Strain Analysis and Kinematics of Deformation of the Tectonic Nappe Pile in Olympos-Ossa Mountainous Area: Implication for the Exhumation History of the HP/LT Ampelakia Unit and the Olympos-Ossa Tectonic Window (Eastern Thessaly, Central Greece)
Abstract
:1. Introduction
2. Geological Setting
3. Results
3.1. Structural Analysis
3.2. Strain Analysis
3.2.1. Methods
3.2.2. Strain Data
4. Discussion
5. Conclusions
- The HP/LT metamorphosed Ampelakia unit during the Paleocene–Eocene subduction, subsequently, along with the Pelagonian nappes pile, was overthrust W-SW-ward over the carbonate Olympos-Ossa unit during the Eocene–Early Oligocene, causing a complicated nappes stacking and an important crustal thickening (D1). Subsequently, the initially ductile and progressively brittle-ductile extensional tectonics (D2) occurred during the Oligocene-Miocene causing bivergent SW-ward and NE-ward tectonic nappes denudation and crustal thinning and uplift resulted in the final exhumation of the Ampelakia unit and the lowermost Olympos-Ossa unit as a tectonic window.
- Today, the tectonic contacts between the several residual tectonic nappes in the Olympos-Ossa area form low-angle normal detachment faults, related to the Oligocene–Miocene extensional event, while they usually follow the old inherited structures of the thrust faults.
- The finite strain ratios indicate that the ellipsoid is mostly flattening (Y > 1), both at the western and eastern Olympos-Ossa mountainous flanks, with few deviations to near plain strain (Y = 1). The estimated strain ellipsoids reveal higher deformation around or along tectonic contacts between nappes. The calculated Wk vorticity number reveals the rotational component of flow and the non-coaxial component of deformation. Wk ranges between 0.23 and 0.78 at the Olympos region, while the corresponding Wk values at the Ossa region range from 0.52 to 0.93, generally increasing at both regions from the Olympos-Ossa unit to the Pelagonian nappe. Furthermore, great Wk values were recorded within the Ampelakia unit, highlighting the suture zone between the External Hellenides carbonate Olympos-Ossa unit and the Internal Hellenides Pelagonian nappes pile.
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kilias, A. The Alpine Geological History of the Hellenides from the Triassic to the Present—Compression vs. Extension, a Dynamic Pair for Orogen Structural Configuration: A Synthesis. Geosciences 2024, 14, 10. [Google Scholar] [CrossRef]
- Godfriaux, I. Étude Géologique de La Région de l’Olympe (Grèce). Ann. Geol. Pays Hell. 1968, 19, 1–282. [Google Scholar]
- Lips, A.L.W.; White, S.H.; Wijbrans, J.R. 40Ar/39Ar Laserprobe Direct Dating of Discrete Deformational Events: A Continuous Record of Early Alpine Tectonics in the Pelagonian Zone, NW Aegean Area, Greece. Tectonophysics 1998, 298, 133–153. [Google Scholar] [CrossRef]
- Kilias, A.; Tranos, M.; Orozco, M.; Alonso-Chaves, M.; Soto, J. Extensional Collapse of the Hellenides: A Review. Rev. Soc. Geol. Espana 2002, 15, 129–139. [Google Scholar]
- Papapetrou, P. Geological Map of Thessaly, 1:250.000; Institute of Geology and Mineral Exploration (IGME): Athens, Greece, 2002. [Google Scholar]
