Mass Balance of Cenozoic Andes-Amazon Source to Sink System—Marañón Basin, Peru
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Marañón Basin Foreland Sequences
- Foreland sequence 1 (F1, Early Cretaceous (Albian) to late Cretaceous, 110–65 Ma) is the first long term sequence on the Cushabatay Basal Foreland Unconformity (Figure 2); it includes the Cushabatay-Raya, Agua Caliente-Chonta and Vivian-Cachiyacu-Huchpayacu fluvial to shallow marine cyclic transgressive sequences and is capped by the basal regional unconformity of the Paleocene Casa Blanca sandstones; Albian and Maastrichtian sandstones of this first sequence have a cratonic provenance as shown by the presence of Precambrian-inherited zircon grains [49].
- Foreland sequence 2 (F2: Paleocene-early Eocene, 65–45 Ma) is the second long term sequence and is characterized by a continental environment (Figure 2); it recorded the first siliciclastic supply from the Andean uplift, and yield the first Cretaceous zircon grains [33]; it probably corresponds to the distal foreland deposits of the Marañón fold and thrust belt (presently preserved in the Western Cordillera uplift [23]).
- Foreland sequence 3 (F3: Middle Eocene-Oligocene, 45–23 Ma) is the third long term sequence, which overlies the Basal Pozo regional erosional unconformity (Figure 2), interpreted as an unloading orogenic period [50]. This stage of the foreland basin systems is represented in the sequential restoration in Figure 3. The detrital zircon grains are sourced from the Cenozoic volcanism and the uplifting of the Western Cordillera [49].
- Foreland sequence four (F4: Neogene, 23–0 Ma) is the last long term sequence recording an acceleration of the deformation and sedimentation (Figure 3), and is contemporaneous with the uplift of the Eastern Cordillera as confirmed by zircon grains provenance [49]. This period during the Miocene is characterized by lacustrine conditions alternating with episodes of fluvial drainage and marginal marine influence [51,52], and finally by a complex deltaic to fluvial environment. The present-day surface of the basin is marked by an important alluvial/fluvial network that conveys sediment from the Andes to the Amazon River, and finally to the Atlantic Ocean.
3.2. Marañón Basin Foreland Thickness
3.3. Physical Properties of the Marañón Basin Sediments
3.4. Quantification of Sedimentation Rates in the Foreland Basin Systems
3.5. Andean Relief Exhumation History from AFTA
4. Discussion and Conclusions
4.1. Andean Foreland Sequence and Source to Sink Evolution
4.2. Mass Balance
Supplementary Materials
Author Contributions
Acknowledgments
Conflicts of Interest
Appendix A
A.1. Time–Depth Conversion
A.2. Porosity Calculation
Whence Φ = (∆t log − ∆t ma)/(∆t f − ∆t ma)
Whence Φ = 1 − (∆t ma/∆t log)1/x
A.3. Compaction Correction
A.4. Volume and Rate Estimation
References
- Allen, P. Sediment Routing Systems: The Fate of Sediment from Source to Sink; Cambridge University Press: Cambridge, UK, 2017. [Google Scholar]
- Pelletier, J.D. Erosion-rate determination from foreland basin geometry. Geology 2007, 35, 5–8. [Google Scholar] [CrossRef]
- Vergés, J.; Marzo, M.; Santaeulària, T.; Serra-Kiel, J.; Burbank, D.W.; Muñoz, J.A.; Giménez-Montsant, J. Quantified vertical motions and tectonic evolution of the SE Pyrenean foreland basin. Geol. Soc. 1998, 134, 107–134. [Google Scholar] [CrossRef]
