Mapping the Loss of Mt. Kenya’s Glaciers: An Example of the Challenges of Satellite Monitoring of Very Small Glaciers
Abstract
:1. Introduction
2. Materials and Methods
2.1. Pléiades Tri-Stereo DEM and Orthophoto
2.2. The Survey of 2004
2.3. Additional Topographic Data
2.3.1. Sentinel-2 Scene
2.3.2. TanDEM-X-DEM
2.4. Glaciological Analyses
3. Results
3.1. Pleiades Orthophoto
3.2. DEM Comparison
3.3. Glacier Changes
3.3.1. Changes of Glacier Area
3.3.2. Changes of Glacier Volume
4. Discussion
4.1. Accuracy
4.2. The Glacier Inventory of 2016
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Marzeion, B.; Champollion, N.; Haeberli, W.; Langley, K.; Leclercq, P.; Paul, F. Observation-Based Estimates of Global Glacier Mass Change and Its Contribution to Sea-Level Change. Surv. Geophys. 2017, 38, 105–130. [Google Scholar] [CrossRef] [PubMed]
- UNEP. WGMS Global Glacier Changes: Facts and Figures; UNEP: Nairobi, Kenya, 2008. [Google Scholar]
- Haeberli, W.; Cihlar, J.; Barry, R.G. Glacier monitoring within the Global Climate Observing System. Ann. Glaciol. 2000, 31, 241–246. [Google Scholar] [CrossRef]
- Zemp, M.; Frey, H.; Gärtner-Roer, I.; Nussbaumer, S.U.; Hoelzle, M.; Paul, F.; Haeberli, W.; Denzinger, F.; Ahlstrøm, A.P.; Anderson, B.; et al. Historically unprecedented global glacier decline in the early 21st century. J. Glaciol. 2015, 61, 745–762. [Google Scholar] [CrossRef]
- Paul, F. Rapid disintegration of Alpine glaciers observed with satellite data. Geophys. Res. Lett. 2004, 31, L21402. [Google Scholar] [CrossRef]
- Zemp, M.; Armstrong, R.; Gärtner-Roer, I.; Haeberli, W.; Hoelzle, M.; Kääb, A.; Kargel, J.S.; Khalsa, S.J.S.; Leonard, G.J.; Paul, F.; et al. Global glacier monitoring—A long-term task integrating in situ observations and remote sensing. In Global Land Ice Measurements from Space; Kargel, J.S., Leonard, G.J., Bishop, M.P., Kääb, A., Raup, B.H., Eds.; Springer Verlag: Berlin/Heidelberg, Germany, 2014; p. 876. [Google Scholar]
- Paul, F.; Kääb, A.; Haeberli, W. Recent glacier changes in the Alps observed by satellite: Consequences for future monitoring strategies. Glob. Planet. Chang. 2007, 56, 111–122. [Google Scholar] [CrossRef]
- Paul, F.; Bolch, T.; Kääb, A.; Nagler, T.; Nuth, C.; Scharrer, K.; Shepherd, A.; Strozzi, T.; Ticconi, F.; Bhambri, R.; et al. The glaciers climate change initiative: Methods for creating glacier area, elevation change and velocity products. Remote Sens. Environ. 2015, 162, 408–426. [Google Scholar] [CrossRef]
- Paul, F.; Winsvold, S.; Kääb, A.; Nagler, T.; Schwaizer, G. Glacier Remote Sensing Using Sentinel-2. Part II: Mapping Glacier Extents and Surface Facies, and Comparison to Landsat 8. Remote Sens. 2016, 8, 575. [Google Scholar] [CrossRef]
- Hastenrath, S. The Glaciers of Equatorial East Africa; D. Reidel Publishing Company: Dordrecht, The Netherlands; Boston, MA, USA; Lancaster, UK, 1984. [Google Scholar]
- Hastenrath, S. Glaciological Studies on Mount Kenya; University of Wisconsin-Madison: Madison, WI, USA, 2005. [Google Scholar]