- Schermer, E.R. Mechanisms of Blueschist Creation and Preservation in an A-Type Subduction Zone, Mount Olympos Region, Greece. Geology 1990, 18, 1130. [Google Scholar] [CrossRef]
- Schermer, E.R.; Lux, D.R.; Burchfiel, B.C. Temperature-time History of Subducted Continental Crust, Mount Olympos Region, Greece. Tectonics 1990, 9, 1165–1195. [Google Scholar] [CrossRef]
- Kilias, A.; Frisch, W.; Ratschbacher, L.; Sfeikos, A. The Tectonic Evolution and P-T Conditions of Metamorphism of the “Cyano-Schists” of Eastern Thessaly (Northern/Central Greece), Greece. Bull. Geol. Soc. Greece 1991, 25, 81–99. [Google Scholar]
- Schermer, E.R. Geometry and Kinematics of Continental Basement Deformation during the Alpine Orogeny, Mt. Olympos Region, Greece. J. Struct. Geol. 1993, 15, 571–591. [Google Scholar] [CrossRef]
- Kilias, A. Tectonic Evolution of the Olympos—Ossa Mountain: Emplacement of the Blueschists Unit in Eastern Thessaly and Exhumation of Olympos-Ossa Carbonate Dome as a Result of Tertiary Extension (Central Greece). Min. Wealth 1995, 96, 7–22. [Google Scholar]
- Ring, U.; Glodny, J.; Will, T.; Thomson, S. An Oligocene Extrusion Wedge of Blueschist-Facies Nappes on Evia, Aegean Sea, Greece: Implications for the Early Exhumation of High-Pressure Rocks. J. Geol. Soc. London 2007, 164, 637–652. [Google Scholar] [CrossRef]
- Ring, U.; Will, T.; Glodny, J.; Kumerics, C.; Gessner, K.; Thomson, S.; Güngör, T.; Monié, P.; Okrusch, M.; Drüppel, K. Early Exhumation of High-pressure Rocks in Extrusion Wedges: Cycladic Blueschist Unit in the Eastern Aegean, Greece, and Turkey. Tectonics 2007, 26, TC2001. [Google Scholar] [CrossRef]
- Xypolias, P.; Iliopoulos, I.; Chatzaras, V.; Kokkalas, S. Subduction- and Exhumation-related Structures in the Cycladic Blueschists: Insights from South Evia Island (Aegean Region, Greece). Tectonics 2012, 31, TC2001. [Google Scholar] [CrossRef]
- Kilias, A. The Hellenides: A Multiphase Deformed Orogenic Belt, Its Structural Architecture, Kinematics and Geotectonic Setting during the Alpine Orogeny: Compression vs Extension the Dynamic Peer for the Orogen Making. A Synthesis. J. Geol. Geosci. 2021, 5, 1–56. [Google Scholar]
- Ring, U.; Glodny, J. No Need for Lithospheric Extension for Exhuming (U)HP Rocks by Normal Faulting. J. Geol. Soc. Lond. 2010, 167, 225–228. [Google Scholar] [CrossRef]
- Faupl, P.; Petrakakis, K.; Migiros, G.; Pavlopoulos, A. Detrital Blue Amphiboles from the Western Othrys Mountain and Their Relationship to the Blueschist Terrains of the Hellenides (Greece). Int. J. Earth Sci. 2002, 91, 433–444. [Google Scholar] [CrossRef]
- Hinshaw, E.R.; Stockli, D.F.; Soukis, K. Zircon and Apatite U-Pb Constraints on the Tectonic Affinity and Metamorphic History of the Blueschist-Facies Ambelakia Unit, Mt. Ossa, Greece. Tectonics 2023, 42, e2022TC007608. [Google Scholar] [CrossRef]
- Barnes, C.J.; Zack, T.; Bukała, M.; Rösel, D.; Mark, C.; Schneider, D.A. Dating Metamorphic Processes and Identifying 87Sr/86Sr Inheritance Using Volume-Coupled Rb/Sr Geochronology and Geochemistry of in Situ White Mica: A Demonstration with HP/LT Rocks from Syros, Greece. Chem. Geol. 2024, 660, 122149. [Google Scholar] [CrossRef]
- Lister, G.S.; Forster, M.A. White Mica 40Ar/39Ar Age Spectra and the Timing of Multiple Episodes of High-pressure Metamorphic Mineral Growth in the Cycladic Eclogite–Blueschist Belt, Syros, Aegean Sea, Greece. J. Metamorph. Geol. 2016, 34, 401–421. [Google Scholar] [CrossRef]
