Distinguishing between Deep-Water Sediment Facies: Turbidites, Contourites and Hemipelagites
Abstract
:1. Introduction
1.1. Complexity and Controversy
1.2. A Brief History
1.3. Synthesis and Distinction
2. Deep-Water Processes
2.1. Turbidity Currents
2.2. Bottom Currents
2.2.1. Thermohaline and Wind-Driven Bottom Currents
2.2.2. Deep-Water Tidal Bottom Currents
2.3. Pelagic and Hemipelagic Settling
2.4. Flow Transformation, Process Interaction and Reworking
3. Turbidite Deposits
3.1. Definition and Turbidite Facies
3.2. Turbidite Characteristics
3.3. Turbidite Facies Models
Variations from the Standard Models
4. Contourite Deposits
4.1. Definition and Facies
4.2. Contourite Characteristics
4.3. Contourite Facies Models
5. Hemipelagic Deposits
5.1. Definition and Facies
5.2. Hemipelagic Characteristics
5.3. Hemipelagic Facies Models
6. Hybrid Deposits
7. Discussion
7.1. Controversy
7.2. Comparing Apples and Oranges
7.3. Three Scales of Interpretation
7.3.1. Small Scale (Field, Borehole and Laboratory Analysis)
7.3.2. Medium Scale (Depositional Body, Formation or Region)
7.3.3. Large Scale (System, Ocean or Continent)
8. Conclusions
- Turbidity currents are episodic short-duration events (lasting hours to days) which show wide variation in flow size, speed and concentration. They are turbulent suspensions of mud and sand in water which are propelled downslope by gravity acting on the excess density. They can develop internal segregation in terms of process and sediment concentration, as well as downslope flow transformation.
- Bottom currents are semi-continuous long-duration processes (lasting thousands to millions of years) which are generally low-concentration and which have a relatively low flow speed. They can be driven by surface winds, thermohaline circulation and tides. They are affected by intermittent eddies, benthic storms, flow cascading and tsunamis.
- Hemipelagic deposition is a continuous process through geological time, involving both vertical settling and slow lateral advection through the water column. Together with pelagic settling, these are ‘background’ processes which are only evident in the absence of either turbidity currents or bottom currents.
- Turbidites, including coarse-, medium-, and fine-grained turbidites, characterised by the Lowe, Bouma and Stow sequences respectively. We note that it is not always possible to distinguish between facies at the fine end of the spectrum, i.e., muddy turbidites, contourites and hemipelagites. Equally, some of the sand-only turbidites and contourites may show very similar features.
- Contourites, including bi-gradational mud–sand and sandy contourite facies models. The bi-gradational sequence (C1–C5) is well established, whereas the sandy contourite models are relatively new. Contourites are much less well known than turbidites from ancient series on land or in the subsurface. This is an important area for future research.
- Hemipelagites have a simple cyclic facies model, showing compositional and colour variation. There is a wide range of types depending on dominant sediment supply, i.e., biogenic, terrigenous, volcaniclastic and glacigenic. Organic-rich black-shale hemipelagites have different and specific characteristics.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Pickering, K.; Hiscott, R. Deep Marine Systems: Processes, Deposits, Environments, Tectonics and Sedimentation; Wiley & American Geophysical Union: Washington, DC, USA, 2016. [Google Scholar]
- Huneke, H.; Mulder, T. Deep-Sea Sediments; Elsevier: Amsterdam, The Netherlands, 2011. [Google Scholar]
- Rebesco, M.; Camerlenghi, A. Contourites; Elsevier: Amsterdam, The Netherlands, 2008; Volume 60, pp. 457–489. [Google Scholar]
- Stow, D.A.V. Fine-grained sediments in deep water: An overview of processes and facies models. Geo-Mar. Lett. 1985, 5, 17–23. [Google Scholar] [CrossRef]
- Shanmugam, G. 50 years of the turbidite paradigm (1950s—1990s): Deep-water processes and facies models—A critical perspective. Mar. Pet. Geol. 2000, 17, 285–342. [Google Scholar] [CrossRef]
- Shanmugam, G. Deep-water bottom currents and their deposits. In Developments in Sedimentology; Elsevier BV: Amsterdam, The Netherlands, 2008; Volume 60, pp. 59–81. [Google Scholar]
- Rebesco, M.; Camerlenghi, A.; Van Loon, A.J. Contourite research. In Developments in Sedimentology; Elsevier BV: Amsterdam, The Netherlands, 2008; Volume 60, pp. 1–10. [Google Scholar]
- Murray, S.J.; Renard, A.F. Report on Deep-sea Deposits Based on the Specimens Collected During the Voyage of H.M.S. Challenger in the Years 1872 to 1876; H.M. Stationery Office: Richmond, UK, 1891.
