The Relationships between the Internal Nappe Zone and the Regional Mylonitic Complex in the NE Variscan Sardinia (Italy): Insight from a New Possible Regional Interpretation?
Abstract
:1. Introduction
- Devonian to early Carboniferous: subduction and collisional events led to significant nappe stacking and crustal thickening, characterized by intense tectonic activity, including the subduction of oceanic lithosphere and continental collision [3]. In the early stages, the subduction of oceanic plates resulted in bimodal magmatism associated with volcanic arc systems, as evidenced by early Paleozoic [8,9]. Later, the collision between continental blocks led to the accretion of terranes to southern Europe, progressively suturing the European and Gondwanan plates [2,10].
- Late Carboniferous to early Permian: dextral wrenching, driven by the oblique convergence between Gondwana and Laurussia, resulted in the reactivation and formation of large-scale strike–slip faults and shear zones. This period also saw the emplacement of large volumes of granitoids, the formation of narrow intracontinental basins with bimodal magmatism, and the reconfiguration of the existing structural framework to accommodate significant tectonic displacements [3,11].
- Middle Permian: generalized extension marked the beginning of the opening of the Neotethys Ocean, leading to the development of expanding sedimentary basins, the onset of the Alpine sedimentary cycle, significant lithospheric thinning, and the initiation of rifting processes that would eventually form new oceanic basins [12,13,14,15].
2. Materials and Methods
3. Geological Outlines of Sardinia
3.1. The Variscan Shear Zone
3.2. The External Zone
3.3. The Nappe Zone
3.4. The Condensed Isogrades Zone (CIZ)
3.5. The Regional Mylonitic Complex (RMC) or High Grade Metamorphic Complex (HGMC)
3.6. The Sardinian Variscan Granite Complex
4. Results
4.1. The Complexes of the Inner Nappe Zone (INZ)
4.1.1. The S. Lucia Complex
4.1.2. The Lodè-Mamone–Rio Mannu Complex
4.2. The Complexes of the Condensed Isogrades Zone (CIZ)
4.2.1. The Punta Gortomedda Complex
4.2.2. The Fruncu Nieddu Complex
4.2.3. The Punta Figliacoro Complex (Sensu Stricto)
4.2.4. The Pedra su Gattu Complex
4.2.5. The Sedda Eneas Complex
4.2.6. The Punta Orvili Complex
5. Discussion
- In the Santa Lucia complex, there is a NE–SW regional foliation (S2) which transposes an older regional foliation (S1) into the Lula area. Such relationships disappear as we move toward the other complexes.
- In the Ordovician orthoderivates complex, the NE–SW-oriented S2 is consistently present, but locally, an E–W trending mylonitic Sm foliation is also observed. The Sm foliation can transpose the S2 into mylonitic shear bands with a top-to-right sense of shear. A top-to-left sense of shear is also locally visible, but direct relationships that could define their chronological order have not been observed.
- In the Punta Figliacoro complex sensu strictu, the regional Sm foliation (E–W trending) becomes pervasive with S2 appearing only in isolated pods.
- In the Pedra su Gattu complex, the Sm (E–W trending) completely transposes both the lithologies involved and the previous structures. Kinematic indicators associated with Sm still indicate a top-to-right sense of shear.
- In the Sedda Eneas complex (belonging to the Regional Mylonitic Complex [32]), the structural complexity increase, which is due to the first appearance of lithotypes in the Sil Zone [27]. In this complex, the following are identified in order of geometric overlap: Sm (E–W trending), the Regional Mylonitic Complex mylonitic schistosity S3, and relics of S2 (belonging to the Old Gneiss Complex; [32,58]).
- The Punta Orvili complex is considered the southernmost complex of the Regional Mylonitic Complex. The authors [129] discuss the complex metamorphic evolution of the Punta Orvili metabasite, highlighting the significance of the NW–SE-oriented S3 foliation in the deformation history. This structural configuration is similar to that previously described for the Sedda Eneas complex; however, a significant difference is that in Sedda Eneas, the Sm appears as a regional foliation transposing the S3, whereas in Punta Orvili, the Sm is confined to narrow isolated shear bands.
- Pre-Variscan (Ordovician): emplacement of the Lodè-Mamone granite, which led to the crystallization of the typical mineral assemblage associated with contact metamorphism in the marbles and the crystallization of And in the schists.
- Variscan: the orogeny enhanced the growth of Grt in the marbles, resulting in their zoning, and triggered the crystallization of St in the micaschists.
- Late Variscan (upper Carboniferous-Permian): emplacement of the Punta Tepilora Granite, which led the crystallization of the Ves in the marbles and the static And in the micaschists.
6. Conclusions
- In the Santa Lucia complex, two regional foliations (S1 and S2) are present but can only be observed in the southernmost part of the complex (e.g., Lula). Moving northward S2, characterized by a NE–SW orientation, becomes pervasive.
- In the Lodè-Mamone-Rio Mannu, Punta Gortomedda and Fruncu Nieddu complexes, Sm mylonitic foliation consistently exhibits a top-to-right sense of shear. The Sm gradually becomes more pervasive, moving northwards toward the Punta Figliacoro metamorphic complex. In the Lodè-Mamone-Rio Mannu and Punta Gortomedda complexes, the relationships between S2 (NE–SW oriented) and Sm (E–W oriented) are characterized by type I S-C mylonites. However, in the Fruncu Nieddu metamorphic complex, these relationships evolve: Sm becomes more pervasive and the structure shifts to type II S-C mylonites. Notably, the Rio Mannu orthogneiss is distinguished for the first time, exhibiting unique textural features compared to the other two Ordovician orthoderivates due to its high concentration of enclaves and xenoliths.
- In the Punta Figliacoro complex sensu stricto, only Sm is observable, while the S2 foliation is completely absent.
- In the Sedda Eneas complex, the relationships between the transition zone and the Regional Mylonitic Complex are highlighted for the first time. The Sm mylonitic foliation intersects the mylonitic S3 belonging to the Regional Mylonitic Complex with a top-to-right sense of shear.