- Prinz, R.; Fischer, A.; Nicholson, L.; Kaser, G. Seventy-six years of mean mass balance rates derived from recent and re-evaluated ice volume measurements on tropical Lewis Glacier, Mount Kenya. Geophys. Res. Lett. 2011, 38, L20502. [Google Scholar] [CrossRef]
- Rostom, R.S.; Hastenrath, S. Variations of Mount Kenya’s glaciers 1993–2004. Erdkunde 2007, 61, 277–283. [Google Scholar] [CrossRef]
- Hastenrath, S. The glaciers of Mount Kenya 1899–2004. Erdkunde 2005, 59, 120–125. [Google Scholar] [CrossRef]
- Prinz, R.; Nicholson, L.; Kaser, G. Variations of the Lewis Glacier, Mount Kenya, 2004–2012. Erdkunde 2012, 66, 255–262. [Google Scholar] [CrossRef]
- Prinz, R. Lewis Glacier, Mount Kenya, 2010 (1:2500). In Fluctuations of Glaciers 2005–2010, Volume X; Zemp, M., Frey, H., Gärtner-Roer, I., Nussbaumer, S.U., Hoelzle, M., Paul, F., Haeberli, W., Eds.; World Glacier Monitoring Service: Zürich, Switzerland, 2012; p. 66. [Google Scholar]
- Prinz, R.; Nicholson, L.; Mölg, T.; Gurgiser, W.; Kaser, G. Climatic controls and climate proxy potential of Lewis Glacier, Mt. Kenya. Cryosphere 2016, 10, 133–148. [Google Scholar] [CrossRef]
- Francou, B.; Vuille, M.; Wagnon, P.; Mendoza, J.; Sicart, J.E. Tropical climate change recorded by a glacier in the central Andes during the last decades of the twentieth century: Chacaltaya, Bolivia, 16° S. J. Geophys. Res. 2003, 108, 4154. [Google Scholar] [CrossRef]
- Vuille, M.; Francou, B.; Wagnon, P.; Juen, I.; Kaser, G.; Mark, B.; Bradley, R.S. Climate change and tropical Andean glaciers: Past, present and future. Earth-Sci. Rev. 2008, 89, 79–96. [Google Scholar] [CrossRef]
- Mölg, T.; Cullen, N.J.; Hardy, D.R.; Winkler, M.; Kaser, G. Quantifying climate change in the tropical midtroposphere over East Africa from glacier shrinkage on Kilimanjaro. J. Clim. 2009, 22, 4162–4181. [Google Scholar] [CrossRef]
- Karl, T.R.; Hassol, S.J.; Miller, C.D.; Murray, W.L. Temperature Trends in the Lower Atmosphere: Steps for Understanding and Reconciling Differences; General Books LLC: Washington, DC, USA, 2006. [Google Scholar]
- Pepin, N.C.; Lundquist, J.D. Temperature trends at high elevations: Patterns across the globe. Geophys. Res. Lett. 2008, 35, 1–6. [Google Scholar] [CrossRef]
- Mölg, T.; Cullen, N.J.; Hardy, D.R.; Kaser, G.; Nicholson, L.; Prinz, R.; Winkler, M. East African glacier loss and climate change: Corrections to the UNEP article “Africa without ice and snow”. Environ. Dev. 2013, 6, 1–6. [Google Scholar] [CrossRef]
- WGMS. Global Glacier Change Bulletin No. 2 (2014–2015); Zemp, M., Nussbaumer, S.U., Gärtner-Roer, I., Huber, J., Machguth, H., Paul, F., Hoelzle, M., Eds.; ICSU(WDS)/IUGG(IACS)/UNEP/UNESCO/WMO; World Glacier Monitoring Service: Zurich, Switzerland, 2017. [Google Scholar]
- Nicholson, L. Photographs of Lewis Glacier Change 2003–2014. Available online: http://lindseynicholson.org/2014/10/photographs-of-lewis-glacier-change-2003-2014/ (accessed on 20 March 2018).