- Murray, J.; Hjort, J. The Depths of the Ocean; A General Account of the Modern Science of Oceanography Based Largely on the Scientific Researches of the Norwegian Steamer Michael Sars in the North Atlantic; Smithsonian Institution, Macmillan and Co.: Lonodon, UK, 1912. [Google Scholar]
- Jenkyns, H.C.; Clayton, C.J. Black shales and carbon isotopes in pelagic sediments from the Tethyan Lower Jurassic. Sedimentology 1986, 33, 87–106. [Google Scholar] [CrossRef]
- Kuenen, P.H.; Migliorini, C.I. Turbidity Currents as a Cause of Graded Bedding. J. Geol. 1950, 58, 91–127. [Google Scholar] [CrossRef]
- Bouma, A.H. Sedimentology of Some Flysch Deposits; A Graphic Approach to Facies Interpretation; Elsevier: Amsterdam, The Netherlands, 1962. [Google Scholar]
- Mutti, E. Turbidite Sandstones. Milan; Agip, Istituto di geologia, Università di Parma: Parma, Italy, 1992. [Google Scholar]
- Ghibaudo, G. Subaqueous sediment gravity flow deposits: practical criteria for their field description and classification. Sedimentology 1992, 39, 423–454. [Google Scholar] [CrossRef]
- Stow, D.A.V. Deep clastic seas. In Sedimentary Environments and Facies; Reading, H.G., Ed.; Blackwell: Oxford, UK, 1986; pp. 339–444. [Google Scholar]
- Stow, D.A.V. Deep sea processes of sediment transport and deposition. In Sediment Transport and Depositional Processes; Pye, K., Ed.; Blackwell: Oxford, UK, 1994; pp. 257–291. [Google Scholar]
- Stow, D.A.V.; Reading, H.G.; Collinson, J. Deep seas. In Sedimentary Environments and Facies, 3rd ed.; Reading, H.G., Ed.; Blackwell: Oxford, UK, 1996; pp. 380–442. [Google Scholar]
- Pickering, K.T.; Clark, J.D.; Smith, R.D.A.; Hiscott, R.N.; Lucchi, F.R.; Kenyon, N.H. Architectural element analysis of turbidite systems, and selected topical problems for sand-prone deep-water systems. In Atlas of Deep Water Environments; Springer Science and Business Media LLC: Berlin/Heidelberg, Germany, 1995; pp. 1–10. [Google Scholar]
- Mulder, T.; Cochon, P. Classification of offshore mass movements. J. Sediment. Res. 1996, 66, 43–57. [Google Scholar]
- Heezen, B.C.; Hollister, C.D.; Ruddiman, W.F. Shaping of the continental rise by deep geostrophic contour currents. Science 1966, 152, 502–508. [Google Scholar] [CrossRef] [PubMed]
- Stow, D.A.V. Late Quaternary Stratigraphy and Sedimentation on the Nova Scotian Outer Continental Margin. Unpublished Ph.D. Thesis, Dalhousie University, Halifax, NS, Canada, 1977; p. 360. [Google Scholar]
- Stow, D.A.V. Distinguishing between fine-grained turbidites and contourites on the Nova Scotian deep water margin. Sedimentology 1979, 26, 371–387. [Google Scholar] [CrossRef]
- Hollister, C.D.; Heezen, B.C. Geological effects of ocean bottom currents: Western North Atlantic. In Studies in Physical Oceanography; Gordon, A.L., Ed.; Gordon and Breach: New York, NY, USA, 1972; Volume 2, pp. 37–66. [Google Scholar]
- McCave, I.N.; Tucholke, B.E. Deep current-controlled sedimentation in the western North Atlantic. In The Western North Atlantic Region; Geological Society of America: Boulder, CO, USA, 1986; pp. 451–468. [Google Scholar]
- Stow, D.A.; Mayall, M. Deep-water sedimentary systems: New models for the 21st century. Mar. Pet. Geol. 2000, 17, 125–135. [Google Scholar] [CrossRef]
- Stow, D.A.V.; Omoniyi, B. Thin-bedded turbidites: Overview and petroleum perspective. In Rift-related coarse-Grained Submarine Fan Reservoirs; the Brae Play, South Viking Graben, North Sea; Turner, C.C., Cronin, B.T., Eds.; American Association of Petroleum Geologists: Tulsa, OK, USA, 2018; Volume 115, pp. 257–282. [Google Scholar]
- Stow, D.A.V.; Faugères, J.-C. Contourite facies and the facies model. In Developments in Sedimentology; Elsevier BV: Amsterdam, The Netherlands, 2008; Volume 60, pp. 223–256. [Google Scholar]
- Stow, D.A.V.; Faugères, J.-C.; Howe, J.A.; Pudsey, C.J.; Viana, A.R. Bottom currents, contourites and deep-sea sediment drifts: Current state-of-the-art. Geol. Soc. Lond. Memoirs 2002, 22, 7–20. [Google Scholar] [CrossRef]
- Stow, D.; Smillie, Z.; Esentia, I. Deep-Sea bottom currents: Their nature and distribution. In Encyclopedia of Ocean Sciences; Elsevier BV: Amsterdam, The Netherlands, 2018. [Google Scholar]
- Stow, D.; Smillie, Z.; Pan, J.; Esentia, I. Deep-Sea contourites: Sediments and cycles. In Encyclopedia of Ocean Sciences; Elsevier BV: Amsterdam, The Netherlands, 2019; pp. 111–120. [Google Scholar]
- Bankole, S.A.; Buckman, J.; Stow, D.; Lever, H. Automated image analysis of mud and mudrock microstructure and characteristics of hemipelagic sediments: IODP expedition 339. J. Earth Sci. 2019, 30, 407–421. [Google Scholar] [CrossRef]
