Variability of Shelf Growth Patterns along the Iberian Mediterranean Margin: Sediment Supply and Tectonic Influences
Abstract
:1. Introduction
2. Regional Setting
2.1. The North-Eastern Margin
2.2. The Betic Margin
3. Materials and Methods
3.1. Characterization of Shelf Growth Patterns
- (a)
- Bathymetric data covering the continental margins along the Mediterranean side of the Iberian Peninsula were extracted from the EMODNET portal (http://www.emodnet-bathymetry.eu) and from the Catalano-Balearic Sea bathymetric chart build from several oceanographic surveys [38] (Figure 1). From the bathymetric databases, 200 m resolution bathymetric grids have been generated. Based on these data, the shelf width, measured from the shoreline to the shelf edge, was calculated every 2 km along the Mediterranean continental margin using ArcGIS© Desktop v. 10.3 (ESRI, Redlands, CA, USA). Several physiographic sectors have been defined along the studied margin based on the shelf width: wide shelf, medium shelf, narrow shelf, very narrow shelf, and canyon-incised shelf.
- (b)
- Medium-to-high resolution seismic reflection data have been used to depict the upper Quaternary stratigraphic architecture (Table 1). We have mostly used published seismic data and interpretations, although in some cases we have interpreted unpublished seismic data collected from different sources. Seismic sections and interpretations have been selected to cover the regional variability exhibited by the margins, according to the morphological analysis.
3.2. Evaluation of Regional Controlling Factors
- (a)
- Sediment supply. We have compiled a wealth of information regarding hydrological information of the Mediterranean rivers, including hydrological and morphometric information of the river and watersheds. Morphometric information of rivers and watersheds has been derived from 200 m resolution Digital Elevation Models (DEM) provided by the Spanish National Geographic Institute (IGN). River watersheds and river courses were provided by the Spanish Ministry of Agriculture and Fisheries, Food and Environment (MAPAMA). Morphometric data include area and maximum elevation of the river basin, river maximum elevation, river length and slope.
- (b)
- Uplift-subsidence regime. We have compiled uplift and/or subsidence values for the different sectors of the Iberian Mediterranean margins as reported in the literature. The margin has been divided into three main sectors: northern, middle, and southern. The northern sector comprises the northernmost shelf north of Blanes Canyon and the Barcelona Shelf. The middle sector comprises the Ebro Shelf, the Gulf of Valencia, and the Northern Arc. The southern sector comprises the Southern Arc and the northern Alboran Shelf.
4. Results
4.1. Morpho-Stratigraphy of the Iberian Mediterranean Shelves
4.1.1. Geomorphology
- The northern sector comprises the continental shelf of the Catalan Margin. The width, measured normal to the isobaths, is highly variable. It ranges between 9.5 and 41 km averaging 26 km and being particularly narrow (9.5–13.4 km) off the Llobregat delta (Figure 3 and Figure 4a). The northernmost part is affected by several shelf-incising canyons, such as the Cap de Creus, Palamós and Blanes canyons, which divides the margin into three sectors: Roses, La Planassa and Barcelona shelves from north to south. The shelf is more extensive in the Roses (15 km on average, up to 40 km) and La Planassa (21 km on average, up to 35 km) sectors than in the Barcelona sector (13 km on average, up to 24 km). Only where submarine canyons incise the continental shelf, the shelf width is reduced to 0.6–2.6 km. The seafloor gradient displays high variability, with an average value of 0.45° (Figure 4b).
- The middle sector comprises the Ebro Shelf, the Gulf of Valencia, and the Northern Arc. The Ebro Shelf width ranges between 43 and 92 km, with a mean width of 77 km (Figure 3 and Figure 4a). To the south, both the Gulf of Valencia and the Northern Arc contain moderately wide shelves, ranging between 33 and 65 km and averaging 44 km; the only exception is the narrower shelf off Cape La Nao (up to 33 km). The seafloor gradient is markedly homogeneous (0.25° on average), particularly in the Ebro Shelf (Figure 4b).
- The southern sector comprises the Southern Arc and the northern shelf of the Alboran Sea (i.e., the northern Alboran Shelf). It is a very narrow margin locally dissected by submarine canyons. The width ranges between 0.7 km off coastal headlands and 17 km, with a mean width of 8 km (Figure 3 and Figure 4a). Only off Cape Gata the shelf is wider (up to 24 km). Canyon-incised shelves occur near the Strait of Gibraltar, around the capes Sacratif and Gata and in the middle part of the Southern Arc. The seafloor gradient is the highest of the margin with an average of 0.94° (Figure 4b).
4.1.2. Sediment Architecture of the Shelves
The Northern Shelf Sector
The Middle Shelf Sector
The Southern Shelf Sector
4.2. Regional Controlling Factors
4.2.1. Sediment Supply
4.2.2. Subsidence and Uplift
5. Discussion
5.1. Variability of Sediment Supply
5.2. Uplift-Subsidence and Margin Physiography
5.3. Types of Iberian Mediterranean Shelves: Definition of End-Members
- Wide shelf. The wide extension of the middle sector shelves results from the lateral gradation of the balance between sediment supply and the uplift-subsidence rate (Figure 15), as the N-S sediment transport trend is compensated by a change of the tectonic regime. The high Ebro River sediment supply and subsiding setting in the north evolves to a partial southward sediment redistribution that affects the still subsiding Gulf of Valencia. Southward, the seaward prolongation of the Betic structures and the dominant uplifting trend has enabled the lateral growth of the Northern Arc, even under conditions of reduced sediment supply (Figure 15).