- Hirschmüller, H. Accurate and efficient stereo processing by semi-global matching and mutual information. In Proceedings of the 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’05), San Diego, CA, USA, 20–25 June 2005; Volume 2, pp. 807–814. [Google Scholar]
- Harris, C.; Stephens, M. A combined corner and edge detector. Proc. Alvey Vis. Conf. 1988, 15, 147–151. [Google Scholar]
- Charnley, F.E. Some observations on the glaciers of Mount Kenya. J. Glaciol. 1959, 3, 483–492. [Google Scholar] [CrossRef]
- Ladner, M.; Heller, A.; Grillmayer, E. GNSS und Pléiades-Bilder in der Hochgebirgskartographie. AGIT J. Angew. Geoinform. 2017, 3, 13–23. [Google Scholar]
- Heller, A. Die Alpenvereinskarte als Grundlage für Geographische Informationssysteme. Wiss. Alpenvereinshefte 2001, 34, 61–81. [Google Scholar]
- Heller, A. Georeferenzierung von Alpenvereinskarten mit radialen Basisfunktionen. In Angewandte Geographische Informationsverarbeitung XIV; Strobl, J., Blaschke, T., Griesebener, G., Eds.; AGIT: Salzburg, Austria, 2002; pp. 162–171. [Google Scholar]
- Hutchinson, M.F. A new procedure for gridding elevation and stream line data with automatic removal of spurious pits. J. Hydrol. 1989, 106, 211–232. [Google Scholar] [CrossRef]
- Wessel, B. TanDEM-X Ground Segment DEM Products Specification Document; Public Document TD-GS-PS-0021, Issue 3.1; EOC, DLR: Oberpfaffenhofen, Germany, 2016. [Google Scholar]
- Rankl, M.; Braun, M. Glacier elevation and mass changes over the central Karakoram region estimated from TanDEM-X and SRTM/X-SAR digital elevation models. Ann. Glaciol. 2016, 57, 273–281. [Google Scholar] [CrossRef]
- Rott, H.; Floricioiu, D.; Wuite, J.; Scheiblauer, S.; Nagler, T.; Kern, M. Mass changesof outletglaciers along theNordensjköld Coast, northern Antarctic Peninsula, based on TanDEM-X satellitemeasurements. Geophys. Res. Lett. 2014, 41, 8123–8129. [Google Scholar] [CrossRef]
- Pipaud, I.; Loibl, D.; Lehmkuhl, F. Evaluation of TanDEM-X elevation data for geomorphological mapping and interpretation in high mountain environments—A case study from SE Tibet, China. Geomorphology 2015, 246, 232–254. [Google Scholar] [CrossRef]
- Klug, C.; Bollmann, E.; Galos, S.P.; Nicholson, L.; Prinz, R.; Rieg, L.; Sailer, R.; Stötter, J.; Kaser, G. Geodetic reanalysis of annual glaciological mass balances (2001–2011) of Hintereisferner, Austria. Cryosphere 2018, 12, 833–849. [Google Scholar] [CrossRef]
- Hastenrath, S.; Polzin, D.; Mutai, C. Diagnosing the droughts and floods in Equatorial East Africa during boreal autumn 2005–08. J. Clim. 2010, 23, 813–817. [Google Scholar] [CrossRef]