- Stow, D.A.V.; Wetzel, A. Hemiturbidite: A new type of deep water sediment. Proc. ODP Sci. Results 1990, 116, 25–34. [Google Scholar]
- Sparks, R.S.J.; Bonnecaze, R.T.; Huppert, H.E.; Lister, J.R.; Hallworth, M.A.; Mader, H.; Phillips, J. Sediment-laden gravity currents with reversing buoyancy. Earth Planet. Sci. Lett. 1993, 114, 243–257. [Google Scholar] [CrossRef]
- Haughton, P.; Davis, C.; McCaffrey, W.; Barker, S. Hybrid sediment gravity flow deposits – Classification, origin and significance. Mar. Pet. Geol. 2009, 26, 1900–1918. [Google Scholar] [CrossRef]
- Talling, P.J.; Paull, C.K.; Piper, D.J. How are subaqueous sediment density flows triggered, what is their internal structure and how does it evolve? Direct observations from monitoring of active flows. Earth-Sci. Rev. 2013, 125, 244–287. [Google Scholar] [CrossRef] [Green Version]
- Strachan, L.J.; Bostock, H.C.; Barnes, P.M.; Neil, H.L.; Gosling, M. Non-cohesive silt turbidity current flow processes; insights from proximal sandy-silt and silty-sand turbidites, Fiordland, New Zealand. Sediment. Geol. 2016, 342, 118–132. [Google Scholar] [CrossRef]
- Bonzetti, G.; Cronin, B.T.; Jones, M.A. Deepwater conglomeratic megabeds: Analogues for event beds of the Brae Formation, S Viking Graben, North Sea. In Rift-Related Coarse-Grained Submarine Fan Reservoirs; The Brae Play, South Viking Graben, North Sea; Turner, C.C., Cronin, B.T., Eds.; American Association of Petroleum Geologists: Tulsa, OK, USA, 2018; Volume 115. [Google Scholar]
- Bagnold, R.A. Auto-suspension of transported sediment; turbidity currents. Proc. R. Soc. Lond. Ser. A Math. Phys. Sci. 1962, 265, 315–319. [Google Scholar]
- Mulder, T.; Migeon, S.; Savoye, B.; Faugeres, J.-C. Inversely graded turbidite sequences in the deep Mediterranean: a record of deposits from flood-generated turbidity currents? Geo-Mar. Lett. 2001, 21, 86–93. [Google Scholar]
- Mulder, T.; Syvitski, J.P.; Migeon, S.; Faugeres, J.-C.; Savoye, B. Marine hyperpycnal flows: Initiation, behavior and related deposits. A review. Mar. Pet. Geol. 2003, 20, 861–882. [Google Scholar] [CrossRef]
- Sequeiros, O.E.; Naruse, H.; Endo, N.; García, M.H.; Parker, G. Experimental study on self-accelerating turbidity currents. J. Geophys. Res. Space Phys. 2009, 114. [Google Scholar] [CrossRef]
- Baker, M.L.; Baas, J.H.; Malarkey, J.; Jacinto, R.S.; Craig, M.J.; Kane, I.A.; Barker, S. The effect of clay type on the properties of cohesive sediment gravity flows and their deposits. J. Sediment. Res. 2017, 87, 1176–1195. [Google Scholar] [CrossRef] [Green Version]
- Paull, C.K.; Talling, P.J.; Maier, K.L.; Parsons, D.; Xu, J.; Caress, D.W.; Gwiazda, R.; Lundsten, E.M.; Anderson, K.; Barry, J.P.; et al. Powerful turbidity currents driven by dense basal layers. Nat. Commun. 2018, 9, 4114. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maier, K.L.; Gales, J.A.; Paull, C.K.; Rosenberger, K.; Talling, P.J.; Simmons, S.M.; Gwiazda, R.; McGann, M.; Cartigny, M.J.B.; Lundsten, E.; et al. Linking direct measurements of turbidity currents to submarine canyon-floor deposits. Front. Earth Sci. 2019, 7, 144. [Google Scholar] [CrossRef]
- Symons, W.O.; Sumner, E.J.; Paull, C.K.; Cartigny, M.J.; Xu, J.; Maier, K.L.; Lorenson, T.D.; Talling, P.J. A new model for turbidity current behavior based on integration of flow monitoring and precision coring in a submarine canyon. Geology 2017, 45, 367–370. [Google Scholar] [CrossRef] [Green Version]
- Clare, M.A.; Le Bas, T.; Price, D.M.; Hunt, J.E.; Sear, D.; Cartigny, M.J.B.; Vellinga, A.; Symons, W.; Firth, C.; Cronin, S. Complex and cascading triggering of submarine landslides and turbidity currents at volcanic islands revealed from integration of high-resolution onshore and offshore surveys. Front. Earth Sci. 2018, 6, 223. [Google Scholar] [CrossRef]
- Meiburg, E.; Nasr-Azadani, M.M. Gravity and Turbidity Currents: Numerical Simulations and Theoretical Models’, in Mixing and Dispersion in Flows Dominated by Rotation and Buoyancy; Clercx, H.J.H., Van Heijst, G.F., Eds.; Springer International Publishing AG: Cham, Switzerland, 2018; pp. 129–180. [Google Scholar]
- Lai, Y.G.; Huang, J.C.; Wu, K.W. Reservoir turbidity current modeling with a two-dimensional layer-averaged model. J. Hydraul. Eng. 2015, 141, 04015029. [Google Scholar] [CrossRef]
- Sansom, P. Turbidites v Contourites: hybrid systems of the Tanzanian margin. In Proceedings of the PESGB/HGS African Conference, London, UK, 31 August–1 September 2017. [Google Scholar]