- In the Punta Orvili, the southernmost outcrop of the Regional Mylonitic Complex, the relationshi between Sm and S3 is less distinct, with Sm appearing only as thin shear bands.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Stampfli, G.M.; Borel, G.D. A Plate Tectonic Model for the Paleozoic and Mesozoic Constrained by Dynamic Plate Boundaries and Restored Synthetic Oceanic Isochrons. Earth Planet. Sci. Lett. 2002, 196, 17–33. [Google Scholar] [CrossRef]
- Stampfli, G.M.; Borel, G.D. The TRANSMED Transects in Space and Time: Constraints on the Paleotectonic Evolution of the Mediterranean Domain. In The TRANSMED Atlas. The Mediterranean Region from Crust to Mantle; Cavazza, W., Roure, F., Spakman, W., Stampfli, G.M., Ziegler, P.A., Eds.; Springer: Berlin/Heidelberg, Germany, 2004; pp. 53–80. ISBN 978-3-642-62355-4. [Google Scholar]
- Stampfli, G.M.; Kozur, H.W. Europe from the Variscan to the Alpine Cycles. In European Lithosphere Dynamics; Gee, D.G., Stephenson, R.A., Eds.; Geological Society of London: London, UK, 2006; Volume 32, pp. 57–82. ISBN 978-1-86239-212-0. [Google Scholar]
- Michard, A.; Soulaimani, A.; Hoepffner, C.; Ouanaimi, H.; Baidder, L.; Rjimati, E.C.; Saddiqi, O. The South-Western Branch of the Variscan Belt: Evidence from Morocco. Tectonophysics 2010, 492, 1–24. [Google Scholar] [CrossRef]
- Padovano, M.; Elter, F.M.; Pandeli, E.; Franceschelli, M. The East Variscan Shear Zone: New Insights into Its Role in the Late Carboniferous Collision in Southern Europe. Int. Geol. Rev. 2012, 54, 957–970. [Google Scholar] [CrossRef]
- Elter, F.M.; Gaggero, L.; Mantovani, F.; Pandeli, E.; Costamagna, L.G. The Atlas-East Variscan-Elbe Shear System and Its Role in the Formation of the Pull-Apart Late Palaeozoic Basins. Int. J. Earth Sci. 2020, 109, 739–760. [Google Scholar] [CrossRef]
- Carosi, R.; Petroccia, A.; Iaccarino, S.; Simonetti, M.; Langone, A.; Montomoli, C. Kinematics and Timing Constraints in a Transpressive Tectonic Regime: The Example of the Posada-Asinara Shear Zone (NE Sardinia, Italy). Geosciences 2020, 10, 288. [Google Scholar] [CrossRef]
- Gaggero, L.; Oggiano, G.; Funedda, A.; Buzzi, L. Rifting and Arc-Related Early Paleozoic Volcanism along the North Gondwana Margin: Geochemical and Geological Evidence from Sardinia (Italy). J. Geol. 2012, 120, 273–292. [Google Scholar] [CrossRef]
- Oggiano, G.; Gaggero, L.; Funedda, A.; Buzzi, L.; Tiepolo, M. Multiple Early Paleozoic Volcanic Events at the Northern Gondwana Margin: U–Pb Age Evidence from the Southern Variscan Branch (Sardinia, Italy). Gondwana Res. 2010, 17, 44–58. [Google Scholar] [CrossRef]
- Tait, J.; Schätz, M.; Bachtadse, V.; Soffel, H. Palaeomagnetism and Palaeozoic Palaeogeography of Gondwana and European Terranes. Geol. Soc. Lond. Spec. Publ. 2000, 179, 21–34. [Google Scholar] [CrossRef]
- Rossi, P.; Oggiano, G.; Cocherie, A. A Restored Section of the “Southern Variscan Realm” across the Corsica–Sardinia Microcontinent. Comptes Rendus Geosci. 2009, 341, 224–238. [Google Scholar] [CrossRef]
- Lardeaux, J.M.; Spalla, M.I. From Granulites to Eclogites in the Sesia Zone (Italian Western Alps): A Record of the Opening and Closure of the Piedmont Ocean. J. Metamorph. Geol. 1991, 9, 35–59. [Google Scholar] [CrossRef]
- Spalla, M.; Lardeaux, J.M.; Dal Piaz, G.; Gosso, G. Metamorphisme et Tectonique a La Marge Externe de La Zone Sesia-Lanzo (Alpes Occidentales). Mem. Sci. Geol. Padova 1991, 43, 361–369. [Google Scholar]
- Locchi, S.; Zanchetta, S.; Zanchi, A. Evidence of Early Permian Extension during the Post-Variscan Evolution of the Central Southern Alps (N Italy). Int. J. Earth Sci. 2022, 111, 1717–1738. [Google Scholar] [CrossRef]
- Roda, M.; Regorda, A.; Spalla, M.I.; Marotta, A.M. What Drives Alpine Tethys Opening? Clues from the Review of Geological Data and Model Predictions. Geol. J. 2019, 54, 2646–2664. [Google Scholar] [CrossRef]
- von Raumer, J.F.; Bussy, F.; Stampfli, G.M. The Variscan Evolution in the External Massifs of the Alps and Place in Their Variscan Framework. Comptes Rendus Geosci. 2009, 341, 239–252. [Google Scholar] [CrossRef]
- Bolle, O.; Corsini, M.; Diot, H.; Laurent, O.; Melis, R. Late-Orogenic Evolution of the Southern European Variscan Belt Constrained by Fabric Analysis and Dating of the Camarat Granitic Complex and Coeval Felsic Dykes (Maures–Tanneron Massif, SE France). Tectonics 2023, 42, e2022TC007310. [Google Scholar] [CrossRef]
- Elter, F.M.; Musumeci, G.; Pertusati, P.C. Late Hercynian Shear Zones in Sardinia. Tectonophysics 1990, 176, 387–404. [Google Scholar] [CrossRef]
- Petroccia, A. Spatial Variation of Pure and Simple Shear across Transpressive Shear Zones: Flow Kinematics Map of the Posada-Asinara Shear Zone (NE Sardinia, Italy). Rend. Online Della Soc. Geol. Ital. 2023, 60, 24–36. [Google Scholar] [CrossRef]