- Allen, P.A.; Armitage, J.J.; Carter, A.; Duller, R.A.; Michael, N.A.; Sinclair, H.D.; Whitchurch, A.L.; Whittaker, A.C. The Qs problem: Sediment volumetric balance of proximal foreland basin systems. Sedimentology 2013, 60, 102–130. [Google Scholar] [CrossRef]
- Bayona, G.; Cortés, M.; Jaramillo, C.; Ojeda, G.; Aristizabal, J.J.; Reyes-Harker, A. An integrated analysis of an orogen–sedimentary basin pair: Latest Cretaceous–Cenozoic evolution of the linked Eastern Cordillera orogen and the Llanos foreland basin of Colombia. Geol. Soc. Am. Bull. 2008, 120, 1171–1197. [Google Scholar] [CrossRef]
- Miall, A.D. The valuation of unconformities. Earth-Sci. Rev. 2016. [Google Scholar] [CrossRef]
- Espurt, N.; Baby, P.; Brusset, S.; Roddaz, M.; Hermoza, W.; Regard, V.; Bolaños, R. How does the Nazca Ridge subduction influence the modern Amazonian foreland basin? Geology 2007, 35, 515–518. [Google Scholar] [CrossRef]
- Calderón, Y.; Baby, P.; Hurtado, C.; Brusset, S. Thrust tectonics in the Andean retro-foreland basin of northern Peru: Permian inheritances and petroleum implications. Mar. Pet. Geol. 2017, 82, 238–250. [Google Scholar] [CrossRef]
- Calderón, Y.; Vela, Y.; Hurtado, C.; Bolaños, R.; Baby, P.; Eude, A.; Roddaz, M.; Brusset, B.; Calvès, G. Petroleum Systems Restoration of the Huallaga—Marañon Andean Retroforeland Basin, Peru, in Petroleum Systems Analysis—Case Studies, AAPG. Memoir 2017, 114, 95–116. [Google Scholar] [CrossRef]
- Eude, A.; Roddaz, M.; Brichau, S.; Brusset, S.; Calderon, Y.; Baby, P.; Soula, J.-C. Controls on timing of exhumation and deformation in the northern Peruvian eastern Andean wedge as inferred from low-temperature thermochronology and balanced cross section. Tectonics 2015, 34, 715–730. [Google Scholar] [CrossRef]
- DeCelles, P.G.; Giles, K.A. Foreland basin systems. Basin Res. 1996, 8, 105–123. [Google Scholar] [CrossRef]
- Pfiffner, A.O.; Gonzalez, L. Mesozoic–Cenozoic Evolution of the Western Margin of South America: Case Study of the Peruvian Andes. Geosciences 2013, 3, 262–310. [Google Scholar] [CrossRef]
- Baby, P.; Guyot, J.L.; Hérail, G. Tectonic control of erosion and sedimentation in the Amazon Basin of Bolivia. Hydrol. Process. 2009, 23, 3225–3229. [Google Scholar] [CrossRef]
- Laraque, A.; Bernal, C.; Bourrel, L.; Darrozes, J.; Christophoul, F.; Armijos, E.; Guyot, J.L. Sediment budget of the Napo River, Amazon basin, Ecuador and Peru. Hydrol. Process. 2009, 23, 3509–3524. [Google Scholar] [CrossRef]
- Santini, W.; Martinez, J.-M.; Espinoza-Villar, R.; Cochonneau, G.; Vauchel, P.; Moquet, J.-S.; Baby, P.; Espinoza, J.-C.; Lavado, W.; Carranza, J.; et al. Sediment budget in the Ucayali River basin, an Andean tributary of the Amazon River. Proc. IAHS 2015, 367, 320–325. [Google Scholar] [CrossRef]
- Vauchel, P.; Santini, W.; Guyot, J.L.; Moquet, J.S.; Martinez, J.M.; Espinoza, J.C.; Ronchail, J. A reassessment of the suspended sediment load in the Madeira River basin from the Andes of Peru and Bolivia to the Amazon River in Brazil, based on 10 years of data from the HYBAM monitoring programme. J. Hydrol. 2017, 553, 35–48. [Google Scholar] [CrossRef]