- Lowe, N.R. Subaqueous liquefied and fluidized sediment flows and their deposits. Sedimentology 1976, 23, 285–308. [Google Scholar] [CrossRef]
- Varnes, D.J. Slope Movement Types and Processes. In Landslides, Analysis and Control, Transportation Research Board, Special Report No. 176; National Academy of Sciences: Washington, DC, USA, 1978; pp. 11–33. [Google Scholar]
- Stow, D.A.V.; Bowen, A.J. A physical model for the transport and sorting of fine-grained sediment by turbidity currents. Sedimentology 1980, 27, 31–46. [Google Scholar] [CrossRef]
- Bowen, A.J.; Normark, W.R.; Piper, D.J.W. Modelling of turbidity currents on Navy Submarine Fan, California Continental Borderland. Sedimentology 1984, 31, 169–185. [Google Scholar] [CrossRef]
- Komar, P.D. The hydraulic interpretation of turbidites from their grain sizes and sedimentary structures. Sedimentology 1985, 32, 395–407. [Google Scholar] [CrossRef]
- Piper, D.J.W.; Stow, D.A.V. Fine-grained turbidites. In Cycles and Events in Stratigraphy; Einsele, G., Ricken, W., Seilacher, A., Eds.; Springer-Verlag: Berlin/Heidelberg, Germany, 1991; pp. 360–376. [Google Scholar]
- Pantin, H.M.; Leeder, M.R. Reverse flow in turbidity currents: The role of internal solitons. Sedimentology 1987, 34, 1143–1155. [Google Scholar] [CrossRef]
- Rebesco, M.; Hernández-Molina, F.J.; Van Rooij, D.; Wahlin, A. Contourites and associated sediments controlled by deep-water circulation processes: State-of-the-art and future considerations. Mar. Geol. 2014, 352, 111–154. [Google Scholar] [CrossRef] [Green Version]
- Esentia, I.; Stow, D.; Smillie, Z. Contourite drifts and associated bedforms. In Submarine Geomorphology; Springer: Cham, Switzerland, 2018; pp. 301–331. [Google Scholar]
- Ma, X.; Yan, J.; Hou, Y.; Lin, F.; Zheng, X. Footprints of obliquely incident internal solitary waves and internal tides near the shelf break in the northern South China Sea. J. Geophys. Res. Oceans 2016, 121, 8706–8719. [Google Scholar] [CrossRef] [Green Version]
- Shanmugam, G. Deep-water bottom currents. In Handbook of Petroleum Exploration and Production; Elsevier: Amsterdam, The Netherlands, 2006; Volume 5, pp. 85–139. [Google Scholar]
- Shanmugam, G. New Perspectives on Deep-Water Sandstones Origin, Recognition, Initiation and Reservoir Quality, 1st ed.; Elsevier: Amsterdam, The Netherlands, 2012. [Google Scholar]
- McCave, I. Size sorting during transport and deposition of fine sediments. In Developments in Sedimentology; Elsevier BV: Amsterdam, The Netherlands, 2008; Volume 60, pp. 121–142. [Google Scholar]
- Stow, D.A.V.; Hunter, S.; Wilkinson, D.; Hernández-Molina, F.J. The nature of contourite deposition. In Contourites; Rebesco, M., Camerlenghi, A., Eds.; Elsevier: Amsterdam, The Netherlands, 2008; Volume 60, pp. 143–156. [Google Scholar]
- Zenk, W. Abyssal and contour currents. In Developments in Sedimentology; Elsevier BV: Amsterdam, The Netherlands, 2008; Volume 60, pp. 35–57. [Google Scholar]
- Rebesco, M.; Taviani, M. 4 A turbulent story: Mediterranean contourites and cold-water corals. In Mediterranean Cold-Water Corals: Past, Present and Future: Understanding the Deep-Sea Realms of Coral; Orejas, C., Jiménez, C., Eds.; Springer International Publishing: Cham, Switzerland, 2019; pp. 35–46. [Google Scholar]
- Huneke, H.; Stow, D. Identification of ancient contourites: problems and palaeoceanographic significance. In Developments in Sedimentology; Elsevier BV: Amsterdam, The Netherlands, 2008; Volume 60, pp. 323–344. [Google Scholar]
- Lofi, J.; Voelker, A.H.L.; Ducassou, E.; Hernández-Molina, F.J.; Sierro, F.J.; Bahr, A.; Galvani, A.; Lourens, L.J.; Pardo-Igúzquiza, E.; Pezard, P.; et al. Quaternary chronostratigraphic framework and sedimentary processes for the Gulf of Cadiz and Portuguese Contourite Depositional Systems derived from Natural Gamma Ray records. Mar. Geol. 2016, 377, 40–57. [Google Scholar] [CrossRef]
- Stow, D.; Hernández-Molina, F.; Llave, E.; Bruno, M.; García, M.; Del Río, V.D.; Somoza, L.; Brackenridge, R. The Cadiz Contourite Channel: Sandy contourites, bedforms and dynamic current interaction. Mar. Geol. 2013, 343, 99–114. [Google Scholar] [CrossRef] [Green Version]
- Shannon, L.V.; Nelson, G. The Benguela: Large Scale Features and Processes and System Variability. In The South Atlantic; Springer Science and Business Media LLC: Berlin/Heidelberg, Germany, 1996; pp. 163–210. [Google Scholar]
- Stow, D.A.V.; Tabrez, A.R. Hemipelagites: processes, facies and model. Geol. Soc. Lond. Spéc. Publ. 1998, 129, 317–337. [Google Scholar] [CrossRef]
