Bentonite Permeability at Elevated Temperature
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Preparation
2.2. Method
2.2.1. Constant Volume Radial Flow Experiments
Calibration
2.2.2. Isotropic Confining Pressure Experiments
3. Results
3.1. Constant Volume Radial Flow Experiments
3.2. Isotropic Confining Pressure Experiments
3.3. Permeability
4. Discussion
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
Appendix A
Test Name | Load Cell Number and Location | x2y2 | x2y | xy2 | x2 | y2 | xy | x | y | Constant |
---|---|---|---|---|---|---|---|---|---|---|
CVRF-1 | Load Cell 1 Axial | −0.03 | 0.12 | 3.39 | 0.01 | 1044.96 | −19.81 | −1.29 | 14,945 | 366 |
Load Cell 2 Radial | 0.01 | 0.01 | −1.60 | 0.01 | 112.45 | −8.31 | 4.70 | 17,315 | −9435 | |
Load Cell 3 Radial | −0.01 | 0.03 | 1.34 | 0..08 | −122.89 | −11.46 | −5.59 | 17,659 | −5468 | |
Load Cell 4 Radial | 0.01 | 0.02 | 0.84 | 0.09 | −874.66 | −13.44 | −8.51 | 18,858 | 525 | |
Load Cell 5 Axial | −0.76 | 1.13 | 61.10 | 0.04 | −12,195.2 | −120.56 | 12.89 | 63,644 | 15,373 | |
CVRF-2 | Load Cell 1 Axial | −0.20 | −0.10 | 54.12 | 0.10 | 4143.25 | 37.39 | −22.24 | −14,777 | 2253 |
Load Cell 2 Radial | −0.38 | −0.58 | 116.31 | −0.08 | 2338.34 | 159.88 | 23.98 | −18,418 | 49 | |
Load Cell 3 Radial | 0.38 | 0.49 | −71.09 | 0.11 | 6400.05 | −93.69 | 19.35 | −11,113 | 1437 | |
Load Cell 4 Radial | 11.91 | 11.41 | −2412.84 | 2.56 | 159,874 | −2309.49 | −516.24 | 133,101 | 32,834 | |
Load Cell 5 Axial | 0.03 | 0.01 | −1.93 | 0.03 | 430.39 | 3.39 | −7.38 | −18,043 | 832 |
Appendix B
Thermal Expansion of the Apparatus at Temperature
References
- Chapman, N.A. Geological disposal of radioactive wastes. J. Iber. Geol. 2006, 32, 7–14. [Google Scholar]
- Chapman, N.; Hooper, A. The disposal of radioactive wastes underground. Proc. Geol. Assoc. 2012, 123, 46–63. [Google Scholar] [CrossRef]
- Hedin, A. Long-Term Safety for KBS-3 Repositories at Forsmark and Laxemar—A First Evaluation. Main Report of the SR-Can Project; Technical Report TR-06-09; Svensk Kärnbränslehantering AB (SKB): Stockholm, Sweden, 2006. [Google Scholar]
- Sellin, P.; Leupin, O.X. The use of clay as an engineered barrier in radioactive waste management—A review. Clays Clay Miner. 2013, 61, 477–498. [Google Scholar] [CrossRef]
- Armand, G.; Noiret, A.; Zghondi, J.; Seyedi, D.M. Short- and long-term behaviours of drifts in the Callovo-Oxfordian claystone at the Meuse/Haute-Marne underground research laboratory. J. Rock Mech. Geotech. Eng. 2013, 5, 221–230. [Google Scholar] [CrossRef]
- Bossart, P.; Meier, P.M.; Moeri, A.; Trick, T.; Mayor, J.-C. Geological and hydraulic characterisation of the excavation disturbed zone in the opalinus clay of the Mont Terri rock laboratory. Eng. Geol. 2002, 66, 19–38. [Google Scholar] [CrossRef]
- Marschall, P.; Horseman, S.T.; Gimmi, T. Characterisation of gas transport properties of the Opalinus clay, a potential host rock formation for radioactive waste disposal. Oil Gas Sci. Technol. Rev. IFP 2005, 60, 121–139. [Google Scholar] [CrossRef] [Green Version]
- Horseman, S.T.; Winter, M.G.; Entwhistle, D.C. Geotechnical Characterization of Boom Clay in Relation to the Disposal of Radioactive Waste; Commission for the European Communities Report EUR-10987; European Communities: Luxembourg, 1987; p. 95. [Google Scholar]
- Barnichon, J.D.; Volckaert, G. Observations and predictions of hydromechanical coupling effects in the boom clay, Mol underground research laboratory, Belgium. Hydrogeol. J. 2003, 11, 193–202. [Google Scholar] [CrossRef]