- Calderon, Y. Architecture Structurale, Bilans Sedimentaires et Potentiel Hydrocarburifere D’une Zone de Transition “Wedgetop-Foredeep” de Retro-Bassin D’avant-Pays: Exemple des Bassins Marañón et Huallaga du Nord-Perou. Ph.D. Thesis, Université Toulouse, Toulouse, France, 16 March 2018. [Google Scholar]
- Armijos, E.; Crave, A.; Vauchel, P.; Fraizy, P.; Santini, W.; Moquet, J.S.; Guyot, J.L. Suspended sediment dynamics in the Amazon River of Peru. J. S. Am. Earth Sci. 2013, 44, 75–84. [Google Scholar] [CrossRef]
- Armijos, E.; Laraque, A.; Barba, S.; Bourrel, L.; Ceron, C.; Lagane, C.; Guyot, J.L. Yields of suspended sediment and dissolved solids from the Andean basins of Ecuador. Hydrol. Sci. J. 2013, 58, 1478–1494. [Google Scholar] [CrossRef]
- Figueiredo, J.; Hoorn, C.; van der Ven, P.; Soares, E. Late Miocene onset of the Amazon River and the Amazon deep-sea fan: Evidence from the Foz do Amazonas Basin. Geology 2009, 37, 619–622. [Google Scholar] [CrossRef]
- Cornelius, U.E.; Manfred, R.S.; Axel, K.S. Increased sediment accumulation rates and climatic forcing in the central Andes during the late Miocene. Geology 2007, 35, 979–982. [Google Scholar] [CrossRef]
- Clift, P.D. Enhanced global continental erosion and exhumation driven by Oligo-Miocene climate change. Geophys. Res. Lett. 2010, 37. [Google Scholar] [CrossRef]
- Mégard, F. The Andean orogenic period and its major structures in central and northern Peru. J. Geol. Soc. 1984, 141, 893–900. [Google Scholar] [CrossRef]
- Noblet, C.; Lavenu, A.; Schneider, F. Etude géodynamique d’un bassin intramontagneux tertiaire sur décrochements dans les Andes du Sud de l’Equateur: L’exemple du bassin de Cuenca. Géodynamique 1988, 3, 117–138. [Google Scholar]
- Devlin, S.; Isacks, B.L.; Pritchard, M.E.; Barnhart, W.D.; Lohman, R.B. Depths and focal mechanisms of crustal earthquakes in the central Andes determined from teleseismic waveform analysis and InSAR. Tectonics 2012, 31, TC2002. [Google Scholar] [CrossRef]
- Martinez, E.; Fernández, J.; Calderon, Y.; Galdos, C. Evaluacion Geolofica y Geophysica: Cuenca Marañón, Proyecto de Asistencia para La Reglamentación del Sector Energético del Perú; Perupetro Technical Report; Perupetro: Lima, Peru, 2002. [Google Scholar]
- ConocoPhillips. Eastern Marañón Basin Petroleum Systems Evaluation; Block 123, First Exploration Period Commitment Report, ITPXXX, Perupetros’s Archive; ConocoPhillips: Houston, TX, USA, 2008. [Google Scholar]
- Talisman Energy. Marañón Regional Stratigraphic Study; Perupetros’s Catalog; Talisman Energy: Calgary, AB, Canada, 2011. [Google Scholar]
- Raymer, L.L.; Hunt, E.R.; Gardner, J.S. An Improved Sonic Transit Time-To-Porosity Transform. In Proceedings of the SPWLA 21st Annual Logging Symposium, Lafayette, LA, USA, 8–11 July 1980. [Google Scholar]
- Raiga-Clemenceau, J.; Martin, J.P.; Nicoletis, S. The Concept of Acostic Formation Factor for More Accurate Porosity Determination from Sonic Transit Time Data. In Proceedings of the SPWLA 27th Annual Logging Symposium, Houston, TX, USA, 9–13 June 1986. [Google Scholar]
- Sclater, J.G.; Christie, P.A.F. Continental stretching: An explanation of the Post-Mid-Cretaceous subsidence of the central North Sea Basin. J. Geophys. Res. Solid Earth 1980, 85, 3711–3739. [Google Scholar] [CrossRef]