- Biscaye, P.E.; Flagg, C.N.; Falkowski, P.G. The shelf edge exchange processes experiment, SEEP-II: An introduction to hypotheses, results and conclusions. Deep. Sea Res. Part II Top. Stud. Oceanogr. 1994, 41, 231–252. [Google Scholar] [CrossRef]
- McCave, I.N.; Jones, K.P.N. Deposition of ungraded muds from high-density non-turbulent turbidity currents. Nature 1988, 333, 250–252. [Google Scholar] [CrossRef]
- Talling, P.J.; Amy, L.A.; Wynn, R.B.; Peakall, J.; Robinson, M. Beds comprising debrite sandwiched within co-genetic turbidite: origin and widespread occurrence in distal depositional environments. Sedimentology 2004, 51, 163–194. [Google Scholar] [CrossRef]
- Talling, P.J.; Wynn, R.B.; Schmmidt, D.N.; Rixon, R.; Sumner, E.; Amy, L. How did thin submarine debris flows carry boulder-sized intraclasts for remarkable distances across low gradients to the far reaches of the Mississippi Fan? J. Sediment. Res. 2010, 80, 829–851. [Google Scholar] [CrossRef]
- Nilsen, T.H.; Shew, R.D.; Steffens, G.S.; Studlick, J.R.J. Atlas of Deep-Water Outcrops; American Association of Petroleum Geologists: Tulsa, OK, USA, 2008. [Google Scholar]
- Turner, C.C.; Cronin, B.T. Rift-Related Coarse-Grained Submarine Fan Reservoirs; The Brae Play, South Viking Graben, North Sea; The American Association of Petroleum Geologists: Tulsa, OK, USA, 2018. [Google Scholar]
- Stow, D.A.V. Turbidites and Associated Sediments; Blackwell: Oxford, UK, 1991. [Google Scholar]
- Lowe, N.R. Sediment gravity flows: II Depositional models with special reference to the deposits of high-density turbidity currents. J. Sediment. Res. 1982, 52, 279–297. [Google Scholar]
- Uchman, A.; Janbu, N.E.; Nemec, W. Trace fossils in the Cretaceous-Eocene flysch of the Sinop-Boyabat Basin, Central Pontides, Turkey. Annals Societates Geologorum Poloniae 2004, 74, 197–235. [Google Scholar]
- Heard, T.G.; Pickering, K.T. Trace fossils as diagnostic indicators of deep-marine environments, Middle Eocene Ainsa-Jaca basin, Spanish Pyrenees: Trace fossils as diagnostic indicators of deep-marine environments. Sedimentology 2007, 55, 809–844. [Google Scholar] [CrossRef]
- Heard, T.G.; Pickering, K.T.; Clark, J.D. Ichnofabric characterization of a deep-marine clastic system: a subsurface study of the Middle Eocene Ainsa System, Spanish Pyrenees. Sedimentology 2014, 61, 1298–1331. [Google Scholar] [CrossRef]
- Riahi, K.; Van Vuuren, D.P.; Kriegler, E.; Edmonds, J.; O’Neill, B.C.; Fujimori, S.; Bauer, N.; Calvin, K.; Dellink, R.; Fricko, O.; et al. The Shared Socioeconomic Pathways and their energy, land use, and greenhouse gas emissions implications: An overview. Glob. Environ. Chang. 2017, 42, 153–168. [Google Scholar] [CrossRef] [Green Version]
- Sumner, E.J.; Talling, P.J.; Amy, L.A.; Wynn, R.B.; Stevenson, C.J.; Frenz, M. Facies architecture of individual basin-plain turbidites: Comparison with existing models and implications for flow processes. Sedimentology 2012, 59, 1850–1887. [Google Scholar] [CrossRef]
- Talling, P.J.; Masson, D.G.; Sumner, E.J.; Malgesini, G. Subaqueous sediment density flows: Depositional processes and deposit types. Sedimentology 2012, 59, 1937–2003. [Google Scholar] [CrossRef]
- Stevenson, C.J.; Talling, P.J.; Masson, D.G.; Sumner, E.J.; Frenz, M.; Wynn, R.B. The spatial and temporal distribution of grain-size breaks in turbidites. Sedimentology 2014, 61, 1120–1156. [Google Scholar] [CrossRef]
- Cronin, B.T. Lithofabric classification and distribution of coarse-grained deepwater clastic depositional systems. In Rift-Related Coarse-Grained Submarine Fan Reservoirs; The Brae Play, South Viking Graben, North Sea; Turner, C.C., Cronin, B.T., Eds.; American Association of Petroleum Geologists: Tulsa, OK, USA, 2018; Volume 115, pp. 39–96. [Google Scholar]
- Walker, R.G. The origin and significance of the internal sedimentary structures of turbidites. Proc. Yorks. Geol. Soc. 1965, 35, 1–32. [Google Scholar] [CrossRef]
- Piper, D.J.W. Turbidite, muds and silts on deep-sea fans and abyssal plains. In Sedimentation in Submarine Canyons, Fans and Trenches Dowden; Stanley, D.J., Kelling, G., Eds.; Hutchinson and Ross: Stroudsburgh, PA, USA, 1978; pp. 163–176. [Google Scholar]
- Stow, D.A.; Shanmugam, G. Sequence of structures in fine-grained turbidites: Comparison of recent deep-sea and ancient flysch sediments. Sediment. Geol. 1980, 25, 23–42. [Google Scholar] [CrossRef]
- Kneller, B.C.; Branney, M.J. Sustained high-density turbidity currents and the deposition of thick massive sands. Sedimentology 1995, 42, 607–616. [Google Scholar] [CrossRef]