- Narrow shelf. The northern sector shelf exhibits moderate development, due to the combination of low sediment supply by several medium to small rivers (e.g., Llobregat, Besós and Tordera rivers) that would have acted as a linear source and the margin tectonic tilting with a low subsiding shelf (Figure 15). This pattern would be more pronounced south of the Besós River, as sediments tend to be advected southwestward forming submarine prodeltas, whereas prograding wedges tend to develop in areas with shortage of sediments such as around the Blanes Canyon [7]. The occurrence of submarine canyons in the northernmost part of this sector establishes a compartmentalization of the margin where dominant processes may vary as a function of local conditions of supply and/or erosion, as well as the subsidence pattern. For example, the Gulf of Roses is a main depositional area, as it receives the combined supply of seasonal rivers such as the Fluviá, Mugá and Ter and has been affected by tectonic subsidence. In contrast, La Planassa Shelf is dominated by erosional features, attesting for a very reduced sediment supply and sediment depletion [69].
- Very narrow shelf. The southern sector shelves exhibit the poorest development of the entire Iberian Mediterranean margin (Figure 15), due to a very effective sediment transport toward the basin [40], driven by two main factors. The type of sediment input is markedly torrential, with numerous but seasonal minor rivers (e.g., Guadalhorce, Guadalfeo, Adra) and creeks that produce violent, flash floods. In addition, the prevailing uplifting along the Betic Cordillera led to the occurrence of abrupt margins that together with frequent submarine canyons would lead to the generation of such undersupplied margins, as hyperpycnal flows and littoral dynamics could be captured by canyons [52,73] and contribute to submarine fan formation [72].
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Pratson, L.F.; Nittrouer, C.A.; Wiberg, P.L.; Steckler, M.S.; Swenson, J.B.; Cacchione, D.A.; Karson, J.A.; Murray, A.B.; Wolinsky, M.A.; Gerber, T.P.; et al. Seascape Evolution on Clastic Continental Shelves and Slopes. In Continental Margin Sedimentation: From Sediment Transport to Sequence Stratigraphy; Nittrouer, C.A., Austin, J.A., Field, M.E., Kravitz, J.H., Syvitski, J.P.M., Wiberg, P.L., Eds.; Blackwell Publishing Ltd.: Hoboken, NJ, USA, 2007; Volume 37, pp. 339–380. ISBN 9781444304398. [Google Scholar]
- Mountain, G.S.; Burger, R.L.; Delius, H.; Fulthorpe, C.S.; Austin, J.A.; Goldberg, D.S.; Steckler, M.S.; McHugh, C.M.; Miller, K.G.; Monteverde, D.H.; et al. The Long-Term Stratigraphic Record on Continental Margins. In Continental Margin Sedimentation: From Sediment Transport to Sequence Stratigraphy; Nittrouer, C.A., Austin, J.A., Field, M.E., Kravitz, J.H., Syvitski, J.P.M., Wiberg, P.L., Eds.; Blackwell Publishing Ltd.: Hoboken, NJ, USA, 2007; Volume 37, pp. 381–458. ISBN 9781444304398. [Google Scholar]
- Chiocci, F.L.; Ercilla, G.; Torres, J. Stratal architecture of Western Mediterranean Margins as the result of the stacking of Quaternary lowstand deposits below ‘glacio-eustatic fluctuation base-level’. Sediment. Geol. 1997, 112, 195–217. [Google Scholar] [CrossRef]
- Bassetti, M.A.; Berné, S.; Jouet, G.; Taviani, M.; Dennielou, B.; Flores, J.A.; Gaillot, A.; Gelfort, R.; Lafuerza, S.; Sultan, N. The 100-ka and rapid sea level changes recorded by prograding shelf sand bodies in the Gulf of Lions (western Mediterranean Sea). Geochem. Geophys. Geosyst. 2008, 9. [Google Scholar] [CrossRef]
- Ridente, D.; Trincardi, F.; Piva, A.; Asioli, A. The combined effect of sea level and supply during Milankovitch cyclicity: Evidence from shallow-marine δ18O records and sequence architecture (Adriatic margin). Geology 2009, 37, 1003–1006. [Google Scholar] [CrossRef]
- Ercilla, G.; Farrán, M.; Alonso, B.; Díaz, J.I. Pleistocene progradational growth pattern of the Northern Catalonia continental shelf (Northwestern Mediterranean). Geo-Mar. Lett. 1994, 14, 264–271. [Google Scholar] [CrossRef]
- Liquete, C.; Canals, M.; De Mol, B.; De Batist, M.; Trincardi, F. Quaternary stratal architecture of the Barcelona prodeltaic continental shelf (NW Mediterranean). Mar. Geol. 2008, 250, 234–250. [Google Scholar] [CrossRef]
- Gámez, D.; Simó, J.A.; Lobo, F.J.; Barnolas, A.; Carrera, J.; Vázquez-Suñé, E. Onshore-offshore correlation of the Llobregat deltaic system, Spain: Development of deltaic geometries under different relative sea-level and growth fault influences. Sediment. Geol. 2009, 217, 65–84. [Google Scholar] [CrossRef]