- Graziani, R.; Montomoli, C.; Iaccarino, S.; Menegon, L.; Nania, L.; Carosi, R. Structural Setting of a Transpressive Shear Zone: Insights from Geological Mapping, Quartz Petrofabric and Kinematic Vorticity Analysis in NE Sardinia (Italy). Geol. Mag. 2020, 157, 1898–1916. [Google Scholar] [CrossRef]
- Carosi, R.; Montomoli, C.; Iacopini, D.; Petroccia, A.; Simonetti, M.; Oggiano, G. Geology of the Asinara Island (Sardinia, Italy). J. Maps 2024, 20, 2317136. [Google Scholar] [CrossRef]
- Petroccia, A.; Montomoli, C.; Iaccarino, S.; Carosi, R. Geology of the Contact Area between the Internal and External Nappe Zone of the Sardinian Variscan Belt (Italy): New Insights on the Complex Polyphase Deformation Occurring in the Hinterland-Foreland Transition Zone of Collisional Belts. J. Maps 2022, 18, 472–483. [Google Scholar] [CrossRef]
- Carosi, R.; Palmeri, R. Orogen-Parallel Tectonic Transport in the Variscan Belt of Northeastern Sardinia (Italy): Implications for the Exhumation of Medium-Pressure Metamorphic Rocks. Geol. Mag. 2002, 139, 497–511. [Google Scholar] [CrossRef]
- Helbing, H.; Tiepolo, M. Age Determination of Ordovician Magmatism in NE Sardinia and Its Bearing on Variscan Basement Evolution. J. Geol. Soc. 2005, 162, 689–700. [Google Scholar] [CrossRef]
- Carosi, R.; Montomoli, C.; Iaccarino, S.; Benetti, B.; Petroccia, A.; Simonetti, M. Constraining the Timing of Evolution of Shear Zones in Two Collisional Orogens: Fusing Structural Geology and Geochronology. Geosciences 2022, 12, 231. [Google Scholar] [CrossRef]
- Martínez Catalán, J.R.; Schulmann, K.; Ghienne, J.-F. The Mid-Variscan Allochthon: Keys from Correlation, Partial Retrodeformation and Plate-Tectonic Reconstruction to Unlock the Geometry of a Non-Cylindrical Belt. Earth-Sci. Rev. 2021, 220, 103700. [Google Scholar] [CrossRef]
- Franceschelli, M.; Puxeddu, M.; Cruciani, G. Variscan Metamorphism in Sardinia, Italy: Review and Discussion. J. Virtual Explor. 2005, 19, 2–36. [Google Scholar] [CrossRef]
- Carosi, R.; Frassi, C.; Iacopini, D.; Montomoli, C. Post Collisional Transpressive Tectonics in Northern Sardinia (Italy). J. Virtual Explor. 2005, 19, 1–30. [Google Scholar] [CrossRef]
- Scodina, M.; Cruciani, G.; Franceschelli, M. Metamorphic Evolution and P–T Path of the Posada Valley Amphibolites: New Insights on the Variscan High Pressure Metamorphism in NE Sardinia, Italy. Comptes Rendus Géosci. 2021, 353, 227–246. [Google Scholar] [CrossRef]
- Cruciani, G.; Montomoli, C.; Carosi, R.; Franceschelli, M.; Puxeddu, M. Continental Collision from Two Perspectives: A Review of Variscan Metamorphism and Deformation in Northern Sardinia. Period. Mineral. 2015, 84, 657–699. [Google Scholar] [CrossRef]
- Carosi, R.; Frassi, C.; Montomoli, C. Deformation during Exhumation of Medium-and High-Grade Metamorphic Rocks in the Variscan Chain in Northern Sardinia (Italy). Geol. J. 2009, 44, 280–305. [Google Scholar] [CrossRef]
- Mantovani, F.; Elter, F.M. The East Variscan Shear Zone (EVSZ) and Its Regional Mylonitic Complex: A New Geodynamic Interpretation of the Variscan Axial Zone in Sardinia (Italy)? Geosciences 2024, 14, 113. [Google Scholar] [CrossRef]
- Berthé, D.; Choukroune, P.; Jegouzo, P. Orthogneiss, Mylonite and Non Coaxial Deformation of Granites: The Example of the South Armorican Shear Zone. J. Struct. Geol. 1979, 1, 31–42. [Google Scholar] [CrossRef]
- Lister, G.S.; Snoke, A.W. S-C Mylonites. J. Struct. Geol. 1984, 6, 617–638. [Google Scholar] [CrossRef]
- Lister, G.S.; Price, G.P. Fabric Development in a Quartz-Feldspar Mylonite. Tectonophysics 1978, 49, 37–78. [Google Scholar] [CrossRef]
- Corsini, M.; Rolland, Y. Late Evolution of the Southern European Variscan Belt: Exhumation of the Lower Crust in a Context of Oblique Convergence. Comptes Rendus Géosci. 2009, 341, 214–223. [Google Scholar] [CrossRef]
- Edel, J.B.; Schulmann, K.; Lexa, O.; Lardeaux, J.M. Late Palaeozoic Palaeomagnetic and Tectonic Constraints for Amalgamation of Pangea Supercontinent in the European Variscan Belt. Earth-Sci. Rev. 2018, 177, 589–612. [Google Scholar] [CrossRef]
- Schulmann, K.; Edel, J.-B.; Martínez Catalán, J.R.; Mazur, S.; Guy, A.; Lardeaux, J.-M.; Ayarza, P.; Palomeras, I. Tectonic Evolution and Global Crustal Architecture of the European Variscan Belt Constrained by Geophysical Data. Earth-Sci. Rev. 2022, 234, 104195. [Google Scholar] [CrossRef]
- Elter, F.M.; Corsi, B.; Cricca, P.; Muzio, G. The South-Western Alpine Foreland: Correlation between Two Sectors of the Variscan Chain Belonging to “Stable Europe”: Sardinia (-) Corsica and the Maures Massif (South-Eastern France). Geodin. Acta 2004, 17, 31–40. [Google Scholar] [CrossRef]