- Stow, D.A.V.; Alam, M.; Piper, D.J.W. Sedimentology of the Halifax Formation, Nova Scotia: Lower Palaeozoic fine-grained turbidites. Geol. Soc. Lond. Spéc. Publ. 1984, 15, 127–144. [Google Scholar] [CrossRef]
- Stow, D.A.; Taira, A.; Ogawa, Y.; Soh, W.; Taniguchi, H.; Pickering, K.T. Volcaniclastic sediments, process interaction and depositional setting of the Mio-Pliocene Miura Group, SE Japan. Sediment. Geol. 1998, 115, 351–381. [Google Scholar] [CrossRef]
- Eberli, G.P. Calcareous turbidites and their relationship to sea-level fluctuations and tectonism. In Cycles and Events in Stratigraphy; Einsele, G., Ricken, W., Seilacher, A., Eds.; Springer-Verlag: New York, NY, USA, 1991; pp. 340–359. [Google Scholar]
- Stow, D.A.; Braakenburg, N.E.; Xenophontos, C. The Pissouri Basin fan-delta complex, southwestern Cyprus. Sediment. Geol. 1995, 98, 245–262. [Google Scholar] [CrossRef]
- Stanley, D.J.; Blanpied, C. Uniform Mud (Unifite) Deposition in the Hellenic Trench, Eastern Mediterranean. Smithson. Contrib. Mar. Sci. 1981, 13, 1–40. [Google Scholar] [CrossRef]
- Wynn, R.B.; Weaver, P.P.E.; Ercilla, G.; Stow, D.A.V.; Masson, D.G. Sedimentary processes in the Selvage sediment-wave field, NE Atlantic: new insights into the formation of sediment waves by turbidity currents. Sedimentology 2000, 47, 1181–1197. [Google Scholar] [CrossRef]
- Tripsanas, E.K.; Bryant, W.R.; Phaneuf, B.A. Slope-instability processes caused by salt movements in a complex deep-water environment, Bryant Canyon area, northwest Gulf of Mexico. AAPG Bull. 2004, 88, 801–823. [Google Scholar] [CrossRef]
- Stow, D.A.V.; Amano, K.; Balson, P.S. Sediment facies and processes on the distal Bengal Fan, Leg 116. Proc. Ocean Dril. Proj. 1990, 116, 377–396. [Google Scholar]
- Stow, D.A.; Johansson, M. Deep-water massive sands: nature, origin and hydrocarbon implications. Mar. Pet. Geol. 2000, 17, 145–174. [Google Scholar] [CrossRef]
- Stow, D.; Lovell, J. Contourites: Their recognition in modern and ancient sediments. Earth-Sci. Rev. 1979, 14, 251–291. [Google Scholar] [CrossRef]
- Viana, A.; Faugeres, J.-C.; Stow, D. Bottom-current-controlled sand deposits—a review of modern shallow- to deep-water environments. Sediment. Geol. 1998, 115, 53–80. [Google Scholar] [CrossRef]
- Faugères, J.-C.; Gonthier, E.; Stow, D.A.V. Contourite drift molded by deep Mediterranean outflow. Geology 1984, 12, 296. [Google Scholar] [CrossRef]
- Wetzel, A.; Werner, F.; Stow, D. Bioturbation and biogenic sedimentary structures in contourites. In Developments in Sedimentology; Elsevier BV: Amsterdam, The Netherlands, 2008; Volume 60, pp. 183–202. [Google Scholar]
- Rodríguez-Tovar, F.J.; Dorador, J.; Hodell, D.A. Trace fossils evidence of a complex history of nutrient availability and oxygen conditions during Heinrich Event 1. Glob. Planet. Chang. 2019, 174, 26–34. [Google Scholar] [CrossRef]
- Brackenridge, R.E.; Stow, D.A.V.; Hernández-Molina, F.J.; Jones, C.; Mena, A.; Alejo, I.; Ducassou, E.; Llave, E.; Ercilla, G.; Nombela, M.A.; et al. Textural characteristics and facies of sand-rich contourite depositional systems. Sedimentology 2018, 65, 2223–2252. [Google Scholar] [CrossRef] [Green Version]
- Stow, D.A.V.; Faugères, J.C. Contourites and bottom currents. Sediment. Geol. 1993, 82, 79–87. [Google Scholar]
- Stow, D.A.V.; Faugeres, J.C. Contourites, turbidites and process interaction. Sediment. Geol. 1998, 115, 1–386. [Google Scholar] [CrossRef]
- Viana, A.; Rebesco, M. Economic and Palaeoceanographic Significance of Contourite Deposits; The Geographical Society of London: London, UK, 2007. [Google Scholar]
- Hernández-Molina, F.; Sierro, F.; Llave, E.; Roque, C.; Stow, D.; Williams, T.; Lofi, J.; Van Der Schee, M.; Arnáiz, A.; Ledesma, S.; et al. Evolution of the gulf of Cadiz margin and southwest Portugal contourite depositional system: Tectonic, sedimentary and paleoceanographic implications from IODP expedition 339. Mar. Geol. 2016, 377, 7–39. [Google Scholar] [CrossRef]
- Capella, W.; Barhoun, N.; Flecker, R.; Hilgen, F.; Kouwenhoven, T.; Matenco, L.; Sierro, F.; Tulbure, M.; Yousfi, M.; Krijgsman, W. Palaeogeographic evolution of the late Miocene Rifian Corridor (Morocco): Reconstructions from surface and subsurface data. Earth-Sci. Rev. 2018, 180, 37–59. [Google Scholar] [CrossRef] [Green Version]
- Hüneke, H.; Hernandez-Molina, F.J.; Rodríguez-Tovar, F.J.; Llave, E.; Chiarella, D.; Mena, A.; Stow, D.A.V. Diagnostic criteria for calcareous contourites, turbidites and pelagites in the Eocene-Miocene slope succession, southern Cyprus. Sedimentology 2019, in press. [Google Scholar]