- Farrán, M.; Maldonado, A. The Ebro continental shelf: Quaternary seismic stratigraphy and growth patterns. Mar. Geol. 1990, 95, 289–312. [Google Scholar] [CrossRef]
- Ribó, M.; Puig, P.; Urgeles, R.; Van Rooij, D.; Muñoz, A. Spatio-temporal evolution of sediment waves developed on the Gulf of Valencia margin (NW Mediterranean) during the Plio-Quaternary. Mar. Geol. 2016, 378, 276–291. [Google Scholar] [CrossRef]
- Perea, H.; Gràcia, E.; Alfaro, P.; Bartolomé, R.; Lo Iacono, C.; Moreno, X.; Masana, E.; Team, E.-S. Quaternary active tectonic structures in the offshore Bajo Segura basin (SE Iberian Peninsula—Mediterranean Sea). Nat. Hazard Earth Syst. 2012, 12, 3151–3168. [Google Scholar] [CrossRef] [Green Version]
- Hernández-Molina, F.J.; Somoza, L.; Vázquez, J.T.; Lobo, F.; Fernández-Puga, M.C.; Llave, E.; Díaz-del-Río, V. Quaternary stratigraphic stacking patterns on the continental shelves of the southern Iberian Peninsula: Their relationship with global climate and palaeoceanographic changes. Quat. Int. 2002, 92, 5–23. [Google Scholar] [CrossRef]
- Lobo, F.J.; Maldonado, A.; Hernández-Molina, F.J.; Fernández-Salas, L.M.; Ercilla, G.; Alonso, B. Growth patterns of a proximal terrigenous margin offshore the Guadalfeo River, northern Alboran Sea (SW Mediterranean Sea): Glacio-eustatic control and disturbing tectonic factors. Mar. Geophys. Res. 2008, 29, 195–216. [Google Scholar] [CrossRef]
- Kertznus, V.; Kneller, B. Clinoform quantification for assessing the effects of external forcing on continental margin development. Basin Res. 2009, 21, 738–758. [Google Scholar] [CrossRef]
- Lofi, J.; Rabineau, M.; Gorini, C.; Berne, S.; Clauzon, G.; De Clarens, P.; Tadeu Dos Reis, A.; Mountain, G.S.; Ryan, W.B.F.; Steckler, M.S.; et al. Plio-Quaternary prograding clinoform wedges of the western Gulf of Lion continental margin (NW Mediterranean) after the Messinian Salinity Crisis. Mar. Geol. 2003, 198, 289–317. [Google Scholar] [CrossRef]
- Harris, P.T.; Whiteway, T. Global distribution of large submarine canyons: Geomorphic differences between active and passive continental margins. Mar. Geol. 2011, 285, 69–86. [Google Scholar] [CrossRef]
- Mauffrey, M.-A.; Urgeles, R.; Berné, S.; Canning, J. Development of submarine canyons after the Mid-Pleistocene Transition on the Ebro margin, NW Mediterranean: The role of fluvial connections. Quat. Sci. Rev. 2017, 158, 77–93. [Google Scholar] [CrossRef]
- Anthony, E.J.; Marriner, N.; Morhange, C. Human influence and the changing geomorphology of Mediterranean deltas and coasts over the last 6000 years: From progradation to destruction phase? Earth Sci. Rev. 2014, 139, 336–361. [Google Scholar] [CrossRef]
- Martín-Vide, J. Spatial distribution of a daily precipitation concentration index in peninsular Spain. Int. J. Climatol. 2004, 24, 959–971. [Google Scholar] [CrossRef]
- Lobo, F.J.; Ercilla, G.; Fernández-Salas, L.M.; Gámez, D. Chapter 11 The Iberian Mediterranean shelves. In Continental Shelves of the World: Their Evolution During the Last Glacio-Eustatic Cycle; Chiocci, F.L., Chivas, A.R., Eds.; Geological Society: London, UK, 2014; Volume 41, pp. 147–170. ISBN 0435-4052. [Google Scholar]
- Lobo, F.J.; Durán, R.; Roque, C.; Ribó, M.; Carrara, G.; Mendes, I.; Ferrín, A.; Fernández-Salas, L.M.; García-Gil, S.; Galparsoro, I.; et al. Shelves around the Iberian Peninsula (II): Evolutionary sedimentary patterns. Bol. Geol. Min. 2015, 126, 377–408. [Google Scholar]
- Fernández-Salas, L.M.; Durán, R.; Mendes, I.; Galparsoro, I.; Lobo, F.J.; Bárcenas, P.; Rosa, F.; Ribó, M.; García-Gil, S.; Ferrín, A.; et al. Shelves of the Iberian Peninsula and the Balearic Islands (I): Morphology and sediment types. Bol. Geol. Min. 2015, 126, 327–376. [Google Scholar]
- Maillard, A.; Mauffret, A. Crustal structure and riftogenesis of the Valencia Trough (north-western Mediterranean Sea). Basin Res. 1999, 11, 357–379. [Google Scholar] [CrossRef]
- Roca, E.; Guimerà, J. The Neogene structure of the eastern Iberian margin: Structural constraints on the crustal evolution of the Valencia trough (western Mediterranean). Tectonophysics 1992, 203, 203–218. [Google Scholar] [CrossRef]
- Liquete, C.; Canals, M.; Ludwig, W.; Arnau, P. Sediment discharge of the rivers of Catalonia, NE Spain, and the influence of human impacts. J. Hydrol. 2009, 366, 76–88. [Google Scholar] [CrossRef]
- Sayol, J.M.; Orfila, A.; Simarro, G.; López, C.; Renault, L.; Galán, A.; Conti, D. Sea surface transport in the Western Mediterranean Sea: A Lagrangian perspective. J. Geophys. Res.-Oceans 2013, 118, 6371–6384. [Google Scholar] [CrossRef]