- Berthier, E.; Vincent, C.; Magnússon, E.; Gunnlaugsson, Á.Þ.; Pitte, P.; Le Meur, E.; Masiokas, M.; Ruiz, L.; Pálsson, F.; Belart, J.M.C.; et al. Glacier topography and elevation changes derived from Pléiades sub-meter stereo images. Cryosphere 2014, 8, 2275–2291. [Google Scholar] [CrossRef]
- Fischer, M.; Huss, M.; Barboux, C.; Hoelzle, M. The New Swiss Glacier Inventory SGI2010: Relevance of Using High-Resolution Source Data in Areas Dominated by Very Small Glaciers. Arct. Antarct. Alp. Res. 2014, 46, 933–945. [Google Scholar] [CrossRef]
- Nicholson, L.; Marín, J.; Lopez, D.; Rabatel, A.; Bown, F.; Rivera, A. Glacier inventory of the upper Huasco valley, Norte Chico, Chile: Glacier characteristics, glacier change and comparison with central Chile. Ann. Glaciol. 2009, 50, 111–118. [Google Scholar] [CrossRef]
- Stokes, C.R.; Popovnin, V.; Aleynikov, A.; Gurney, S.D.; Shahgedanova, M. Recent glacier retreat in the Caucasus Mountains, Russia, and associated increase in supraglacial debris cover and supra-/proglacial lake development. Ann. Glaciol. 2007, 46, 195–203. [Google Scholar] [CrossRef]
- Shukla, A.; Gupta, R.P.; Arora, M.K. Estimation of debris cover and its temporal variation using optical satellite sensor data: A case study in Chenab basin, Himalaya. J. Glaciol. 2009, 55, 444–452. [Google Scholar] [CrossRef]
- Grab, S.W.; Gatebe, C.K.; Kinyua, A.M. Ground thermal profiles from Mount Kenya, East Africa. Geogr. Ann. Ser. A Phys. Geogr. 2004, 86, 131–141. [Google Scholar] [CrossRef]
- Cullen, N.J.; Sirguey, P.; Mölg, T.; Kaser, G.; Winkler, M.; Fitzsimons, S.J. A century of ice retreat on Kilimanjaro: The mapping reloaded. Cryosphere 2013, 7, 419–431. [Google Scholar] [CrossRef]
- Rabatel, A.; Francou, B.; Soruco, A.; Gomez, J.; Cáceres, B.; Ceballos, J.L.; Basantes, R.; Vuille, M.; Sicart, J.E.; Huggel, C.; et al. Current state of glaciers in the tropical Andes: A multi-century perspective on glacier evolution and climate change. Cryosphere 2013, 7, 81–102. [Google Scholar] [CrossRef] [Green Version]
- Marzeion, B.; Kaser, G.; Maussion, F.; Champollion, N. Mass loss commitment limits influence of climate change mitigation on glaciers. Nat. Clim. Chang. 2018. online first. [Google Scholar] [CrossRef]
- Kaser, G. Glacier-climate interaction at low latitudes. J. Glaciol. 2001, 47, 195–204. [Google Scholar] [CrossRef]
Satellite | Imaging Date | Time (UTC) | Global Incidence (°) | Track Incidence Across (°) | Track Incidence Along (°) | Solar Azimuth (°) | Solar Elevation (°) |
---|---|---|---|---|---|---|---|
PHR 1B | 21 December 2015 | 7:58:54 | 5.62 | 5.36 | 1.69 | 138.3 | 58.0 |
PHR 1A | 22 February 2016 | 8:02:30 | 3.03 | −1.91 | 2.36 | 130.0 | 58.0 |
PHR 1B | 4 February 2016 | 8:02:45 | 2.94 | −2.85 | −0.76 | 124.0 | 58.2 |