- Bernier, F.; Li, X.L.; Bastiaens, W. Twenty-five years’ geotechnical observation and testing in the Tertiary Boom Clay formation. Geotechnique 2007, 57, 229–237. [Google Scholar] [CrossRef]
- Delage, P.; Cui, Y.-J.; Tang, A.M. Clays in radioactive waste disposal. J. Rock Mech. Geotech. Eng. 2010, 2, 111–123. [Google Scholar] [CrossRef]
- Zheng, L.; Rutqvist, J.; Birkholzer, J.T.; Liu, H.-H. On the impact of temperatures up to 200 °C in clay repositories with bentonite engineer barrier systems: A study with coupled thermal, hydrological, chemical, and mechanical modelling. Eng. Geol. 2015, 197, 278–295. [Google Scholar] [CrossRef]
- Nuclear Decommissioning Authority (NDA). Geological Disposal: An Overview of the Generic Disposal System Safety Case; NDA Report No. NDA/RWMD/010; NDA: Cumbria, UK, 2010.
- Horseman, S.T.; McEwen, T.J. Thermal constraints on disposal of heat-emitting waste in argillaceous rocks. Eng. Geol. 1996, 41, 5–16. [Google Scholar] [CrossRef]
- Gens, A.; Valleján, B.; Zandarín, M.T.; Sánchez, M. Homogenization in clay barriers and seals: Two case studies. J. Rock Mech. Geotech. Eng. 2013, 5, 191–199. [Google Scholar] [CrossRef]
- Wersin, P.; Johnson, L.H.; McKinley, I.G. Performance of the bentonite barrier at temperatures beyond 100 °C: A critical review. Phys. Chem. Earth Parts A/B/C 2007, 32, 780–788. [Google Scholar] [CrossRef]
- Pusch, R. The Buffer and Backfill Handbook, Part 1: Definitions, Basic Relationships, and Laboratory Methods; Technical Report TR-02-20; Svensk Kärnbränslehantering AB (SKB): Stockholm, Sweden, 2002. [Google Scholar]
- Deniau, I.; Devol-Brown, I.; Derenne, S.; Behar, F.; Largeau, C. Comparison of the bulk geochemical features and thermal reactivity of kerogens from Mol (Boom Clay), Bure (Callovo-Oxfordian argillite) and Tournemire (Toarcian shales) underground research laboratories. Sci. Total Environ. 2008, 389, 475–485. [Google Scholar] [CrossRef] [PubMed]
- Nirex. Nirex Report N/124 Specification for Waste Packages Containing Vitrified High Level Waste and Spent Nuclear Fuel; Nirex: Harwell, UK, 2005. [Google Scholar]
- Ewing, R.C.; Weber, W.J.; Clinard, F.W., Jr. Radiation effects in nuclear waste forms for high-level radioactive waste. Prog. Nucl. Energy 1995, 29, 63–121. [Google Scholar] [CrossRef]
- Goblet, P.; de Marsily, G. Evaluation of the Thermal Effect in a KBS-3 Type Repository: A Literary Survey; SKI Report 00:18; Swedish Nuclear Power Inspectorate (SKI): Stockholm, Sweden, 2000. [Google Scholar]
- Steefel, C.I.; Lichtner, P.C. Diffusion and reaction in rock matrix bordering a hyperalkaline fluid-filled fracture. Geochim. Cosmochim. Acta 1994, 58, 3595–3612. [Google Scholar] [CrossRef]
- Savage, D.; Noy, D.; Mihara, M. Modelling the interaction of bentonite with hyperalkaline fluids. Appl. Geochem. 2002, 17, 207–223. [Google Scholar] [CrossRef]
- Pusch, R. Permeability of Highly Compacted Bentonite; Technical Report TR-80-16; Svensk Kärnbränslehantering AB (SKB): Stockholm, Sweden, 1980. [Google Scholar]
- Cho, W.J.; Lee, J.O.; Chun, K.S. The temperature effects on hydraulic conductivity of compacted bentonite. Appl. Clay Sci. 1999, 14, 47–58. [Google Scholar] [CrossRef]
- Zihms, S.G.; Harrington, J.F. Thermal cycling: impact on bentonite permeability. Mineral. Mag. 2015, 79, 1543–1550. [Google Scholar] [CrossRef] [Green Version]
- International Atomic Energy Agency (IAEA). Storage of Radioactive Waste: Safety Guide; IAEA Safety Standards Series No. WS-G-6.1; IAEA: Vienna, Austria, 2006. [Google Scholar]
- Nuclear Decommissioning Authority (NDA). The UK Radioactive Waste Inventory; NDA Report No. NDA/ST/STY(11)0004; NDA: Cumbria, UK, 2010.