- Font, J.; Miralles, L. Circulación geostrófica en el Mar Catalán. Res. Exp. Cient. B/O Cornide 1978, 7, 155–162. [Google Scholar]
- Millot, C. Circulation in the Western Mediterranean Sea. J. Mar. Syst. 1999, 20, 423–442. [Google Scholar] [CrossRef]
- Comas, M.C.; Platt, J.P.; Soto, J.I.; Watts, A.B. The origin and tectonic history of the Alboran Basin: Insights from leg 161 results. In Proceedings of the Ocean Drilling Program, Scientific Results; Zahn, R., Comas, M.C., Klaus, A., Eds.; Ocean Drilling Program: College Station, TX, USA, 1999; Volume 161, pp. 555–580. [Google Scholar]
- Acosta, J.; Fontán, A.; Muñoz, A.; Muñoz-Martín, A.; Rivera, J.; Uchupi, E. The morpho-tectonic setting of the Southeast margin of Iberia and the adjacent oceanic Algero-Balearic Basin. Mar. Pet. Geol. 2013, 45, 17–41. [Google Scholar] [CrossRef]
- Do Couto, D.; Gorini, C.; Jolivet, L.; Lebret, N.; Augier, R.; Gumiaux, C.; d’Acremont, E.; Ammar, A.; Jabour, H.; Auxietre, J.-L. Tectonic and stratigraphic evolution of the Western Alboran Sea Basin in the last 25 Myrs. Tectonophysics 2016, 677–678, 280–311. [Google Scholar] [CrossRef]
- Ballesteros, M.; Rivera, J.; Muñoz, A.; Muñoz-Martín, A.; Acosta, J.; Carbó, A.; Uchupi, E. Alboran Basin, southern Spain—Part II: Neogene tectonic implications for the orogenic float model. Mar. Pet. Geol. 2008, 25, 75–101. [Google Scholar] [CrossRef] [Green Version]
- Muñoz, A.; Ballesteros, M.; Montoya, I.; Rivera, J.; Acosta, J.; Uchupi, E. Alborán Basin, southern Spain–Part I: Geomorphology. Mar. Pet. Geol. 2008, 25, 59–73. [Google Scholar] [CrossRef]
- Gómez de la Peña, L.; Gràcia, E.; Muñoz, A.; Acosta, J.; Gómez-Ballesteros, M.; Ranero, C.R.; Uchupi, E. Geomorphology and Neogene tectonic evolution of the Palomares continental margin (Western Mediterranean). Tectonophysics 2016, 689, 25–39. [Google Scholar] [CrossRef]
- Catafau, E.; Gaytán, M.; Pereda, I.; Vázquez, J.T.; Wandosell, J. Mapa Geológico de la Plataforma Continental Española y Zonas Adyacentes. Escala 1:200.000. Hojas 72-73 (Elche-Alicante); Instituto Geológico y Minero de España: Madrid, Spain, 1994. [Google Scholar]
- Catafau, E.; Díaz, J.I.; Medialdea, T.; San Gil, C.; Vázquez, J.T.; Wandosell, J. Mapa Geológico de la Plataforma Continental Española y Zonas Adyacentes. Escala 1:200.000. Hojas 79-79E (Murcia); Instituto Geológico y Minero de España: Madrid, Spain, 1994. [Google Scholar]
- Comas, M.C.; García-Dueñas, V.; Jurado, M.J. Neogene tectonic evolution of the Alboran Sea from MCS data. Geo-Mar. Lett. 1992, 12, 157–164. [Google Scholar] [CrossRef]
- Farrán, M. Catalano-Balearic Sea (NW Mediterranean): Bathymetric chart and toponyms. Available online: http://gma.icm.csic.es/sites/default/files/geowebs/MCB/CBSbats_cat.htm (accessed on 27 April 2018).
- López-García, M.J.; Millot, C.; Font, J.; García-Ladona, E. Surface circulation variability in the Balearic Basin. J. Geophys. Res. 1994, 99, 3285–3296. [Google Scholar] [CrossRef]
- Liquete, C.; Arnau, P.; Canals, M.; Colas, S. Mediterranean river systems of Andalusia, southern Spain, and associated deltas: A source to sink approach. Mar. Geol. 2005, 222–223, 471–495. [Google Scholar] [CrossRef]
- Bárcenas, P.; Lobo, F.J.; Macías, J.; Fernández-Salas, L.M.; López-González, N.; Díaz del Río, V. Submarine deltaic geometries linked to steep, mountainous drainage basins in the northern shelf of the Alboran Sea: Filling the gaps in the spectrum of deltaic deposition. Geomorphology 2015, 232, 125–144. [Google Scholar] [CrossRef]
- Bárcenas, P.; Lobo, F.J.; Macías, J.; Fernández-Salas, L.M.; Díaz del Río, V. Spatial variability of surficial sediments on the northern shelf of the Alboran Sea: The effects of hydrodynamic forcing and supply of sediment by rivers. J. Iber. Geol. 2011, 37, 195–214. [Google Scholar] [CrossRef]
- Durán, R.; Guillén, J.; Rivera, J.; Lobo, F.J.; Muñoz, A.; Fernández-Salas, L.M.; Acosta, J. Formation, evolution and present-day activity of offshore sand ridges on a narrow, tideless continental shelf with limited sediment supply. Mar. Geol. 2017, 397, 93–107. [Google Scholar] [CrossRef]
- Mitchum, R.M.J.; Vail, P.R.; Sangree, J.B. Seismic Stratigraphy and Global Changes of Sea Level, Part 6: Stratigraphic Interpretation of Seismic Reflection Patterns in Depositional Sequences. In Seismic Stratigraphy-Applications to Hydrocarbon Exploration (AAPG Memoir 26); Payton, C.E., Ed.; American Association of Petroleum Geologists: Tulsa, OK, USA, 1977; pp. 117–133. [Google Scholar]