- McCave, I.N.; Manighetti, B.; Robinson, S.G. Sortable silt and fine sediment size/composition slicing: Parameters for palaeocurrent speed and palaeoceanography. Paleoceanogrphy 1995, 10, 593–610. [Google Scholar] [CrossRef] [Green Version]
- McCave, I.; Thornalley, D.; Hall, I. Relation of sortable silt grain-size to deep-sea current speeds: Calibration of the ‘Mud Current Meter’. Deep. Sea Res. Part I Oceanogr. Res. Pap. 2017, 127, 1–12. [Google Scholar] [CrossRef]
- Bankole, S.A. Methods, Microstructure and Mudrocks: Towards an Improved Understanding of Deep-Water Mudrocks. Ph.D. Thesis, Heriot-Watt University, Edinburgh, UK, 2018. [Google Scholar]
- Stow, D.A.V. Bottom currents and contourites in the North Atlantic. (I.G.B.A.). Bull. Inst. Geol. Bassin Aquitaine 1982, 31, 151–166. [Google Scholar]
- Gonthier, E.G.; Faugeres, J.-C.; Stow, D.A.V. Contourite facies of the Faro Drift, Gulf of Cadiz. Geol. Soc. Lond. Spéc. Publ. 1984, 15, 275–292. [Google Scholar] [CrossRef]
- Stow, D.A.; Faugeres, J.-C.; Gonthier, E. Facies distribution and textural variation in Faro Drift contourites: Velocity fluctuation and drift growth. Mar. Geol. 1986, 72, 71–100. [Google Scholar] [CrossRef]
- Stow, D.; Huc, A.-Y.; Bertrand, P. Depositional processes of black shales in deep water. Mar. Pet. Geol. 2001, 18, 491–498. [Google Scholar] [CrossRef]
- Berger, W.H. Deep-Sea Sedimentation. In The Geology of Continental Margins; Springer Science and Business Media LLC: Berlin/Heidelberg, Germany, 1974; pp. 213–241. [Google Scholar]
- Stow, D.A.V.; Piper, D.J.W. Deep-water fine-grained sediments; history, methodology and terminology. Geol. Soc. Lond. Spéc. Publ. 1984, 15, 3–14. [Google Scholar] [CrossRef]
- Seibold, E.; Berger, W. The Sea Floor: An Introduction to Marine Geology; Springer International Publishing: Cham, Switzerland, 2017. [Google Scholar]
- Kemp, A. Sedimentary fabrics and variation in lamination style in Peru continental margin upwelling sediments. Proc. Ocean Dril. Program Sci. Rep. 1990, 112, 43–58. [Google Scholar]
- Brodie, I.; Kemp, A. Variation in biogenic and detrital fluxes and formation of laminae in late Quaternary sediments from the Peruvian coastal upwelling zone. Mar. Geol. 1994, 116, 385–398. [Google Scholar] [CrossRef]
- Stow, D.A.V.; Atkin, B.P. Sediment facies and geochemistry of Upper Jurassic mudrocks in the central North Sea area. In Petroleum Geology of NW Europe; Brooks, J., Glennie, K., Eds.; Graham and Trotman: London, UK, 1987; pp. 797–808. [Google Scholar]
- Uchman, A.; Wetzel, A. Deep-Sea Ichnology: The Relationships Between Depositional Environment and Endobenthic Organisms. In Developments in Sedimentology; Elsevier BV: Amsterdam, The Netherlands, 2011; Volume 63, pp. 517–556. [Google Scholar]
- Wetzel, A. Bioturbation in deep-sea fine-grained sediments: Influence of sediment texture, turbidite frequency and rates of environmental change. Geol. Soc. Lond. Spéc. Publ. 1984, 15, 595–608. [Google Scholar] [CrossRef]
- Wignall, P.B. Black Shales; Clarendon Press: Oxford, UK, 1994. [Google Scholar]
- Flügel, E. Microfacies Analysis of Limestones; Springer Science and Business Media LLC: Berlin/Heidelberg, Germany, 1982. [Google Scholar]
- Stow, D.; Dean, W.; Hay, W.; Sibuet, J.-C. Middle Cretaceous Black Shales at Site 530 in the Southeastern Angola Basin. Initial Rep. Deep Sea Dril. Proj. 1984, 75, 809–817. [Google Scholar]
- Huc, A.; Bertrand, P.; Stow, D.; Gayet, J.; Vandenbroucke, M. Organic sedimentation in deep offshore settings: the Quaternary sediments approach. Mar. Pet. Geol. 2001, 18, 513–517. [Google Scholar] [CrossRef]
- Einsele, G.; Ricken, W.; Seilacher, A. Cycles and Events in Stratigraphy; Springer-Verlag: Berlin/Heidelberg, Germany, 1991. [Google Scholar]
- De Boer, P.L.; Smith, D.G. Orbital Forcing and Cyclic Sequences; Blackwell: Oxford, UK, 1994. [Google Scholar]
- Hesse, R. Turbiditic and non-turbiditic mudstone of Cretaceous flysch sections of the East Alps and other basins. Sedimentology 1975, 22, 387–416. [Google Scholar] [CrossRef]
- Bankole, S.; Buckman, J.; Stow, D. Maximising information on mudrock microstructure through high-resolution scanning electron microscopy. In Proceedings of the InterPore 10th Annual Meeting and Jubilee, New Orleans, LA, USA, 14–17 May 2018. [Google Scholar]
- Reeder, M.S.; Stow, D.A.V.; Rothwell, R.G. Late Quaternary turbidite input into the east Mediterranean basin: new radiocarbon constraints on climate and sea-level control. Geol. Soc. Lond. Spéc. Publ. 2002, 191, 267–278. [Google Scholar] [CrossRef]