- Calvès, G.; Toucanne, S.; Jouet, G.; Charrier, S.; Thereau, E.; Etoubleau, J.; Marsset, T.; Droz, L.; Bez, M.; Abreu, V.; et al. Inferring denudation variations from the sediment record; an example of the last glacial cycle record of the Golo Basin and watershed, East Corsica, western Mediterranean sea. Basin Res. 2013, 25, 197–218. [Google Scholar] [CrossRef] [Green Version]
- Baby, P.; Calderón, C.Y.; Hurtado, M.; Louterbach, N.; Espurt, S.; Brusset, M.; Roddaz, S.; Brichau, A.; Eude, G.; Calvès, A.; et al. The Peruvian subandean foreland basin system: Structural overview, geochronologic constraints, and unexplored plays, in Petroleum Basins and Hydrocarbon Potential of the Andes of Peru and Bolivia. AAPG Memoir 117 2018, in press. [Google Scholar]
- Barnes, J.B.; Ehlers, T.A.; McQuarrie, N.; O’Sullivan, P.B.; Pelletier, J.D. Eocene to recent variations in erosion across the central Andean fold-thrust belt, northern Bolivia: Implications for plateau evolution. Earth Planet. Sci. Lett. 2006, 248, 118–133. [Google Scholar] [CrossRef]
- Barnes, J.B.; Ehlers, T.A.; Insel, N.; McQuarrie, N.; Poulsen, C.J. Linking orography, climate, and exhumation across the central Andes. Geology 2012, 40, 1135–1138. [Google Scholar] [CrossRef]
- Espurt, N.; Brusset, S.; Baby, P.; Henry, P.; Vega, M.; Calderon, Y.; Saillard, M. Deciphering the Late Cretaceous-Cenozoic structural evolution of the North Peruvian forearc system. Tectonics 2018, 37, 251–282. [Google Scholar] [CrossRef]
- Gautheron, C.; Espurt, N.; Barbarand, J.; Roddaz, M.; Baby, P.; Brusset, S.; Tassan-Got, L.; Douville, E. Direct dating of thick- and thin-skin thrusts in the Peruvian Subandean zone through apatite (U–Th)/He and fission track thermochronometry. Basin Res. 2013, 25, 419–435. [Google Scholar] [CrossRef]
- Gunnell, Y.; Thouret, J.-C.; Brichau, S.; Carter, A.; Gallagher, K. Low-temperature thermochronology in the Peruvian Central Andes: Implications for long-term continental denudation, timing of plateau uplift, canyon incision and lithosphere dynamics. J. Geol. Soc. 2010, 167, 803–815. [Google Scholar] [CrossRef]
- Laubacher, G.; Naeser, C.W. Fission-track dating of granitic rocks from the Eastern Cordillera of Peru: Evidence for Late Jurassic and Cenozoic cooling. J. Geol. Soc. 1994, 151, 473–483. [Google Scholar] [CrossRef]
- Lease, R.O.; Ehlers, T.A. Incision into the Eastern Andean Plateau during Pliocene Cooling. Science 2013, 341, 774–776. [Google Scholar] [CrossRef] [PubMed]
- Louterbach, M. Propagation du Front Orogénique Subandin et Réponse Sédimentaire Associée dans le Bassin D’avant-Pays Amazonien (Madre de Dios, Pérou). Ph.D. Thesis, Université Paul Sabatier, Toulouse, France, 2014. [Google Scholar]
- McQuarrie, N.; Ehlers, T.A.; Barnes, J.B.; Meade, B. Temporal variation in climate and tectonic coupling in the central Andes. Geology 2008, 36, 999–1002. [Google Scholar] [CrossRef]
- Michalak, M.J.; Hall, S.R.; Farber, D.L.; Audin, L.; Hourigan, J.K. (U-Th)/He thermochronology records late Miocene accelerated cooling in the north-central Peruvian Andes. Lithosphere 2016, 8, 103–115. [Google Scholar] [CrossRef]
- Ruiz, G.M.H.; Carlotto, V.; Van Heiningen, P.V.; Andriessen, P.A.M. Steady-state exhumation pattern in the Central Andes—SE Peru. Geol. Soc. 2009, 324, 307–316. [Google Scholar] [CrossRef]