- Zecchin, M.; Catuneanu, O. High-resolution sequence stratigraphy of clastic shelves I: Units and bounding surfaces. Mar. Pet. Geol. 2013, 39, 1–25. [Google Scholar] [CrossRef]
- Durán, R.; Canals, M.; Lastras, G.; Micallef, A.; Amblas, D.; Pedrosa-Pàmies, R.; Sanz, J.L. Sediment dynamics and post-glacial evolution of the continental shelf around the Blanes submarine canyon head (NW Mediterranean). Prog. Oceanogr. 2013, 118, 28–46. [Google Scholar] [CrossRef]
- Escutia, C.; Maldonado, A. Palaeogeographic implications of the Messinian surface in the Valencia trough, northwestern Mediterranean Sea. Tectonophysics 1992, 203, 263–284. [Google Scholar] [CrossRef]
- Díaz, J.I.; Palanques, A.; Nelson, C.H.; Guillén, J. Morpho-structure and sedimentology of the Holocene Ebro prodelta mud belt (Northwestern Mediterranean Sea). Cont. Shelf Res. 1996, 16, 435–456. [Google Scholar] [CrossRef]
- Albarracín, S.; Alcántara-Carrió, J.; Barranco, A.; Sánchez García, M.; Fontán Bouzas, Á.; Rey Salgado, J. Seismic evidence for the preservation of several stacked Pleistocene coastal barrier/lagoon systems on the Gulf of Valencia continental shelf (western Mediterranean). Geo-Mar. Lett. 2013, 33, 217–223. [Google Scholar] [CrossRef]
- Ercilla, G.; Alonso, B.; Baraza, J. Post-Calabrian sequence stratigraphy of the northwestern Alboran Sea (southwestern Mediterranean). Mar. Geol. 1994, 120, 249–265. [Google Scholar] [CrossRef]
- Fernández-Salas, L.M.; Dabrio, C.J.; Goy, J.L.; Díaz del Río, V.; Zazo, C.; Lobo, F.J.; Sanz, J.L.; Lario, J. Land-sea correlation between Late Holocene coastal and infralittoral deposits in the SE Iberian Peninsula (Western Mediterranean). Geomorphology 2009, 104, 4–11. [Google Scholar] [CrossRef] [Green Version]
- Ortega-Sánchez, M.; Lobo, F.J.; López-Ruiz, A.; Losada, M.A.; Fernández-Salas, L.M. The influence of shelf-indenting canyons and infralittoral prograding wedges on coastal morphology: The Carchuna system in Southern Spain. Mar. Geol. 2014, 347, 107–122. [Google Scholar] [CrossRef]
- Ercilla, G.; Alonso, B.; Baraza, J. Sedimentary evolution of the Northwestern Alboran Sea during the Quaternary. Geo-Mar. Lett. 1992, 12, 144–149. [Google Scholar] [CrossRef]
- CEDEX. Mapa de Caudales Máximos; Technical Report; Ministerio de Medio Ambiente y Medio Rural y Marino: Madrid, Spain, 2011; 73p. [Google Scholar]
- Novoa, M. Precipitaciones y avenidas extraordinarias en Catalunya. In Ponencias y Comunicaciones de las Jornadas de Trabajo sobre Inestabilidad de laderas en el Pirineo; CSIC: Barcelona, Spain, 1984; Volume 1, pp. 1–15. [Google Scholar]
- Rovira, A.; Ibáñez, C.; Martín-Vide, J.P. Suspended sediment load at the lowermost Ebro River (Catalonia, Spain). Quat. Int. 2015, 388, 188–198. [Google Scholar] [CrossRef] [Green Version]
- Mateu, J.F. Crecidas e inundaciones en el País Valenciano. In Guía de la Naturaleza de la Comunidad Valenciana; Generalitat Valenciana: Valencia, Spain, 1988; pp. 595–654. [Google Scholar]
- Capel-Molina, J.J. Inundaciones y avenidas de los ríos de Almería: Una constante secular. Bol. Inst. Estud. Almer. 1987, 7, 25–42. [Google Scholar]
- Sánchez García, C.; Schulte, L.; Peña, J.C.; Carvalho, F.; Brembilla, C. A 500-year history of floods in the semi arid basins of south-eastern Spain. Geophys. Res. Abstr. 2016, 18, EGU2016-8255. [Google Scholar]
- Perea, H.; Masana, E.; Santanach, P. An active zone characterized by slow normal faults, the northwestern margin of the València trough (NE Iberia): A review. J. Iber. Geol. 2012, 38. [Google Scholar] [CrossRef]
- Fernández, F.; Bohoyo, F.; Maestro, A.; García-Mayordomo, J. Nuevas Aportaciones Sobre las Características Geométricas del Sistema de Fallas Amposta Oriental-Montsià Norte (Margen Catalano-Valenciano, España); 2ª Reunión Ibérica sobre Fallas Activas y Paleosismología: Lorca, Spain, 2014; pp. 105–108. [Google Scholar]
- Somoza, L.; Barnolas, A.; Arasa, A.; Maestro, A.; Rees, J.G.; Hernandez-Molina, F.J. Architectural stacking patterns of the Ebro delta controlled by Holocene high-frequency eustatic fluctuations, delta-lobe switching and subsidence processes. Sediment. Geol. 1998, 117, 11–32. [Google Scholar]
- Zazo, C.; Goy, J.L.; Dabrio, C.J.; Bardaji, T.; Somoza, L.; Silva, P.G. The last interglacial in the Mediterranean as a model for the present interglacial. Glob. Planet. Chang. 1993, 7, 109–117. [Google Scholar] [Green Version]
- Bardají, T.; Silva, P.G.; Lario, J.; Zazo, C.; Goy, J.L.; Dabrio, C.J.; Cabero, A. Quaternary coastal uplift: Betic littoral. In The Geology of Iberia: A Geodynamic Approach; Regional Geology Reviews Series; Quesada, C., Oliveira, J.T., Eds.; Springer: Berlin, Germany, in press.