- Cho, W.J.; Lee, J.O.; Chun, K.S. Influence of temperature elevation on the sealing performance of a potential buffer material for a high-level radioactive waste repository. Ann. Nucl. Energy 2000, 27, 1271–1284. [Google Scholar] [CrossRef]
- Jacinto, A.; Gomez-Espina, R.; Villar, M.V.; Ledesma, A. Effect of temperature on the retention capacity of compacted bentonite: An experimental and numerical investigation. In Proceedings of the International Meeting on Clays in Natural & Engineered Barriers for Radioactive Waste Confinement, Lille, France, 17–20 September 2007.
- Idiart, A.; Pekala, M. Models for Diffusion in Compacted Bentonite; Technical Report TR-15-06; Svensk Kärnbränslehantering AB (SKB): Stockholm, Sweden, 2016. [Google Scholar]
- Svemar, C.; Johannesson, L.-E.; Grahm, P.; Svensson, D. Prototype Repository: Opening and Retrieval of Outer Section of Prototype Repository at Äspö Hard Rock Laboratory; Technical Report TR-13-22; Svensk Kärnbränslehantering AB (SKB): Stockholm, Sweden, 2016. [Google Scholar]
- Johannesson, L.E.; Börgesson, L.; Sandén, T. Compaction of Bentonite Blocks: Development of Technique for Industrial Production of Blocks Which Are Manageable by Man; Technical Report 95-19; Swedish Nuclear Fuel and Waste Management Co.: Stockholm, Sweden, 1995. [Google Scholar]
- American Colloid Company. Industrial Specialties Technical Data, VOLCLAY SPV 200; American Colloid Company: Hoffman Estates, IL, USA, 2001. [Google Scholar]
- Harrington, J.F.; Horseman, S.T. Gas transport properties of clays and mudrocks. Geol. Soc. Lond. Spec. Publ. 1999, 158, 107–124. [Google Scholar] [CrossRef]
- Sonntag, D.; Heinze, D. Saturation Vapour Pressure and Saturation Density Tables for Water and Ice; Deutscher Verlag fur Grundstoffindustrie: Leipzig, Germany, 1982. [Google Scholar]
- Guildner, L.A.; Johnson, D.P.; Jones, F.E. Vapor Pressure of Water at Its Triple Point: Highly Accurate Value. Science 1976, 191. [Google Scholar] [CrossRef] [PubMed]
- Scheffler, K. Water Vapor Tables: Thermodynamic Characteristics of Water and Water Vapor to 800 °C and 800 Bar; Springer: Berlin, Gemrany, 1981. [Google Scholar]
- Grigull, U.; Staub, J.; Schiebener, P. Steam Tables in SI-Units, 3rd ed.; Springer: Berlin, Germany, 1990. [Google Scholar]
- Andersen, G.; Probst, A.; Murray, L.; Butler, S. An accurate PVT model for geothermal fluids as represented by H2O-NaCl-CO2-NaCl Mixtures. In Proceedings of the 17th Workshop on Geothermal Reservoir Engineering, Stanford, CA, USA, 29–31 January 1992.