- Barton, C.M. The Tectonic Vector and Emplacement Age of an Allochtonous Basement Slice in the Olympos Area, N.E. Greece. Bull. Société Géologique Fr. 1976, S7-XVIII, 253–258. [Google Scholar] [CrossRef]
- Doutsos, T.; Pe-Piper, G.; Boronkay, K.; Koukouvelas, I. Kinematics of the Central Hellenides. Tectonics 1993, 12, 936–953. [Google Scholar] [CrossRef]
- Xypolias, P.; Kokkalas, S.; Skourlis, K. Upward Extrusion and Subsequent Transpression as a Possible Mechanism for the Exhumation of HP/LT Rocks in Evia Island (Aegean Sea, Greece). J. Geodyn. 2003, 35, 303–332. [Google Scholar] [CrossRef]
- Chatzaras, V.; Xypolias, P.; Kokkalas, S.; Koukouvelas, I. Oligocene–Miocene Thrusting in Central Aegean: Insights from the Cycladic Island of Amorgos. Geol. J. 2011, 46, 619–636. [Google Scholar] [CrossRef]
- Aravadinou, E.; Xypolias, P.; Chatzaras, V.; Iliopoulos, I.; Gerogiannis, N. Ductile Nappe Stacking and Refolding in the Cycladic Blueschist Unit: Insights from Sifnos Island (South Aegean Sea). Int. J. Earth Sci. 2016, 105, 2075–2096. [Google Scholar] [CrossRef]
- Gerogiannis, N.; Xypolias, P. Retroward Extrusion of High-pressure Rocks: An Example from the Hellenides (Pelion Blueschist Nappe, NW Aegean). Terra Nova 2017, 29, 372–381. [Google Scholar] [CrossRef]
- Kilias, A.; Thomaidou, E.; Katrivanos, E.; Vamvaka, A.; Fassoulas, C.; Pipera, K.; Falalakis, G.; Avgerinas, S.; Sfeikos, A. A Geological Cross-Section through Northern Greece from Pindos to Rhodope Mountain Ranges: A Field Guide across the External and Internal Hellenides. J. Virtual Explor. 2016, 50, 1–107. [Google Scholar]
- Ring, U.; Brandon, M.T.; Lister, G.S.; Willett, S.D. Exhumation Processes: Normal Faulting, Ductile Flow & Erosion; GSL Special Publications: London, UK, 1999. [Google Scholar]
- Shaked, Y.; Avigad, D.; Garfunkel, Z. Alpine High-Pressure Metamorphism at the Almyropotamos Window (Southern Evia, Greece). Geol. Mag. 2000, 137, 367–380. [Google Scholar] [CrossRef]
- McKenzie, D. Active Tectonics of the Mediterranean Region. Geophys. J. Int. 1972, 30, 109–185. [Google Scholar] [CrossRef]
- Taymaz, T.; Jackson, J.; McKenzie, D. Active Tectonics of the North and Central Aegean Sea. Geophys. J. Int. 1991, 106, 433–490. [Google Scholar] [CrossRef]
- Jolivet, L.; Faccenna, C.; Huet, B.; Labrousse, L.; Le Pourhiet, L.; Lacombe, O.; Lecomte, E.; Burov, E.; Denèle, Y.; Brun, J.P.; et al. Aegean Tectonics: Strain Localisation, Slab Tearing and Trench Retreat. Tectonophysics 2013, 597–598, 1–33. [Google Scholar] [CrossRef]
- Lazos, I.; Pikridas, C.; Chatzipetros, A.; Pavlides, S. Determination of Local Active Tectonics Regime in Central and Northern Greece, Using Primary Geodetic Data. Appl. Geomat. 2021, 13, 3–17. [Google Scholar] [CrossRef]
- Brun, J.P.; Faccenna, C. Exhumation of High-Pressure Rocks Driven by Slab Rollback. Earth Planet Sci. Lett. 2008, 272, 1–7. [Google Scholar] [CrossRef]
- Lazos, I.; Sboras, S.; Pikridas, C. Tectonic Geodesy Synthesis and Review of the North Aegean Region, Based on the Strain Patterns of the North Aegean Sea, Strymon Basin and Thessalian Basin Case Studies. Appl. Sci. 2023, 13, 9943. [Google Scholar] [CrossRef]