- Bardají, T.; Cabero, A.; Lario, J.; Zazo, C.; Silva, P.G.; Goy, J.L.; Dabrio, C.J. Coseismic vs. climatic factors in the record of relative sea level changes: An example from the Last Interglacials in SE Spain. Quat. Sci. Rev. 2015, 113, 60–77. [Google Scholar] [CrossRef]
- Alcántara-Carrió, J.; Albarracín, S.; Montoya Montes, I.; Flor-Blanco, G.; Fontán Bouzas, Á.; Rey Salgado, J. An indurated Pleistocene coastal barrier on the inner shelf of the Gulf of Valencia (western Mediterranean): Evidence for a prolonged relative sea-level stillstand. Geo-Mar. Lett. 2013, 33, 209–216. [Google Scholar] [CrossRef]
- Lobo, F.J.; Fernández-Salas, L.M.; Moreno, I.; Sanz, J.L.; Maldonado, A. The sea-floor morphology of a Mediterranean shelf fed by small rivers, northern Alboran Sea margin. Cont. Shelf Res. 2006, 26, 2607–2628. [Google Scholar] [CrossRef]
- Fernández-Salas, L.M.; Lobo, F.J.; Sanz, J.L.; Díaz-del-Río, V.; García, M.C.; Moreno, I. Morphometric analysis and genetic implications of pro-deltaic sea-floor undulations in the northern Alboran Sea margin, western Mediterranean Basin. Mar. Geol. 2007, 243, 31–56. [Google Scholar] [CrossRef]
- Durán, R.; Canals, M.; Sanz, J.L.; Lastras, G.; Amblas, D.; Micallef, A. Morphology and sediment dynamics of the northern Catalan continental shelf, northwestern Mediterranean Sea. Geomorphology 2014, 204, 1–20. [Google Scholar] [CrossRef]
- Helland-Hansen, W.; Hampson, G.J. Trajectory analysis: Concepts and applications. Basin Res. 2009, 21, 454–483. [Google Scholar] [CrossRef]
- García, M.; Maillard, A.; Aslanian, D.; Rabineau, M.; Alonso, B.; Gorini, C.; Estrada, F. The Catalan margin during the Messinian Salinity Crisis: Physiography, morphology and sedimentary record. Mar. Geol. 2011, 284, 158–174. [Google Scholar] [CrossRef] [Green Version]
- Vázquez, J.T.; Ercilla, G.; Alonso, B.; Juan, C.; Rueda, J.L.; Palomino, D.; Fernández-Salas, L.M.; Bárcenas, P.; Casas, D.; Díaz-del-Río, V.; et al. Submarine canyons and related features in the Alboran Sea: Continental margins and major isolated reliefs. In Submarine Canyon Dynamics in the Mediterranean and Tributary Seas; Briand, F., Ed.; CIESM: Sorrento, Italy, 2015; Volume 47, pp. 183–196. [Google Scholar]
- Puig, P.; Durán, R.; Muñoz, A.; Elvira, E.; Guillén, J. Submarine canyon-head morphologies and inferred sediment transport processes in the Alías-Almanzora canyon system (SW Mediterranean): On the role of the sediment supply. Mar. Geol. 2017, 393, 21–34. [Google Scholar] [CrossRef]
- Martorelli, E.; Falese, F.; Chiocci, F.L. Chapter 12 Overview of the variability of Late Quaternary continental shelf deposits of the Italian peninsula. In Continental Shelves of the World: Their Evolution During the Last Glacio-Eustatic Cycle; Chiocci, F.L., Chivas, A.R., Eds.; Geological Society: London, UK, 2014; Volume 41, pp. 171–186. ISBN 0435-4052. [Google Scholar]
- Sulli, A.; Agate, M.; Mancuso, M.; Pepe, F.; Pennino, V.; Polizzi, S.; Lo Presti, V.; Gargano, F.; Interbartolo, F. Variability of depositional setting along the North-western Sicily continental shelf (Italy) during Late Quaternary: Effects of sea level changes and tectonic evolution. Alp. Mediterr. Quat. 2012, 25, 141–156. [Google Scholar]
Shelf Sector | Data Origin | Acquisition (Seismic Source) | Processing |
---|---|---|---|
Roses | [6] | Uniboom (GeoPulse) | Unspecified |
Barcelona | [7] | 300 J Sparker | Offset correction, bandpass filtering, automatic gain control (AGC) |
Ebro | [9] | Airgun | Unspecified |
Gulf of Valencia | [10] | Sparker | Bandpass filtering, water noise removal, burst noise removal, amplitude correction, trace editing |
Northern Arc | [11] | 6 kJ Sparker | Bandpass filtering, amplitude correction, swell filter |