- Padovano, M.; Dörr, W.; Elter, F.M.; Gerdes, A. The East Variscan Shear Zone: Geochronological Constraints from the Capo Ferro Area (NE Sardinia, Italy). Lithos 2014, 196, 27–41. [Google Scholar] [CrossRef]
- Elter, F.M.; Pandeli, E. Structural-Metamorphic Correlations Between Three Variscan Segments in Southern Europe: Maures Massif (France), Corsica (France)-Sardinia (Italy), And Northern Appennines (Italy). J. Virtual Explor. 2005, 19, 1–19. [Google Scholar] [CrossRef]
- Cruciani, G.; Fancello, D.; Franceschelli, M.; Rubatto, D. Continuous vs. Discontinuous Garnet Growth in Mylonitic Micaschists from Northeastern Sardinia, Italy: Evidence from LA-ICPMS Trace Element Mapping. Lithos 2024, 464, 107436. [Google Scholar] [CrossRef]
- Cruciani, G.; Franceschelli, M.; Iaccarino, S.; Montomoli, C.; Carosi, R.; Scodina, M. P–T Conditions in Mylonitic Gneiss from Posada Shear Zone, NE Sardinia. In Proceedings of the Abstracts del Congresso SIMP-SGI-SOGeI-AIV, Pisa, Italy, 3 September 2017. [Google Scholar]
- Warr, L.N. IMA–CNMNC Approved Mineral Symbols. Mineral. Mag. 2021, 85, 291–320. [Google Scholar] [CrossRef]
- Boullier, A.M.; Bouchez, J.L. Le Quartz En Rubans Dans Les Mylonites. Bull. Société Géologique Fr. 1978, 7, 253–262. [Google Scholar] [CrossRef]
- Mackinnon, P.; Fueten, F.; Robin, P.-Y.F. A Fracture Model for Quartz Ribbons in Straight Gneisses. J. Struct. Geol. 1997, 19, 1–14. [Google Scholar] [CrossRef]
- Passchier, C.; Trouw, R.A. Microtectonics; Springer: Berlin/Heidelberg, Germany, 1996; ISBN 978-3-540-64003-5. [Google Scholar]
- Casini, L.; Maino, M.; Langone, A.; Oggiano, G.; Corvò, S.; Estrada, J.R.; Liesa, M. HTLP Metamorphism and Fluid-Fluxed Melting during Multistage Anatexis of Continental Crust (N Sardinia, Italy). J. Metamorph. Geol. 2023, 41, 25–57. [Google Scholar] [CrossRef]
- Ricci, C.; Carosi, R.; Di Vincenzo, G.; Franceschelli, M.; Palmeri, R. Unravelling the Tectono-Metamorphic Evolution of Medium-Pressure Rocks from Collision to Exhumation of the Variscan Basement of NE Sardinia (Italy): A Review. Period. Mineral. 2004, 73, 73–83. [Google Scholar]
- Carosi, R.; Montomoli, C.; Tiepolo, M.; Frassi, C. Geochronological Constraints on Post-Collisional Shear Zones in the Variscides of Sardinia (Italy). Terra Nova 2012, 24, 42–51. [Google Scholar] [CrossRef]
- Corsi, B.; Elter, F.M. Eo-Variscan (Devonian?) Melting in the High Grade Metamorphic Complex of the NE Sardinia Belt (Italy). Geodin. Acta 2006, 19, 155–164. [Google Scholar] [CrossRef]
- Franceschelli, M.; Memmi, I.; Pannuti, F.; Ricci, C.A. Diachronous Metamorphic Equilibria in the Hercynian Basement of Northern Sardinia, Italy. Geol. Soc. Lond. Spec. Publ. 1989, 43, 371–375. [Google Scholar] [CrossRef]
- Cocco, F.; Oggiano, G.; Funedda, A.; Loi, A.; Casini, L. Stratigraphic, Magmatic and Structural Features of Ordovician Tectonics in Sardinia (Italy): A Review. J. Iber. Geol. 2018, 44, 619–639. [Google Scholar] [CrossRef]
- Funedda, A. Foreland- and Hinterland-Verging Structures in Fold-and-Thrust Belt: An Example from the Variscan Foreland of Sardinia. Int. J. Earth Sci. 2009, 98, 1625–1642. [Google Scholar] [CrossRef]
- Petroccia, A.; Carosi, R.; Montomoli, C.; Iaccarino, S.; Vitale Brovarone, A. Deformation and Temperature Variation along Thrust-Sense Shear Zones in the Hinterland-Foreland Transition Zone of Collisional Settings: A Case Study from the Barbagia Thrust (Sardinia, Italy). J. Struct. Geol. 2022, 161, 104640. [Google Scholar] [CrossRef]
- Petroccia, A.; Carosi, R.; Montomoli, C.; Iaccarino, S.; Vitale Brovarone, A. Thermal Variation across Collisional Orogens: Insights from the Hinterland–Foreland Transition Zone of the Sardinian Variscan Belt. Terra Nova 2023, 35, 113–123. [Google Scholar] [CrossRef]
- Costamagna, L.G.; Elter, F.M.; Gaggero, L.; Mantovani, F. Contact Metamorphism in Middle Ordovician Arc Rocks (SW Sardinia, Italy): New Paleogeographic Constraints. Lithos 2016, 264, 577–593. [Google Scholar] [CrossRef]
- Elter, F.M.; Padovano, M.; Kraus, R.K. The Emplacement of Variscan HT Metamorphic Rocks Linked to the Interaction between Gondwana and Laurussia: Structural Constraints in NE Sardinia (Italy). Terra Nova 2010, 22, 369–377. [Google Scholar] [CrossRef]
- Cruciani, G.; Franceschelli, M.; Groppo, C. P–T Evolution of Eclogite-Facies Metabasite from NE Sardinia, Italy: Insights into the Prograde Evolution of Variscan Eclogites. Lithos 2011, 121, 135–150. [Google Scholar] [CrossRef]
- Cruciani, G.; Franceschelli, M.; Groppo, C.; Oggiano, G.; Spano, M.E. Re-Equilibration History and P–T Path of Eclogites from Variscan Sardinia, Italy: A Case Study from the Medium-Grade Metamorphic Complex. Int. J. Earth Sci. 2015, 104, 797–814. [Google Scholar] [CrossRef]