- Erman, C.; Yolsal-Çevikbilen, S.; Eken, T.; Tilmann, F.; Keleş, D.; Taymaz, T. Constraints on the Lithospheric Kinematics in the Aegean and Western Anatolia Unveiled by SKS Splitting Observations. J. Geophys. Res. Solid Earth 2022, 127, e2022JB025265. [Google Scholar] [CrossRef]
- Taymaz, T.; Yilmaz, Y.; Dilek, Y. The Geodynamics of the Aegean and Anatolia: Introduction. Geol. Soc. Spec. Publ. 2007, 291, 1–16. [Google Scholar] [CrossRef]
- McKenzie, D.; Jackson, J. Conditions for Flow in the Continental Crust. Tectonics 2002, 21, 5-1–5-7. [Google Scholar] [CrossRef]
- Jolivet, L.; Menant, A.; Clerc, C.; Sternai, P.; Bellahsen, N.; Leroy, S.; Pik, R.; Stab, M.; Faccenna, C.; Gorini, C. Extensional Crustal Tectonics and Crust-Mantle Coupling, a View from the Geological Record. Earth Sci. Rev. 2018, 185, 1187–1209. [Google Scholar] [CrossRef]
- Lazos, I.; Chatzipetros, A.; Pavlides, S.; Pikridas, C.; Bitharis, S. Tectonic Crustal Deformation of Corinth Gulf, Greece, Based on Primary Geodetic Data. Acta Geodyn. Geomater. 2020, 17, 413–424. [Google Scholar] [CrossRef]
- Robertson, A.H.F.; Dixon, J.E.; Brown, S.; Collins, A.; Morris, A.; Pickett, E.; Sharp, I.; Ustaömer, T. Alternative Tectonic Models for the Late Palaeozoic-Early Tertiary Development of Tethys in the Eastern Mediterranean Region. Geol. Soc. Spec. Publ. 1996, 105, 239–263. [Google Scholar] [CrossRef]
- Gawlick, H.-J.; Frisch, W.; Hoxha, L.; Dumitrica, P.; Krystyn, L.; Lein, R.; Missoni, S.; Schlagintweit, F. Mirdita Zone Ophiolites and Associated Sediments in Albania Reveal Neotethys Ocean Origin. Int. J. Earth Sci. 2008, 97, 865–881. [Google Scholar] [CrossRef]
- Gawlick, H.J.; Missoni, S.; Schlagintweit, F.; Suzuki, H.; Frisch, W.; Krystyn, L.; Blau, J.; Lein, R. Jurassic Tectonostratigraphy of the Austroalpine Domain. J. Alp. Geol. 2009, 50, 1–152. [Google Scholar]
- Robertson, A. Late Palaeozoic–Cenozoic Tectonic Development of Greece and Albania in the Context of Alternative Reconstructions of Tethys in the Eastern Mediterranean Region. Int. Geol. Rev. 2012, 54, 373–454. [Google Scholar] [CrossRef]
- Robertson, A.H.F.; Trivić, B.; Đerić, N.; Bucur, I.I. Tectonic Development of the Vardar Ocean and Its Margins: Evidence from the Republic of Macedonia and Greek Macedonia. Tectonophysics 2013, 595–596, 25–54. [Google Scholar] [CrossRef]
- Kostaki, G.; Gawlick, H.-J.; Missoni, S.; Kilias, A.; Katrivanos, E. New Stratigraphic and Palaeontological Data from Carbonates Related to the Vourinos–Pindos Ophiolite Emplacement: Implications for the Provenance of the Ophiolites (Hellenides). J. Geol. Soc. Lond. 2024, 181, jgs2023–jgs2127. [Google Scholar] [CrossRef]
- Yarwood, G.A.; Aftalion, M. Field Relations and U-Pb Geochronology of a Granite from the Pelagonian Zone of the Hellenides (High Pieira, Greece). Bull. Société Géologique Fr. 1976, S7-XVIII, 259–264. [Google Scholar] [CrossRef]
- Mountrakis, D.; Sapountzis, E.; Kilias, A.; Eleftheriadis, G.; Christofides, G. Paleogeographic Conditions in the Western Pelagonian Margin in Greece during the Initial Rifting of the Continental Area. Can. J. Earth Sci. 1983, 20, 1673–1681. [Google Scholar] [CrossRef]
- Mountrakis, D. The Pelagonian Zone in Greece: A Polyphase-Deformed Fragment of the Cimmerian Continent and Its Role in the Geotectonic Evolution of the Eastern Mediterranean. J. Geol. 1986, 94, 335–347. [Google Scholar] [CrossRef]