Southern Arc | [43] | TOPAS PS18 profiler | Bandpass filtering, time variant gain |
Northern Alboran | [12] | 3 kJ Sparker | Unspecified |
Shelf-indented canyon | [13] | 1–4.5 kJ Sparker | Bandpass filtering, amplitude correction |
Shelf Sector | Number of Sequences | Average Thickness of Sequences (TWTT) | Progradation Distance | Shelf-Edge Trajectory |
---|---|---|---|---|
Roses | Seven | 25 ms on the shelf | 19–25 km | Flat (minor)–Ascending (major) |
Barcelona | At least four | up to 50 ms on the shelf | 5.36–7.11 km | Flat-ascending-flat |
Ebro | At least four | up to 50 ms on the shelf | 53–58 km | Ascending |
Gulf of Valencia | Seven | 25 ms on the shelf | 26 km | Ascending |
Northern Arc | Five | 25–50 ms on the shelf | 23.7–29.7 km | Descending to flat (major)–Ascending (minor) |
Southern Arc | One | 10–15 ms | 8.5–9 km | Ascending (minor) |
Northern Alboran | Two–three | 50 ms on the shelf | 4–6.5 km | Flat (major)–Ascending (minor) |
Shelf-indented canyon | One (canyon infilling) | 25–50 ms (canyon infilling) | Not applicable (Erosion) | Landward migrating |
Sector | Code | River | Basin Area (km2) | Basin Max. Elevation (m) | Hard Rocks (%) | C. Sed. Rocks 1 (%) | Recent Alluvial (%) | River Max. Elevation (m) | River Length (km) | River Slope (°) 2 |
---|---|---|---|---|---|---|---|---|---|---|
Northern sector | 1 | Muga | 786 | 1432 | 41 | 49 | 11 | 374 | 59 | 1/0.25 |
2 | Fluvià | 994 | 1538 | 2 | 88 | 10 | 716 | 97 | 0.7/0.3 | |
3 | Ter | 2994 | 2882 | 32 | 59 | 10 | 2242 | 206 | 1/0.3 | |
4 | Tordera | 892 | 1684 | 68 | 16 | 17 | 1223 | 51 | 0.7/0.3 | |
5 | Besós | 1037 | 1370 | 17 | 59 | 24 | 819 | 52 | 0.8/0.4 | |
6 | Llobregat | 4995 | 2528 | 3 | 91 | 6 | 1512 | 160 | 1.1/0.6 | |
7 | Foix | 319 | 982 | 0 | 63 | 37 | 623 | 30 | 0.7/0.5 | |
8 | Gaià | 429 | 980 | 0 | 73 | 27 | 645 | 67 | 1.4/0.8 | |
9 | Francolí | 854 | 1180 | 12 | 58 | 30 | 732 | 51 | 0.8/0.5 | |
Middle sector | 10 | Ebro | 84,608 | 3373 | 9 | 77 | 14 | 873 | 969 | 0.8/0.6 |
11 | Mijares | 4091 | 1990 | 6 | 85 | 9 | 1347 | 149 | 2/1.3 | |
12 | Turia | 1756 | 2016 | 3 | 89 | 9 | 1517 | 274 | 2.5/0.6 | |
13 | Júcar | 36,280 | 1840 | 3 | 80 | 17 | 1307 | 497 | 2.1/0.6 | |
14 | Segura | 14,642 | 2063 | 5 | 75 | 20 | 1614 | 331 | 1.8/0.3 | |
Southern sector | 15 | Almanzora | 2219 | 2156 | 61 | 24 | 15 | 800 | 99 | 1.1/0.7 |
16 | Andarax | 2164 | 2552 | 64 | 19 | 18 | 1193 | 68 | 1.8/0.5 | |
17 | Adra | 746 | 2753 | 84 | 12 | 4 | 1869 | 46 | 3/1.1 | |
18 | Guadalfeo | 1302 | 3443 | 66 | 32 | 3 | 2335 | 70 | 2.4/1.6 | |
19 | Guadalhorce | 3200 | 1814 | 17 | 70 | 13 | 1079 | 154 | 1.2/0.5 | |
20 | Guadiaro | 1472 | 1758 | 13 | 82 | 5 | 1061 | 96 | 1.9/0.7 |
Sector | Code | River | Gauging Station | Data Period | Mean Q (m3 s−1) | Max. Q (m3 s−1) | Date of Max. Q |
---|---|---|---|---|---|---|---|
Northern sector | 1 | Muga | Castelló d’Empuries | 1972–2002 | 3 | 950 | 17/02/82 |
2008–2018 | 0.9 | 34 | 28/01/17 | ||||
2 | Fluvià | Garrigas | 1971–2001 | 9.4 | 1200 | 28/09/92 | |
3 | Ter | Pont de la Barca | 1985–2002 | 12.1 | 820 | 04/12/87 | |
2008–2018 | 10.2 | 323 | 22/11/11 | ||||
4 | Tordera | Fogars de Tordera 1 | 1992–2002 | 7.2 | 1836 | 25/07/99 | |
2008–2018 | 2.6 | 133 | 14/01/15 | ||||
5 | Besós | Sta. Coloma de Gramenet | 1968–2002 | 6.8 | 270 | 09/05/91 | |
2008–2018 | 3.9 | 72 | 24/03/17 | ||||
6 | Llobregat | Sant Joan Despi | 1968–2002 | 16.3 | 1600 | 08/11/82 | |
2008–2018 | 11.6 | 361 | 01/12/14 | ||||
7 | Foix | Castellet i la Gornal | 1968–2002 | 0.3 | 244 | 18/09/74 | |
2008–2018 | 0.4 | 35 | 10/10/10 | ||||
8 | Gaià | Vilabella | 1975–2002 | 0.3 | 167 | 01/09/84 | |
2008–2018 | 0.2 | 44 | 02/11/15 | ||||
9 | Francolí | Tarragona | 1974–2002 | 1.1 | 1027 | 10/10/94 | |