- Scodina, M.; Cruciani, G.; Franceschelli, M.; Massonne, H.-J. Anticlockwise P–T Evolution of Amphibolites from NE Sardinia, Italy: Geodynamic Implications for the Tectonic Evolution of the Variscan Corsica-Sardinia Block. Lithos 2019, 324, 763–775. [Google Scholar] [CrossRef]
- Massonne, H.-J.; Cruciani, G.; Franceschelli, M.; Musumeci, G. Anticlockwise Pressure–Temperature Paths Record Variscan Upper-Plate Exhumation: Example from Micaschists of the Porto Vecchio Region, Corsica. J. Metamorph. Geol. 2018, 36, 55–77. [Google Scholar] [CrossRef]
- Cruciani, G.; Franceschelli, M.; Scodina, M.; Puxeddu, M. Garnet zoning in kyanite-bearing eclogite from Golfo Aranci: New data on the early prograde P–T evolution in NE Sardinia, Italy. Geol. J. 2019, 54, 190–205. [Google Scholar] [CrossRef]
- Cruciani, G.; Franceschelli, M.; Carosi, R.; Montomoli, C. P–T Path from Garnet Zoning in Pelitic Schist from NE Sardinia, Italy: Further Constraints on the Metamorphic and Tectonic Evolution of the North Sardinia Variscan Belt. Lithos 2022, 428, 106836. [Google Scholar] [CrossRef]
- Petroccia, A.; Carosi, R.; Montomoli, C.; Iaccarino, S.; Forshaw, J.B.; Petrelli, M. Transtension or Transpression? Tectono-Metamorphic Constraints on the Formation of the Monte Grighini Dome (Sardinia, Italy) and Implications for the Southern European Variscan Belt. Int. J. Earth Sci. 2024, 113, 797–820. [Google Scholar] [CrossRef]
- Simonetti, M.; Carosi, R.; Montomoli, C.; Langone, A.; D’Addario, E.; Mammoliti, E. Kinematic and Geochronological Constraints on Shear Deformation in the Ferriere-Mollières Shear Zone (Argentera-Mercantour Massif, Western Alps): Implications for the Evolution of the Southern European Variscan Belt. Int. J. Earth Sci. 2018, 107, 2163–2189. [Google Scholar] [CrossRef]
- Simonetti, M. The East Variscan Shear Zone: A structural and geochronological review for improving paleogeographic reconstruction of the southern Variscides. Rend. Online Della Soc. Geol. Ital. 2021, 55, 36–52. [Google Scholar] [CrossRef]
- Musumeci, G. Anonymous Displacement Calculation in a Ductile Shear Zone; Monte Grighini Shear Zone (Central-Western Sardinia). Ital. J. Geosci. 1991, 110, 771–777. [Google Scholar]
- Di Vincenzo, G. The Relationship between Tectono-Metamorphic Evolution and Argon Isotope Records in White Mica: Constraints from in Situ 40Ar-39Ar Laser Analysis of the Variscan Basement of Sardinia. J. Petrol. 2004, 45, 1013–1043. [Google Scholar] [CrossRef]
- Arthaud, F.; Matte, P. Late Paleozoic Strike-Slip Faulting in Southern Europe and Northern Africa: Result of a Right-Lateral Shear Zone between the Appalachians and the Urals. Geol. Soc. Am. Bull. 1977, 88, 1305. [Google Scholar] [CrossRef]
- Burg, J.P.; Matte, P.J. A Cross Section through the French Massif Central and the Scope of Its Variscan Geodynamic Evolution. Z. Dtsch. Geol. Ges. 1978, 129, 429–460. [Google Scholar] [CrossRef]
- Matte, P. The Variscan Collage and Orogeny (480–290 Ma) and the Tectonic Definition of the Armorica Microplate: A Review. Terra Nova 2001, 13, 122–128. [Google Scholar] [CrossRef]
- Carosi, R.; Oggiano, G. Transpressional deformation in northwestern Sardinia (Italy): Insights on the tectonic evolution of the Variscan Belt. Comptes Rendus Géosci. 2002, 334, 287–294. [Google Scholar] [CrossRef]
- Iacopini, D.; Carosi, R.; Montomoli, C.; Passchier, C.W. Strain Analysis and Vorticity of Flow in the Northern Sardinian Variscan Belt: Recognition of a Partitioned Oblique Deformation Event. Tectonophysics 2008, 446, 77–96. [Google Scholar] [CrossRef]
- Carmignani, L.; Carosi, R.; Di Pisa, A.; Gattiglio, M.; Musumeci, G.; Oggiano, G.; Carlo Pertusati, P. The Hercynian Chain in Sardinia (Italy). Geodin. Acta 1994, 7, 31–47. [Google Scholar] [CrossRef]
- Frassi, C.; Carosi, R.; Montomoli, C.; Law, R.D. Kinematics and Vorticity of Flow Associated with Post-Collisional Oblique Transpression in the Variscan Inner Zone of Northern Sardinia (Italy). J. Struct. Geol. 2009, 31, 1458–1471. [Google Scholar] [CrossRef]
- Carmignani, L.; Oggiano, G.; Funedda, A.; Conti, P.; Pasci, S. The Geological Map of Sardinia (Italy) at 1:250,000 Scale. J. Maps 2016, 12, 826–835. [Google Scholar] [CrossRef]
- Cocco, F.; Attardi, A.; Deidda, M.L.; Fancello, D.; Funedda, A.; Naitza, S. Passive Structural Control on Skarn Mineralization Localization: A Case Study from the Variscan Rosas Shear Zone (SW Sardinia, Italy). Minerals 2022, 12, 272. [Google Scholar] [CrossRef]
- Costamagna, L.G.; Barca, S. The Upper Carboniferous S. Giorgio Succession (Iglesiente, SW Sardinia): Stratigraphy, Depositional Setting and Evolution of a Late to Post-Variscan Molassic Basin. Boll. Soc. Geol. Ital. 2003, 122, 89–98. [Google Scholar]
- Costamagna, L.G. The Capo Malfatano Metaconglomerates in the Early Cambrian of SW Sardinia, Italy: Key Level for a New Stratigraphic Setting and Evidence of Cadomian Tectonics. Z. Dtsch. Ges. Für Geowiss. 2015, 166, 21–33. [Google Scholar] [CrossRef]