- Battistelli, A.; Calore, C.; Pruess, K. The simulator TOUGH2/EWASG for modelling geothermal reservoirs with brines and non-condensible gas. Geothermics 1997, 26, 437–464. [Google Scholar] [CrossRef]
- United Kingdom Committee on the Properties of Steam. UK Steam Tables in SI Units; Hodder Arnold: London, UK, 1970. [Google Scholar]
- Phillips, S.L.; Igbene, A.; Fair, J.A.; Ozbek, H.; Tavana, M. A Technical Data Book for Geothermal Energy Utilization; Technical Report 12810; Lawrence Berkeley Laboratory: Berkeley, CA, USA, 1981.
- Meyer, C.A.; McClintock, R.B.; Silvestri, G.J.; Spencer, R.C., Jr. ASME Steam Tables: Thermodynamic and Transport Properties of Steam, 6th ed.; American Society of Mechanical Engineers: New York, NY, USA, 1993. [Google Scholar]
- Harrington, J.F.; Horseman, S.T. Gas Migration in KBS-3 Buffer Bentonite. Sensitivity of Test Parameters to Experimental Boundary Conditions; No. SKB-TR-03-02; Swedish Nuclear Fuel and Waste Management Co.: Stockholm, Sweden, 2003. [Google Scholar]
- Cuss, R.J.; Harrington, J.F.; Noy, D.J.; Graham, C.C.; Sellin, P. Evidence of localised gas propagation pathways in a field-scale bentonite engineered barrier system; results from three gas injection tests in the Large scale gas injection test (Lasgit). Appl. Clay Sci. 2014, 102, 81–92. [Google Scholar] [CrossRef]
- Cekerevac, C.; Laloui, L. Experimental study of thermal effects on the mechanical behaviour of a clay. Int. J. Numer. Anal. Methods Geomech. 2004, 28, 209–228. [Google Scholar] [CrossRef]
- Pusch, R. Permanent crystal lattice contraction, a primary mechanism in thermally induced alteration of Na bentonite. MRS Proc. 1986, 84. [Google Scholar] [CrossRef]
- Harrington, J.F.; Tamayo-Mas, E. Observational Evidence for the Differential Development of Porewater Pressure within Compact Bentonite and Its Impact on Permeability and Swelling Pressure; British Geological Survey (Commercial-in Confidence) CR/16/160; British Geological Survey: England, UK, 2016. [Google Scholar]
- Plum, R.L.; Esrig, M.I. Some temperature effects on soil compressibility and pore water pressure. In Effects of Temperature and Heat on Engineering Behavior of Soils; Special Report; Highway Research Board: Washington, DC, USA, 1969; Volume 103, pp. 231–242. [Google Scholar]
- Baldi, G.; Hueckel, T.; Pellegrini, R. Thermal volume change of the mineral-water system in low-porosity clay soils. Can. Geotech. J. 1988, 25, 807–825. [Google Scholar] [CrossRef]
- Towhata, I.; Kuntiwattanakul, P.; Seko, I.; Ohishi, K. Volume change of clays induced by heating as observed in consolidation tests. Soils Found. 1993, 33, 170–183. [Google Scholar] [CrossRef]
- Del Olmo, C.; Fioravante, V.; Gera, F.; Hueckel, T.; Mayor, J.C.; Pellegrini, R. Thermomechanical properties of deep argillaceous formations. Eng. Geol. 1996, 41, 87–101. [Google Scholar] [CrossRef]
- Sultan, N.; Delage, P.; Cui, Y.-J. Temperature effects on the volume change behaviour of Boom clay. Eng. Geol. 2002, 64, 135–145. [Google Scholar] [CrossRef]
- Cekerevac, C.; Laloui, L.; Vulliet, L. A new temperature controlled triaxial apparatus. In Proceedings of the 3rd International Symposium on Deformation Characteristics of Geomaterials, Lyon, France, 22–24 September 2003; pp. 133–137.