- Dennielou, B. Dynamique Sédimentaire sur le Plateau des Açores pour les Derniers 400 ka: Distribution, Lithologie, Flux et Processus. Implications Paléocéanographiques. Ph.D. Thesis, Université de Bretagne Occidentale, Brest, France, 1997; p. 344. [Google Scholar]
- Masse, L.; Faugères, J.; Hrovatin, V. The interplay between turbidity and contour current processes on the Columbia Channel fan drift, Southern Brazil Basin. Sediment. Geol. 1998, 115, 111–132. [Google Scholar] [CrossRef]
- Faugères, J.-C.; Lima, A.F.; Massé, L.; Zaragosi, S. The Columbia Channel-levee system: a fan drift in the southern Brazil Basin. Geol. Soc. Lond. Memoirs 2002, 22, 223–238. [Google Scholar] [CrossRef]
- Faugères, J.-C.; Zaragosi, S.; Mézerais, M.L.; Massé, L. The Vema contourite fan in the South Brazilian basin. Geol. Soc. Lond. Memoirs 2002, 22, 209–222. [Google Scholar] [CrossRef]
- Sansom, P. Hybrid turbidite–contourite systems of the Tanzanian margin. Pet. Geosci. 2018, 24, 258–276. [Google Scholar] [CrossRef]
- Rebesco, M.; Pudsey, C.J.; Canals, M.; Camerlenghi, A.; Barker, P.F.; Estrada, F.; Giorgetti, A. Sediment drifts and deep-sea channel systems, Antarctic Peninsula Pacific Margin. Geol. Soc. Lond. Memoirs 2002, 22, 353–371. [Google Scholar] [CrossRef]
- Martín–Chivelet, J.; Fregenal–Martínez, M.A.; Chacón, B. Traction structures in contourites. In Developments in Sedimentology; Elsevier BV: Amsterdam, The Netherlands, 2008; Volume 60, pp. 157–182. [Google Scholar]
- Shanmugam, T.D.S.G. Process sedimentology and reservoir quality of deep-marine bottom-current reworked sands (sandy contourites): An example from the Gulf of Mexico. AAPG Bull. 1993, 77, 1241–1259. [Google Scholar]
- Shanmugam, G.; Spalding, T.D.; Rofheart, D.H.; Armentrout, J.M. Deep-Marine bottom-current reworked sand (pliocene and pleistocene), ewing bank 826 field, Gulf of Mexico. In Turbidites and Associated Deep-Water Facies; Society for Sedimentary Geology: Tulsa, OK, USA, 1995; Volume 20, pp. 25–54. [Google Scholar]
- Capella, W.; Hernández-Molina, F.; Flecker, R.; Hilgen, F.; Hssain, M.; Kouwenhoven, T.; Van Oorschot, M.; Sierro, F.; Stow, D.; Alexandre, J.T.; et al. Sandy contourite drift in the late Miocene Rifian Corridor (Morocco): Reconstruction of depositional environments in a foreland-basin seaway. Sediment. Geol. 2017, 355, 31–57. [Google Scholar] [CrossRef] [Green Version]
- Lovell, J.; Stow, D. Identification of ancient sandy contourites. Geology 1981, 9, 347. [Google Scholar] [CrossRef]
- Rebesco, M.; Özmaral, A.; Urgeles, R.; Accettella, D.; Lucchi, R.G.; Rüther, D.; Winsborrow, M.; Llopart, J.; Caburlotto, A.; Lantzsch, H.; et al. Evolution of a high-latitude sediment drift inside a glacially-carved trough based on high-resolution seismic stratigraphy (Kveithola, NW Barents Sea). Quat. Sci. Rev. 2016, 147, 178–193. [Google Scholar] [CrossRef] [Green Version]
- Faugères, J.-C.; Stow, D.A.; Imbert, P.; Viana, A. Seismic features diagnostic of contourite drifts. Mar. Geol. 1999, 162, 1–38. [Google Scholar] [CrossRef]
- Alonso, B.; Ercilla, G.; Casas, D.; Stow, D.A.; Rodríguez-Tovar, F.J.; Dorador, J.; Hernández-Molina, F.-J. Contourite vs gravity-flow deposits of the Pleistocene Faro Drift (Gulf of Cadiz): Sedimentological and mineralogical approaches. Mar. Geol. 2016, 377, 77–94. [Google Scholar] [CrossRef]
- Wynn, R.B.; Stow, D.A. Recognition and interpretation of deep-water sediment waves: implications for palaeoceanography, hydrocarbon exploration and flow process interpretation. Mar. Geol. 2002, 192, 1–3. [Google Scholar] [CrossRef]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Stow, D.; Smillie, Z. Distinguishing between Deep-Water Sediment Facies: Turbidites, Contourites and Hemipelagites. Geosciences 2020, 10, 68. https://doi.org/10.3390/geosciences10020068
Stow D, Smillie Z. Distinguishing between Deep-Water Sediment Facies: Turbidites, Contourites and Hemipelagites. Geosciences. 2020; 10(2):68. https://doi.org/10.3390/geosciences10020068
Chicago/Turabian StyleStow, Dorrik, and Zeinab Smillie. 2020. "Distinguishing between Deep-Water Sediment Facies: Turbidites, Contourites and Hemipelagites" Geosciences 10, no. 2: 68. https://doi.org/10.3390/geosciences10020068
APA StyleStow, D., & Smillie, Z. (2020). Distinguishing between Deep-Water Sediment Facies: Turbidites, Contourites and Hemipelagites. Geosciences, 10(2), 68. https://doi.org/10.3390/geosciences10020068