- Conti, P.; Carmignani, L.; Funedda, A. Change of Nappe Transport Direction during the Variscan Collisional Evolution of Central-Southern Sardinia (Italy). Tectonophysics 2001, 332, 255–273. [Google Scholar] [CrossRef]
- Delaperriere, E.; Lancelot, J. Zircon U/Pb Dating of the Capo Spartivento Orthogneiss (Sardinia, Italy), a Further Evidence of Ordovician Alkaline Magmatism in Southern Europe. Comptes Rendus Acad. Sci. Ser. II 1989, 309, 835–842. [Google Scholar]
- Pavanetto, P.; Funedda, A.; Northrup, C.J.; Schmitz, M.; Crowley, J.; Loi, A. Structure and U-Pb Zircon Geochronology in the Variscan Foreland of Sw Sardinia, Italy: Structure and u-Pb Geochronology in the Sardinian Variscan Foreland. Geol. J. 2012, 47, 426–445. [Google Scholar] [CrossRef]
- Carosi, R.; Di Pisa, A.; Iacopini, D.; Montomoli, C.; Oggiano, G. The Structural Evolution of the Asinara Island (NW Sardinia, Italy). Geodin. Acta 2004, 17, 309–329. [Google Scholar] [CrossRef]
- Cruciani, G.; Dulcetta, L.; Franceschelli, M.; Frassi, C.; Musumeci, G. Hot Metamorphic Complex in the Foreland Zone of the Variscan Chain: Insights from the Monte Filau Orthogneiss (SW Sardinia), Italy. Ital. J. Geosci. 2022, 141, 385–399. [Google Scholar] [CrossRef]
- Dack, A. Internal Structure and Geochronology of the Gerrei Unit in the Flumendosa Area, Variscan External Nappe Zone, Sardinia, Italy. Master’s Thesis, Boise State University, Boise, ID, USA, 2009. [Google Scholar]
- Funedda, A.; Meloni, M.A.; Loi, A. Geology of the Variscan Basement of the Laconi-Asuni Area (Central Sardinia, Italy): The Core of a Regional Antiform Refolding a Tectonic Nappe Stack. J. Maps 2015, 11, 146–156. [Google Scholar] [CrossRef]
- Conti, P.; Funedda, A.; Cerbai, N. Mylonite Development in the Hercynian Basement of Sardinia (Italy). J. Struct. Geol. 1998, 20, 121–133. [Google Scholar] [CrossRef]
- Carmignani, L.; Pertusati, P.C. Analisi Strutturale Di Un Segmento Della Catena Ercinica; Il Gerrei (Sardegna Sud-Orientale). Ital. J. Geosci. 1977, 96, 339–364. [Google Scholar]
- Carosi, R.; Pertusati, P.C. Evoluzione Strutturale Delle Unita Tettoniche Erciniche Nella Sardegna Centro-Meridionale. Ital. J. Geosci. 1990, 109, 325–335. [Google Scholar]
- Carosi, R.; Iacopini, D.; Montomoli, C. Asymmetric Fold Development in the Variscan Nappes of Central Sardinia (Italy). Comptes Rendus Geosci. 2004, 336, 939–949. [Google Scholar] [CrossRef]
- Franceschelli, M.; Memmi, I.; Ricci, C.A. Ca Distribution between Almandine-Rich Garnet and Plagioclase in Pelitic and Psammitic Schists from the Metamorphic Basement of North-Eastern Sardinia. Contrib. Mineral. Petrol. 1982, 80, 285–295. [Google Scholar] [CrossRef]
- Elter, F.M. La Fascia Blastomilonitica Tardo Ercinica Della Valle Del Posada Nella Zona Assiale Della Catena Ercinica in Sardegna. Ph.D. Thesis, Univerità di Siena, Siena, Italy, 1987. [Google Scholar]
- Cruciani, G.; Franceschelli, M.; Massonne, H.-J.; Musumeci, G.; Spano, M.E. Thermomechanical Evolution of the High-Grade Core in the Nappe Zone of Variscan Sardinia, Italy: The Role of Shear Deformation and Granite Emplacement. J. Metamorph. Geol. 2016, 34, 321–342. [Google Scholar] [CrossRef]
- Carosi, R.; Elter, F.M. Le Microstrutture Deformative Di Alto Grado Delle Anfiboliti Di Torpé (Sardegna NE). Atti Della Soc. Toscana Sci. Nat. 1989, 96, 241–255. [Google Scholar]
- Cortesogno, L.; Gaggero, L.; Oggiano, G.; Paquette, J.-L. Different Tectono-Thermal Evolutionary Paths in Eclogitic Rocks from the Axial Zone of the Variscan Chain in Sardinia (Italy) Compared with the Ligurian Alps. Ofioliti 2004, 29, 125–144. [Google Scholar] [CrossRef]
- Giacomini, F.; Bomparola, R.M.; Ghezzo, C.; Guldbransen, H. The Geodynamic Evolution of the Southern European Variscides: Constraints from the U/Pb Geochronology and Geochemistry of the Lower Palaeozoic Magmatic-Sedimentary Sequences of Sardinia (Italy). Contrib. Mineral. Petrol. 2006, 152, 19–42. [Google Scholar] [CrossRef]
- Carmignani, L.; Conti, P.; Funedda, A.; Oggiano, G.; Pasci, S. La Geologia Della Sardegna. Geological Field Trips. Geol. Field Trips 2012, 4, 1–104. [Google Scholar] [CrossRef]
- Elter, F.M.; Padovano, M. Discussion of ‘Deformation during Exhumation of Medium- and High-Grade Metamorphic Rocks in the Variscan Chain in Northern Sardinia (Italy) by Carosi et Al. ’ Geol. J. 2010, 45, 481–482. [Google Scholar] [CrossRef]
- Molli, G.; Brogi, A.; Caggianelli, A.; Capezzuoli, E.; Liotta, D.; Spina, A.; Zibra, I. Late Palaeozoic Tectonics in Central Mediterranean: A Reappraisal. Swiss J. Geosci. 2020, 113, 23. [Google Scholar] [CrossRef]
- Sawyer, E.W. Atlas of Migmatites; Canadian Science Publishing: Ottawa. ON, Canada, 2008; ISBN 978-0-660-19788-3. [Google Scholar]