- Scherrenberg, A.F.; Kohn, B.P.; Holcombe, R.J.; Rosenbaum, G. Thermotectonic history of the Marañón Fold–Thrust Belt, Peru: Insights into mineralisation in an evolving orogen. Tectonophysics 2016, 667, 16–36. [Google Scholar] [CrossRef]
- Schildgen, T.F.; Hodges, K.V.; Whipple, K.X.; Reiners, P.W.; Pringle, M.S. Uplift of the western margin of the Andean plateau revealed from canyon incision history, southern Peru. Geology 2007, 35, 523. [Google Scholar] [CrossRef]
- Spikings, R.A.; Seward, D.W.; Ruiz, W.G.M. Low-temperature thermochronology of the northern Cordillera Real, Ecuador: Tectonic insights from zircon and apatite fission track analysis. Tectonics 2000, 19, 649–668. [Google Scholar] [CrossRef]
- Steinmann, M.; Hungerbühler, D.; Seward, D.; Winkler, W. Neogene tectonic evolution and exhumation of the southern Ecuadorian Andes: A combined stratigraphy and fission-track approach. Tectonophysics 1999, 307, 255–276. [Google Scholar] [CrossRef]
- Hurtado, C.A. Proveniência Sedimentar do Mesozoico-Cenozoico da Bacia Andino-Amazônica de Huallaga, Implicações Geodinâmicas e Paleogeográficas. Dissertação de Mestrado não Publicada; Instituto de Geociências, Universidade de Brasilia: Brasília, Brazil, 2017. [Google Scholar]
- Christophoul, F.; Baby, P.; Dávila, C. Stratigraphic responses to a major tectonic event in a foreland basin: The Ecuadorian Oriente Basin from Eocene to Oligocene times. Tectonophysics 2002, 345, 281–298. [Google Scholar] [CrossRef]
- Hoorn, C.; Wesselingh, F.P.; ter Steege, H.; Bermudez, M.A.; Mora, A.; Sevink, J.; Sanmartin, I.; Sanchez-Meseguer, A.; Anderson, C.L.; Figueiredo, J.P.; et al. Amazonian through time: Andean uplift, climate change, landscape evolution and biodiversity. Science 2010, 330, 927–931. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jaramillo, C.; Romero, I.; D’Apolito, C.; Bayona, G.; Duarte, E.; Louwye, S.; Escobar, J.; Luque, J.; Carillo-Briceno, J.; Zapata, V.; et al. Miocene flooding events of western Amazonia. Sci. Adv. 2017, 3. [Google Scholar] [CrossRef] [PubMed]
- Filizola, N.; Guyot, J.L. The use of Doppler technology for suspended sediment discharge determination in the River Amazon/L’utilisation des techniques Doppler pour la détermination du transport solide de l’Amazone. Hydrol. Sci. J. 2004, 49, 143–153. [Google Scholar] [CrossRef]
- Wetzel, A. The transfer of river load to deep-sea fans: A quantitative approach. AAPG Bull. 1993, 77, 1679–1692. [Google Scholar]
- Montgomery, D.R.; Balco, G.; Willett, S.D. Climate, tectonics, and the morphology of the Andes. Geology 2001, 29, 579–582. [Google Scholar] [CrossRef]
- Jacques, J.M. A tectonostratigraphic synthesis of the sub-Andean basins: Implications for the geotectonic segmentation of the Andean Belt. J. Geol. Soc. Lond. 2003, 160, 687–701. [Google Scholar] [CrossRef]
- Roddaz, M.; Baby, P.; Brusset, S.; Hermoza, W.; Darrozes, J.M. Forebulge dynamics and environmental control in Western Amazonia: The case study of the Arch of Iquitos (Peru). Tectonophysics 2005, 399, 87–108. [Google Scholar] [CrossRef]
- Cobbold, P.R.; Mourgues, R.; Boyd, K. Mechanism of thin-skinned detachment in the Amazon Fan: Assessing the importance of fluid overpressure and hydrocarbon generation. Mar. Pet. Geol. 2004, 21, 1013–1025. [Google Scholar] [CrossRef]