2008–2018 | 1 | 42.7 | 11/04/09 | ||||
Middle sector | 10 | Ebro | Tortosa | 1988–2018 | 267.8 | 2490 | 24/10/00 |
11 | Mijares | Babor | 1991–2016 | 1 | 5.8 | 01/09/97 | |
12 | Turia | Acq. de Mestalla | 1992–2016 | 0.9 | 4.2 | 25/06/00 | |
13 | Júcar | Cullera | 1915–1997 | 12.2 | 1403 | 15/11/97 | |
14 | Segura | Rojales | 2007–2009 | 1.02 | 123.3 | 29/12/11 | |
Southern sector | 15 | Almanzora | Santa Bárbara | 1963–2018 | 0.4 | 160 | 06/11/72 |
16 | Andarax | Terque | 1997–2018 | 0.03 | 10.7 | 24/12/09 | |
17 | Adra | Darrical | 1997–2018 | 1.3 | 9.9 | 05/03/10 | |
18 | Guadalfeo | Órgiva | 2015–2018 | 1 | 9.1 | 07/03/18 | |
19 | Guadalhorce | Cártama | 1997–2018 | 10.8 | 711 | 15/02/05 | |
20 | Guadiaro | Pablo Buceite | 1997–2018 | 12.2 | 484 | 18/12/97 |
Shelf Sector | Study Area | Subsidence-Uplift | Rates (mm year−1) | Time Interval | Reference |
---|---|---|---|---|---|
Northern | Roses: Pyrenean Axial Zone | Uplift | Not provided | [6] | |
Roses: Gulf of Roses | Subsidence | −0.03–0.07 (offshore) | Plio-Quat. | [60] | |
Barcelona | Shelf tilting | −0.02–0.11 (coast) | Plio-Quat. | [60] | |
Middle | Ebro | Sedimentary and tectonic subsidence | −0.03–0.09 (inshore), −0.01–0.10 (offshore) | Plio-Quat. | [60] |
Ebro | Sedimentary and tectonic subsidence | −0.16–0.26 (offshore) | Quaternary | [61] | |
Ebro | Sedimentary subsidence (compaction) | −1.75 (coast) | Holocene | [62] | |
Northern GoV: Sagunto-Valencia | Tectonic subsidence | −0.08 (coast) | Last 100 ka | [63] | |
Middle GoV: Cullera-Denia | Tectonic subsidence | −0.01–0.08 (offshore) | Plio-Quat. | [60] | |
Middle GoV: Cullera-Denia | Tectonic subsidence | −0.21 (coast) | Last 100 ka | [64] | |
Southern GoV: Pego-Jávea | Tectonic subsidence | −0.021 (coast) | Last 100 ka | [63] | |
Middle Northern Arc: Alicante-Santa Pola | Tectonic uplift | +0.052 (coast) | Last 100 ka | [63] | |
Middle Northern Arc: Santa Pola-Torrevieja | Tectonic uplift | +0.12–0.4 (coast) | Late Quat. | [11] | |
Southern Northern Arc: Torrevieja-Cape Palos | Tectonic subsidence | −0.012–0.08 (coast) | Last 100 ka | [63] | |
Southern | Northern Southern Arc: Cape Palos-Mazarrón | Tectonic subsidence | −0.02–0.075 (coast) | Last 100 ka | [63] |
Middle Southern Arc: Cope Basin | Tectonic uplift | +0.016–0.15 (coast) | Last 125 ka | [65] | |
Middle Southern Arc: Cape Cope-Águilas | Tectonic uplift and tilting | +0.025 (coast) | Last 100 ka | [63] | |
Eastern Northern Alboran Shelf: Gulf of Almería-Campo de Dalías | Tectonic uplift | +0.075 (coast) | Last 100 ka | [63] | |
Western Northern Alboran Shelf: Málaga-Gigraltar | Tectonic uplift | +0.005–0.05 (coast) | Last 125 ka | [64] |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Durán, R.; Lobo, F.J.; Ribó, M.; García, M.; Somoza, L. Variability of Shelf Growth Patterns along the Iberian Mediterranean Margin: Sediment Supply and Tectonic Influences. Geosciences 2018, 8, 168. https://doi.org/10.3390/geosciences8050168
Durán R, Lobo FJ, Ribó M, García M, Somoza L. Variability of Shelf Growth Patterns along the Iberian Mediterranean Margin: Sediment Supply and Tectonic Influences. Geosciences. 2018; 8(5):168. https://doi.org/10.3390/geosciences8050168
Chicago/Turabian StyleDurán, Ruth, Francisco José Lobo, Marta Ribó, Marga García, and Luis Somoza. 2018. "Variability of Shelf Growth Patterns along the Iberian Mediterranean Margin: Sediment Supply and Tectonic Influences" Geosciences 8, no. 5: 168. https://doi.org/10.3390/geosciences8050168
APA StyleDurán, R., Lobo, F. J., Ribó, M., García, M., & Somoza, L. (2018). Variability of Shelf Growth Patterns along the Iberian Mediterranean Margin: Sediment Supply and Tectonic Influences. Geosciences, 8(5), 168. https://doi.org/10.3390/geosciences8050168