- Cruciani, G.; Franceschelli, M.; Elter, F.M.; Puxeddu, M.; Utzeri, D. Petrogenesis of Al–Silicate-Bearing Trondhjemitic Migmatites from NE Sardinia, Italy. Lithos 2008, 102, 554–574. [Google Scholar] [CrossRef]
- Casini, L.; Cuccuru, S.; Puccini, A.; Oggiano, G.; Rossi, P. Evolution of the Corsica–Sardinia Batholith and Late-Orogenic Shearing of the Variscides. Tectonophysics 2015, 646, 65–78. [Google Scholar] [CrossRef]
- De Luca, M.; Ruberti, N.; Oggiano, G.; Rossi, P.; Pascucci, V.; Casini, L. Structure of a Variscan Migmatite-Granite Transition Zone (N Sardinia, Italy). J. Maps 2023, 19, 2182721. [Google Scholar] [CrossRef]
- Poli, G.; Ghezzo, C.; Conticelli, S. Geochemistry of Granitic Rocks from the Hercynian Sardinia-Corsica Batholith: Implication for Magma Genesis. Lithos 1989, 23, 247–266. [Google Scholar] [CrossRef]
- Edel, J.B. The Rotations of the Variscides during the Carboniferous Collision: Paleomagnetic Constraints from the Vosges and the Massif Central (France). Tectonophysics 2001, 332, 69–92. [Google Scholar] [CrossRef]
- Edel, J.-B.; Casini, L.; Oggiano, G.; Rossi, P.; Schulmann, K. Early Permian 90° Clockwise Rotation of the Maures–Estérel–Corsica–Sardinia Block Confirmed by New Palaeomagnetic Data and Followed by a Triassic 60° Clockwise Rotation. Geol. Soc. Lond. Spec. Publ. 2014, 405, 333–361. [Google Scholar] [CrossRef]
- Edel, J.B.; Schulmann, K.; Holub, F.V. Anticlockwise and Clockwise Rotations of the Eastern Variscides Accommodated by Dextral Lithospheric Wrenching: Palaeomagnetic and Structural Evidence. J. Geol. Soc. 2003, 160, 209–218. [Google Scholar] [CrossRef]
- Edel, J.-B.; Schulmann, K.; Lexa, O.; Diraison, M.; Géraud, Y. Permian Clockwise Rotations of the Ebro and Corso-Sardinian Blocks during Iberian–Armorican Oroclinal Bending: Preliminary Paleomagnetic Data from the Catalan Coastal Range (NE Spain). Tectonophysics 2015, 657, 172–186. [Google Scholar] [CrossRef]
- Mantovani, F.; Elter, F.M.; Pandeli, E.; Briguglio, A.; Piazza, M. The Portofino Conglomerate (Eastern Liguria, Northern Italy): Provenance, Age and Geodynamic Implications. Geosciences 2023, 13, 154. [Google Scholar] [CrossRef]
- Xhixha, M.K.; Albèri, M.; Baldoncini, M.; Bezzon, G.P.; Buso, G.P.; Callegari, I.; Casini, L.; Cuccuru, S.; Fiorentini, G.; Guastaldi, E.; et al. Uranium Distribution in the Variscan Basement of Northeastern Sardinia. J. Maps 2016, 12, 1029–1036. [Google Scholar] [CrossRef]
- Naitza, S.; Casini, L.; Cocco, F.; Deidda, M.L.; Funedda, A.; Loi, A.; Oggiano, G.; Secchi, F. Post-Collisional Tectonomagmatic Evolution, Crustal Reworking and Ore Genesis along a Section of the Southern Variscan Belt: The Variscan Mineral System of Sardinia (Italy). Minerals 2024, 14, 65. [Google Scholar] [CrossRef]
- Conte, A.M.; Cuccuru, S.; D’Antonio, M.; Naitza, S.; Oggiano, G.; Secchi, F.; Casini, L.; Cifelli, F. The Post-Collisional Late Variscan Ferroan Granites of Southern Sardinia (Italy): Inferences for Inhomogeneity of Lower Crust. Lithos 2017, 294, 263–282. [Google Scholar] [CrossRef]
- Ferrara, G.; Ricci, C.A.; Rita, F. Isotopic Ages and Tectono-Metamorphic History of the Metamorphic Basement of North-Eastern Sardinia. Contrib. Mineral. Petrol. 1978, 68, 99–106. [Google Scholar] [CrossRef]
- Carosi, R.; Frassi, C.; Magi, S.; Montomoli, C. Structural Analysis of Lodè-Mamone Antiform (North-Eastern Sardinia). An Example of Complex Kilometric Interference Pattern in the Hercynian Basement of Sardinia. Atti Soc. Toscana Sci. Nat. Mem. Ser. A 2005, 110, 23–29. [Google Scholar]
- Cruciani, G.; Franceschelli, M.; Caironi, V.; Musumeci, G. U-Pb Ages on Detrital Zircons and Geochemistry of Lula Paragneiss from Variscan Belt, NE Sardinia, Italy: Implications for Source Rocks and Early Paleozoic Paleogeography. Ital. J. Geosci. 2020, 139, 131–148. [Google Scholar] [CrossRef]
- Rosas, F.; Marques, F.O.; Luz, A.; Coelho, S. Sheath Folds Formed by Drag Induced by Rotation of Rigid Inclusions in Viscous Simple Shear Flow: Nature and Experiment. J. Struct. Geol. 2002, 24, 45–55. [Google Scholar] [CrossRef]
- Reber, J.E.; Dabrowski, M.; Galland, O.; Schmid, D.W. Sheath Fold Morphology in Simple Shear. J. Struct. Geol. 2013, 53, 15–26. [Google Scholar] [CrossRef]
- Ji, S.; Martignole, J. Ductility of Garnet as an Indicator of Extremely High Temperature Deformation. J. Struct. Geol. 1994, 16, 985–996. [Google Scholar] [CrossRef]
- Elter, F.M.; Nardelli, M.G. Studio dei nastri di quarzo nell’area di piano S.Anna-Torpé (Sardegna Nord-Orientale). Atti Soc. Toscana Sci. Nat. 1997, 104, 201–207. [Google Scholar]
- Cappelli, B.; Carmignani, L.; Castorina, F.; Di Pisa, A.; Oggiano, G.; Petrini, R. A Hercynian Suture Zone in Sardinia: Geological and Geochemical Evidence. Geodin. Acta 1992, 5, 101–118. [Google Scholar] [CrossRef]