PHR 1A | 17 February 2016 | 8:02:14 | 4.99 | −3.63 | −3.43 | 116.3 | 58.5 |
PHR 1A | 17 February 2016 | 8:02:26 | 4.07 | −3.40 | 2.24 | 116.0 | 59.9 |
PHR 1B | 23 February 2016 | 8:06:20 | 12.55 | −11.83 | −4.29 | 112.6 | 61.9 |
DEM | Acquisition Method | Cell Size | Acquisition Date |
---|---|---|---|
PLE | optical | 1 m | 23 February 2016 |
TDX | X-band RADAR | 12.32 m | 2010–2014 |
ROS | optical, airborne | 2 m | 1 September 2004 |
Elevation (m) | |||||
---|---|---|---|---|---|
DEM | Cell Size (m) | Min | Max | Mean | Std. Deviation |
TDX | 12.32 | 4199 | 4980 | 4560 | 153 |
PLE | 1.00 | 4204 | 5156 | 4588 | 179 |
ROS | 2.00 | 4199 | 5199 | 4592 | 183 |
Glacier | Area 2004 (10³ m²) | Area 2016 (10³ m²) | Difference (10³ m²) | Difference (%) |
---|---|---|---|---|
Lewis | 136.1 ± 2.2 | 73.3 ± 3.4 | −62.8 ± 1.5 | −46 |
Tyndall | 51.7 ± 1.3 | 38.0 ± 2.4 | −13.7 ± 0.4 | −26 |
Krapf | 14.9 ± 0.7 | 12.4 ± 1.4 | −2.5 ± 0.1 | −17 |
Forel | 12.7 ± 0.7 | 11.0 ± 1.3 | −1.7 ± 0.1 | −13 |
Cesar | 18.6 ± 0.8 | 9.6 ± 1.2 | −9.0 ± 0.4 | −48 |
Darwin | 12.7 ± 0.7 | 4.2 ± 0.8 | −8.5 ± 0.4 | −67 |
Heim | 5.3 ± 0.4 | 3.0 ± 0.7 | −2.3 ± 0.1 | −43 |
Northey | 3.9 ± 0.4 | 1.1 ± 0.4 | −2.8 ± 0.2 | −72 |
Diamond | 3.1 ± 0.3 | 1.0 ± 0.4 | −2.1 ± 0.2 | −68 |
Gregory | 15.6 ± 0.7 | 0 | −15.6 | −100 |
total | 274.6 ± 3.1 | 153.6 ± 5.0 | −121.0 ± 2.5 | −44 |
Year | Volume (106 m³) | Area (106 m²) | Period | Mass Balance Rate (kg/m²/y) |
---|---|---|---|---|
2004 | 2.37 ± 0.49 | 0.136 ± 0.007 | 1993–2004 | −2.22 ± 0.44 |
2010 | 1.90 ± 0.30 | 0.107 ± 0.001 | 2004–2010 | −0.63 ± 0.77 |
2016 | 1.02 ± 0.34 | 0.073 ± 0.003 | 2010–2016 | −1.47 ± 0.75 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Prinz, R.; Heller, A.; Ladner, M.; Nicholson, L.I.; Kaser, G. Mapping the Loss of Mt. Kenya’s Glaciers: An Example of the Challenges of Satellite Monitoring of Very Small Glaciers. Geosciences 2018, 8, 174. https://doi.org/10.3390/geosciences8050174
Prinz R, Heller A, Ladner M, Nicholson LI, Kaser G. Mapping the Loss of Mt. Kenya’s Glaciers: An Example of the Challenges of Satellite Monitoring of Very Small Glaciers. Geosciences. 2018; 8(5):174. https://doi.org/10.3390/geosciences8050174
Chicago/Turabian StylePrinz, Rainer, Armin Heller, Martin Ladner, Lindsey I. Nicholson, and Georg Kaser. 2018. "Mapping the Loss of Mt. Kenya’s Glaciers: An Example of the Challenges of Satellite Monitoring of Very Small Glaciers" Geosciences 8, no. 5: 174. https://doi.org/10.3390/geosciences8050174
APA StylePrinz, R., Heller, A., Ladner, M., Nicholson, L. I., & Kaser, G. (2018). Mapping the Loss of Mt. Kenya’s Glaciers: An Example of the Challenges of Satellite Monitoring of Very Small Glaciers. Geosciences, 8(5), 174. https://doi.org/10.3390/geosciences8050174