- Roddaz, M.; Hermoza, W.; Mora, A.; Baby, P.; Parra, M.; Christophoul, F.; Brusset, S.; Espurt, N. Cenozoic Sedimentary Evolution of the Amazonian Foreland Basin System. In Amazonia: Landscape and Species Evolution: A Look into the Past; Hoorn, C., Wesselingh, F.P., Eds.; Wiley-Blackwell Publishing Ltd.: Oxford, UK, 2009. [Google Scholar]
- Romans, B.W.; Castelltort, S.; Covault, J.A.; Fildani, A.; Walsh, J.P. Environmental signal propagation in sedimentary systems across timescales. Earth-Sci. Rev. 2016, 153, 7–29. [Google Scholar] [CrossRef]
- Wyllie, M.R.J.; Gregory, A.R.; Gardner, L.W. Elastic wave velocities in heterogeneous and porous media. Geophysics 1956, 21, 41–70. [Google Scholar] [CrossRef]
- Hillis, R.R. Chalk porosity and Tertiary uplift, Western Approaches Trough, SW UK and NW French continental shelves. J. Geol. Soc. 1991, 148, 669–679. [Google Scholar] [CrossRef]
Section Unit | Sequence | Length km | Area km² | Porosity % | Lithology % | Solid Sediment Sedimentation Rates km²/Myr | Clastic Sediment Sedimentation Rates km²/Myr | ||||
---|---|---|---|---|---|---|---|---|---|---|---|
Minimum | Maximum | Carbonates | Organic Matter | Clastics | Minimum | Maximum | |||||
R1 | F4 | 442 | 586 | 16 | 50 | 5 | 5 | 90 | 22 | 33 | 26 |
F3 | 358 | 20 | 40 | 0 | 5 | 95 | 11 | 14 | 11 | ||
F2 | 145 | 8 | 35 | 5 | 0 | 95 | 5 | 7 | 5 | ||
F1 | 524 | 12 | 40 | 15 | 10 | 75 | 7 | 10 | 7 | ||
R3 | F4 | 425 | 892 | 30 | 50 | 10 | 5 | 85 | 22 | 31 | 21 |
F3 | 314 | 25 | 50 | 5 | 0 | 95 | 8 | 12 | 8 | ||
F2 | 144 | 10 | 45 | 5 | 0 | 95 | 4 | 6 | 5 | ||
F1 | 502 | 10 | 40 | 10 | 5 | 85 | 7 | 10 | 7 | ||
R5 | F4 | 304 | 683 | 10 | 44 | 10 | 10 | 80 | 14 | 25 | 1 |
F3 | 277 | 10 | 40 | 5 | 0 | 95 | 8 | 12 | 1 | ||
F2 | 220 | 10 | 37 | 10 | 0 | 90 | 7 | 10 | 1 | ||
F1 | 251 | 10 | 36 | 10 | 5 | 85 | 3 | 5 | 1 | ||
Surface | Volume | Qs (Clastics) | |||||||||
m² | km3 | km3/Myr | Mt/year | ||||||||
Marañon Basin | F4 | 3.3 × 1011 | 4.2 × 105 | 10 | 50 | 10 | 5 | 85 | 6282 | 6520 | 12.1 |
F3 | 10 | 40 | 5 | 0 | 95 | 2845 | 3084 | 5.2 | |||
F2 | 3.6 × 1011 | 2.4 × 105 | 7.5 | 35 | 5 | 0 | 95 | 1420 | 1479 | 2.5 | |
F1 | 10 | 40 | 10 | 5 | 85 | 2259 | 2317 | 3.3 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Calvès, G.; Calderón, Y.; Hurtado Enriquez, C.; Brusset, S.; Santini, W.; Baby, P. Mass Balance of Cenozoic Andes-Amazon Source to Sink System—Marañón Basin, Peru. Geosciences 2018, 8, 167. https://doi.org/10.3390/geosciences8050167
Calvès G, Calderón Y, Hurtado Enriquez C, Brusset S, Santini W, Baby P. Mass Balance of Cenozoic Andes-Amazon Source to Sink System—Marañón Basin, Peru. Geosciences. 2018; 8(5):167. https://doi.org/10.3390/geosciences8050167
Chicago/Turabian StyleCalvès, Gérôme, Ysabel Calderón, Christian Hurtado Enriquez, Stéphane Brusset, William Santini, and Patrice Baby. 2018. "Mass Balance of Cenozoic Andes-Amazon Source to Sink System—Marañón Basin, Peru" Geosciences 8, no. 5: 167. https://doi.org/10.3390/geosciences8050167
APA StyleCalvès, G., Calderón, Y., Hurtado Enriquez, C., Brusset, S., Santini, W., & Baby, P. (2018). Mass Balance of Cenozoic Andes-Amazon Source to Sink System—Marañón Basin, Peru. Geosciences, 8(5), 167. https://doi.org/10.3390/geosciences8050167