafanov, A.; Mercier, H.; Lherminier, P.; Sokov, A.; Daniault, N. On the Cascading of Dense Shelf Waters in the Irminger Sea. J. Phys. Oceanogr. 2012, 42, 2254–2267. [Google Scholar]
- Israelson, C.; Spezzaferri, S. Strontium-isotope stratigraphy from sites 918 and 919. In Proceedings of the Ocean Drilling Program, Scientific Results; Saunders, A.D., Larsen, H.C., Wise, S.W., Jr., Eds.; Ocean Drilling Program: College Station, TX, USA, 1998; Volume 152, pp. 233–241. [Google Scholar] [CrossRef]
- Wold, C.N. Cenozoic sediment accumulation on drifts in the Northern North Atlantic. Paleoceanography 1994, 9, 917–941. [Google Scholar] [CrossRef]
- Wright, J.D.; Miller, K.G. Control of North Atlantic Deep Water Circulation by the Greenland-Scotland Ridge. Paleoceanography 1996, 11, 157–170. [Google Scholar] [CrossRef]
- Stoker, M.S.; Praeg, D.; Hjelstuen, B.O.; Laberg, J.S.; Nielsen, T.; Shannon, P.M. Neogene stratigraphy and the sedimentary and oceanographic development of the NW European Atlantic margin. Mar. Petrol. Geol. 2005, 22, 977–1005. [Google Scholar] [CrossRef]
- Ehlers, B.-M.; Jokat, W. Paleo-bathymetry of the northern North Atlantic and consequences for the opening of the Fram Strait. Mar. Geophys. Res. 2013, 34, 25–43. [Google Scholar] [CrossRef]
- Poore, H.; White, N.; Maclennan, J. Ocean circulation and mantle melting controlled by radial flow of hot pulses in the Iceland plume. Nature Geosci. 2011, 4, 558–561. [Google Scholar] [CrossRef]
- Bohrmann, G.; Henrich, R.; Thiede, J. Miocene to Quaternary paleoceanography in the northern North Atlantic: Variability in carbonate and biogenic opal accumulation. In Geological History of the Polar Oceans: Arctic Versus Antarctic; Bleil, U., Thiede, J., Eds.; Springer: Dordrecht, The Netherlands, 1990; pp. 647–675. [Google Scholar]
- Haug, G.H.; Tiedemann, R. Effect of the formation of the Isthmus of Panama on Atlantic Ocean thermohaline circulation. Nature 1998, 393, 673–676. [Google Scholar] [CrossRef]
- Nielsen, T.; Kuijpers, A. Only 5 southern Greenland shelf edge glaciations since the early Pliocene. Sci. Rep. 2013, 3, 1875. [Google Scholar] [CrossRef] [PubMed]
- Wåhlin, A.K. Topographic steering of dense currents with application to submarine canyons. Deep Sea Res. Part I Oceanogr. Res. Pap. 2002, 49, 305–320. [Google Scholar] [CrossRef]
- Wåhlin, A.K. Downward channeling of dense water in topographic corrugations. Deep Sea Res. Part I Oceanogr. Res. Pap. 2004, 51, 577–590. [Google Scholar] [CrossRef]
- Head, M.J.; Gibbard, P.L. Early–Middle Pleistocene transitions: An overview and recommendation for the defining boundary. In Early–Middle Pleistocene Transitions: The Land–Ocean Evidence; Head, M.J., Gibbard, P.L., Eds.; Geological Society of London: London, UK, 2005; pp. 1–18. [Google Scholar]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Heirman, K.A.; Nielsen, T.; Kuijpers, A. Impact of Tectonic, Glacial and Contour Current Processes on the Late Cenozoic Sedimentary Development of the Southeast Greenland Margin. Geosciences 2019, 9, 157. https://doi.org/10.3390/geosciences9040157
Heirman KA, Nielsen T, Kuijpers A. Impact of Tectonic, Glacial and Contour Current Processes on the Late Cenozoic Sedimentary Development of the Southeast Greenland Margin. Geosciences. 2019; 9(4):157. https://doi.org/10.3390/geosciences9040157
Chicago/Turabian StyleHeirman, Katrien An, Tove Nielsen, and Antoon Kuijpers. 2019. "Impact of Tectonic, Glacial and Contour Current Processes on the Late Cenozoic Sedimentary Development of the Southeast Greenland Margin" Geosciences 9, no. 4: 157. https://doi.org/10.3390/geosciences9040157
APA StyleHeirman, K. A., Nielsen, T., & Kuijpers, A. (2019). Impact of Tectonic, Glacial and Contour Current Processes on the Late Cenozoic Sedimentary Development of the Southeast Greenland Margin. Geosciences, 9(4), 157. https://doi.org/10.3390/geosciences9040157