- Tang, A.-M.; Cui, Y.-J.; Barnel, N. Thermo-mechanical behaviour of a compacted swelling clay. Geotechnique 2008, 58, 45–54. [Google Scholar] [CrossRef] [Green Version]
- Laloui, L.; Cekerevac, C. Thermo-plasticity of clays: An isotropic yield mechanism. Comput. Geotech. 2003, 30, 649–660. [Google Scholar] [CrossRef]
- Birgersson, M.; Karnland, O.; Nilsson, U. Freezing of Bentonite. Experimental Studies and Theoretical Considerations; Technical Report TR-10-40; Svensk Kärnbränslehantering AB (SKB): Stockholm, Sweden, 2010. [Google Scholar]
- Tennent, R.M. Science Data Book; Oliver & Boyd: Edinburgh, UK, 1976. [Google Scholar]
Properties | Constant Volume Sample 1 [26] | Constant Volume Sample 2 | Isotropic Sample 1 | Isotropic Sample 2 | |
---|---|---|---|---|---|
Sample Starting Material MX80 | Block 19 | Block 21 | Block 21 | Block 21 | |
Sample Length (mm) | Pre-Test | 60.34 | 60.06 | 49.99 | 49.87 |
Post-Test | 60.19 | 60.04 | 51.16 | - | |
Sample Diameter (mm) | Pre-Test | 59.89 | 59.79 | 49.93 | 49.87 |
Post-Test | 59.94 | 60.16 | 50.26 | - | |
Sample Volume Change | Absolute (cm3) | −0.14 | 2.04 | 3.62 | - |
% Change | −0.08 | 1.21 | 3.70 | - | |
Saturation (%) | Pre-Test | 97.0 | ≥100 | 98.8 | 96.3 |
Post-Test | ≥100 | ≥100 | ≥100 | - | |
Moisture Content (%) | Pre-Test | 27.1 | 31.5 | 27.4 | 27.4 |
Post-Test | 29.1 | 30.1 | 29.7 | - | |
Bulk Density (kg/m3) | Pre-Test | 1985 | 1995 | 1997 | 2003 |
Post-Test | 2016 | 1975 | 2033 | - | |
Dry Density (kg/m3) | Pre-Test | 1561 | 1518 | 1568 | 1559 |
Post-Test | 1561 | 1518 | 1568 | 1559 | |
Porosity (%) | Pre-Test | 43.6 | 45.2 | 44.1 | 44.4 |
Post-Test | 43.6 | 45.2 | 44.1 | 44.4 | |
Void Ratio | Pre-Test | 0.774 | 0.825 | 0.767 | 0.777 |
Post-Test | 0.774 | 0.825 | 0.767 | 0.777 |
Test | Phase | Injection Pressure | Backpressure |
---|---|---|---|
Constant Volume Radial Flow CVRF-1 | 1A | 1 MPa | 1 MPa |
1B | 3 MPa | 1 MPa | |
2 | 5 MPa | 1 MPa | |
Constant Volume Radial Flow CVRF-2 | 1A | 1 MPa | 1 MPa |
1B | 5 MPa | 1 MPa | |
2 | 5 MPa | 1 MPa |
Test | Phase | Injection Pressure | Backpressure | Confining Pressure | Average Effective Stress |
---|---|---|---|---|---|
Isotropic ISO-1 | 1 | 1 MPa | 1 MPa | 7 MPa | 6 MPa |
Isotropic ISO-1 | 2 | 5 MPa | 1 MPa | 9 MPa | 6 Mpa |
Isotropic ISO-2 | 1 | 5 MPa | 1 MPa | 9 MPa | 6 MPa |
Temperature (°C) | CVRF-1 (κ in m2) | Temperature (°C) | CVRF-2 (κ in m2) | ||||
---|---|---|---|---|---|---|---|
Inflow | Outflow | Average | Inflow | Outflow | Average | ||
20 | 5.37 × 10−21 | 3.04 × 10−21 | 4.20 × 10−21 | 30 | 1.07 × 10−20 | 2.30 × 10−21 | 6.52 × 10−21 |
40 | 6.05 × 10−21 | 3.34 × 10−21 | 4.69 × 10−21 | 60 | 1.08 × 10−20 | 4.42 × 10−21 | 7.62 × 10−21 |