- Cruciani, G.; Franceschelli, M.; Marchi, M.; Zucca, M. Geochemistry of Metabasites from NE Sardinia, Italy: Nature of the Protoliths, Magmatic Trend, and Geotectonic Setting. Mineral. Petrol. 2002, 74, 25–47. [Google Scholar] [CrossRef]
- Molli, G.; Montanini, A.; Frank, W. Morb-Derived Variscan Amphibolites in the Northern Apennine Basement: The Cerreto Metamorphic Slices (Tuscan-Emilian Apennine, Nw Italy). Ofioliti 2002, 27, 17–30. [Google Scholar] [CrossRef]
- Elter, F.M.; Faure, M.; Ghezzo, C.; Corsi, B. Late Hercynian Shear Zones in Northeastern Sardinia (Italy). Late Hercynian Shear. Zones Northeast. Sard. Italy 1999, 2, 3–16. [Google Scholar]
- Helbing, H.; Frisch, W.; Bons, P.D. South Variscan Terrane Accretion: Sardinian Constraints on the Intra-Alpine Variscides. J. Struct. Geol. 2006, 28, 1277–1291. [Google Scholar] [CrossRef]
- Frassi, C. Structure of the Variscan Metamorphic Complexes in the Central Transect of the Posada-Asinara Line (SW Gallura Region, Northern Sardinia, Italy). J. Maps 2015, 11, 136–145. [Google Scholar] [CrossRef]
- Simonetti, M.; Carosi, R.; Montomoli, C.; Law, R.D.; Cottle, J.M. Unravelling the Development of Regional-Scale Shear Zones by a Multidisciplinary Approach: The Case Study of the Ferriere-Mollières Shear Zone (Argentera Massif, Western Alps). J. Struct. Geol. 2021, 149, 104399. [Google Scholar] [CrossRef]
- Cruciani, G.; Franceschelli, M.; Langone, A.; Puxeddu, M.; Scodina, M. Nature and Age of Pre-Variscan Eclogite Protoliths from the Low- to Medium-Grade Metamorphic Complex of North–Central Sardinia (Italy) and Comparisons with Coeval Sardinian Eclogites in the Northern Gondwana Context. J. Geol. Soc. 2015, 172, 792–807. [Google Scholar] [CrossRef]
- Cruciani, G.; Franceschelli, M.; Groppo, C.; Spano, M.E. Metamorphic Evolution of Non-Equilibrated Granulitized Eclogite from Punta de Li Tulchi (Variscan Sardinia) Determined through Texturally Controlled Thermodynamic Modelling. J. Metamorph. Geol. 2012, 30, 667–685. [Google Scholar] [CrossRef]
- Ito, J.; Arem, J.E. Idocrase: Synthesis, Phase Relations and Crystal Chemistry1. Am. Mineral. 1970, 55, 880–912. [Google Scholar]
- Edel, J.; Dubois, D.; Marchant, R.; Hernandez, J.; Cosca, M. La Rotation Miocène Inférieur Du Bloc Corso-Sarde. Nouvelles Contraintes Paléomagnétiques Sur La Fin Du Mouvement. Bull. Soc. Geol. Fr. 2001, 172, 275–283. [Google Scholar] [CrossRef]
- Arthaud, F.; Matte, P. Les Decrochements Tardi-Hercyniens Du Sud-Ouest de l’europe. Geometrie et Essai de Reconstitution Des Conditions de La Deformation. Tectonophysics 1975, 25, 139–171. [Google Scholar] [CrossRef]
Localities | Planar Anisotropy | Lineation | ||||
---|---|---|---|---|---|---|
S2 | S3 | Sm | L2 | Lm | ||
INZ | Santa Lucia | 52 | 40 | |||
Lodè-Mamone-Rio Mannu | 52 | 41 | ||||
CIZ | P.ta Gortomedda | 43 | 48 | 38 | 35 | |
Fruncu Nieddu | 33 | 52 | 39 | 44 | ||
P.ta Figliacoro | 28 | 27 | 37 | 25 | ||
Pedra su Gattu | 24 | 29 | ||||
Sedda Eneas | 39 | 34 | 41 | 42 | 36 | |
Sub-total | 195 | 34 | 244 | 196 | 210 | |
Total | 473 | 406 |
Age | Tectonic Frame | Metamorphism | Planar Anisotropy | Lineation | P-T Condition |
---|---|---|---|---|---|
300 | PVSZ (dextral strike-slip top-to-E) | Greenschist stage (M3) | Sm in the PVSZ | Lm in the PVSZ | 300–400 °C; 0.2–0.3 GPa |
310 | |||||
315 | EVSZ (dextral strike–slip top-to-SE) | S3 | L3 | ||
320 | |||||
330 | |||||
340 | Laurussia-Gondwana transpressional event (top to SE) | Granulitic to amphibolitic stage (M2) | S2 | L2 | 650–750 °C and 0.8–1.2 GPa; 550–740 °C and 0.3–0.7 GPa |
350 | |||||
360 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Elter, F.M.; Mantovani, F. The Relationships between the Internal Nappe Zone and the Regional Mylonitic Complex in the NE Variscan Sardinia (Italy): Insight from a New Possible Regional Interpretation? Geosciences 2024, 14, 260. https://doi.org/10.3390/geosciences14100260
Elter FM, Mantovani F. The Relationships between the Internal Nappe Zone and the Regional Mylonitic Complex in the NE Variscan Sardinia (Italy): Insight from a New Possible Regional Interpretation? Geosciences. 2024; 14(10):260. https://doi.org/10.3390/geosciences14100260
Chicago/Turabian StyleElter, Franco Marco, and Federico Mantovani. 2024. "The Relationships between the Internal Nappe Zone and the Regional Mylonitic Complex in the NE Variscan Sardinia (Italy): Insight from a New Possible Regional Interpretation?" Geosciences 14, no. 10: 260. https://doi.org/10.3390/geosciences14100260
APA StyleElter, F. M., & Mantovani, F. (2024). The Relationships between the Internal Nappe Zone and the Regional Mylonitic Complex in the NE Variscan Sardinia (Italy): Insight from a New Possible Regional Interpretation? Geosciences, 14(10), 260. https://doi.org/10.3390/geosciences14100260