60 | 6.49 × 10−21 | 3.20 × 10−21 | 4.85 × 10−21 | 90 | 1.87 × 10−20 | 4.51 × 10−21 | 1.16 × 10−20 |
80 | 5.77 × 10−21 | 4.03 × 10−21 | 4.90 × 10−21 | 120 | 9.78 × 10−21 | 4.25 × 10−21 | 7.01 × 10−21 |
60 | 4.29 × 10−21 | 3.66 × 10−21 | 3.97 × 10−21 | 150 | 7.43 × 10−21 | 3.61 × 10−21 | 5.52 × 10−21 |
40 | 3.39 × 10−21 | 3.63 × 10−21 | 3.51 × 10−21 | 200 | 1.31 × 10−18 | 1.32 × 10−18 | 1.31 × 10−18 |
20 | 2.53 × 10−21 | 3.79 × 10−21 | 3.16 × 10−21 | ||||
40 | 3.50 × 10−21 | 3.42 × 10−21 | 3.46 × 10−21 | ||||
60 | 3.83 × 10−21 | 3.49 × 10−21 | 3.66 × 10−21 | ||||
80 | 3.44 × 10−21 | 4.17 × 10−21 | 3.81 × 10−21 | ||||
60 | 3.58 × 10−21 | 3.63 × 10−21 | 3.60 × 10−21 | ||||
40 | 3.55 × 10−21 | 3.22 × 10−21 | 3.38 × 10−21 | ||||
25 | 3.89 × 10−21 | 2.66 × 10−21 | 3.28 × 10−21 | ||||
40 | 3.23 × 10−21 | 3.63 × 10−21 | 3.43 × 10−21 | ||||
60 | 3.53 × 10−21 | 3.60 × 10−21 | 3.56 × 10−21 | ||||
80 | 3.92 × 10−21 | 3.93 × 10−21 | 3.92 × 10−21 | ||||
120 | 4.25 × 10−21 | 3.28 × 10−21 | 3.77 × 10−21 | ||||
25 | 3.21 × 10−21 | 3.23 × 10−21 | 3.22 × 10−21 |
Temperature (°C) | ISO-1 (κ in m2) | Temperature (°C) | ISO-2 (κ in m2) | ||||
---|---|---|---|---|---|---|---|
Inflow | Outflow | Average | Inflow | Outflow | Average | ||
30 | 4.57 × 10−21 | 4.63 × 10−21 | 4.60 × 10−21 | 30 | 4.43 × 10−21 | 3.62 × 10−21 | 4.03 × 10−21 |
55 | 3.82 × 10−21 | 4.26 × 10−21 | 4.04 × 10−21 | 60 | 4.00 × 10−21 | 3.93 × 10−21 | 3.96 × 10−21 |
80 | 3.57 × 10−21 | - | 3.57 × 10−21 | 85 | 3.92 × 10−21 | 3.73 × 10−21 | 3.99 × 10−21 |
115 | 1.86 × 10−21 | - | 1.86 × 10−21 | 115 | 3.59 × 10−21 | 2.89 × 10−21 | 4.04 × 10−21 |
135 | 3.04 × 10−21 | 2.42 × 10−21 | 4.18 × 10−21 | ||||
90 | 3.90 × 10−21 | 3.58 × 10−21 | 3.74 × 10−21 | ||||
140 | 2.55 × 10−21 | 1.88 × 10−21 | 3.74 × 10−21 | ||||
170 | 1.71 × 10−21 | 1.06 × 10−21 | 2.99 × 10−21 | ||||
200 | - | - | - |
© 2017 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license ( http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Daniels, K.A.; Harrington, J.F.; Zihms, S.G.; Wiseall, A.C. Bentonite Permeability at Elevated Temperature. Geosciences 2017, 7, 3. https://doi.org/10.3390/geosciences7010003
Daniels KA, Harrington JF, Zihms SG, Wiseall AC. Bentonite Permeability at Elevated Temperature. Geosciences. 2017; 7(1):3. https://doi.org/10.3390/geosciences7010003
Chicago/Turabian StyleDaniels, Katherine A., Jon F. Harrington, Stephanie G. Zihms, and Andrew C. Wiseall. 2017. "Bentonite Permeability at Elevated Temperature" Geosciences 7, no. 1: 3. https://doi.org/10.3390/geosciences7010003
APA StyleDaniels, K. A., Harrington, J. F., Zihms, S. G., & Wiseall, A. C. (2017). Bentonite Permeability at Elevated Temperature. Geosciences, 7(1), 3. https://doi.org/10.3390/geosciences7010003