- Pe-Piper, G.; Doutsos, T.; Mijara, A. Petrology and Regional Significance of the Hercynian Granitoid Rocks of the Olympiada Area, Northern Thessaly, Greece. Chem. Erde-Geochem. 1993, 53, 21–36. [Google Scholar]
- Kilias, A.; Frisch, W.; Avgerinas, A.; Dunkl, I.; Falalakis, G.; Gawlick, H.-J. Alpine Architecture and Kinematics of Deformation of the Northern Pelagonian Nappe Pile in the Hellenides. Austrian J. Earth Sci. 2010, 103, 4–28. [Google Scholar]
- Most, T.; Frisch, W.; Dunkl, I.; Kadosa, B.; Boev, B.; Avgerinas, A.; Kilias, A. Geochronological and Structural Investigations of the Northern Pelagonian Crystalline Zone. Constraints from K/Ar and Zircon and Apatite Fission Track Dating. Bull. Geol. Soc. Greece 2001, 34, 91. [Google Scholar] [CrossRef]
- Katrivanos, E.; Kilias, A.; Mountrakis, D. Kinematics of Deformation and Structural Evolution of the Paikon Massif (Central Macedonia, Greece): A Pelagonian Tectonic Window? Neues Jahrb. Geol. Palaontol. Abh. 2013, 269, 149–171. [Google Scholar] [CrossRef]
- Tsagkalidis, A. Petrological Study of the Ossa Region of Thessaly. Ph.D. Thesis, Agricultural University of Athens, Athens, Greece, 1990. [Google Scholar]
- Nance, D. Tectonic History of a Segment of the Pelagonian Zone, Northeastern Greece. Can. J. Earth Sci. 1981, 18, 1111–1126. [Google Scholar] [CrossRef]
- Kilias, A. Transpression Tectonics of the Central Hellenides Changing of the Translation Paths Due to the Transpression (North-Central Greece). Neues Jahrb. Geol. Paläontologie-Monatshefte 1991, 1991, 291–306. [Google Scholar] [CrossRef]
- Ramsay, O.; Huber, I. The Techniques of Modern Structural Geology: Strain Analysis; Academic Press: Cambridge, MA, USA, 1983; Volume 1. [Google Scholar]
- Ramsay, O.; Huber, I. The Techniques of Modern Structural Geology: Folds and Fractures; Academic Press: Cambridge, MA, USA, 1987; Volume 2. [Google Scholar]
- Passchier, C.W.; Trouw, R.A.J. Microtectonics; Springer: Berlin/Heidelberg, Germany, 1996; ISBN 3-540-64003-7. [Google Scholar]
- Kassem, O.M. Finite–Strain Analysis in Orthogneiss of the Gran Paradiso Massif. Ph.D. Thesis, Johannes Gutenberg-Universität, Mainz, Germany, 2005. [Google Scholar]
- Fry, N. Random Point Distributions and Strain Measurement in Rocks. Tectonophysics 1979, 60, 89–105. [Google Scholar] [CrossRef]
- Panozzo, R. Two-Dimensional Strain from the Orientation of Lines in a Plane. J. Struct. Geol. 1984, 6, 215–221. [Google Scholar] [CrossRef]
- Wallbrecher, E. “Fabric 8” Geological Software 1986.
- Flinn, D. On Folding During Three-Dimensional Progressive Deformation. Q. J. Geol. Soc. 1962, 118, 385–428. [Google Scholar] [CrossRef]
- Hossack, J.R. Pebble Deformation and Thrusting in the Bygdin Area (Southern Norway). Tectonophysics 1968, 5, 315–339. [Google Scholar] [CrossRef]
- Katsikatsos, G.; Migiros, G. Geological Map of Greece, Rapsani Sheet, 1:50.000; Institute of Geology and Mineral Exploration (IGME): Athens, Greece, 1987. [Google Scholar]
- Röller, K.; Trepmann, C. Stereo 32, version 1.0.1; Ruhr-Universität Bochum, Institut für Geologie, Mineralogie & Geophysik: Bochum, Germany, 2003.
- Röller, K.; Trepmann, C. Stereo 32, 1.0.1; Ruhr-Universität Bochum, Institut für Geologie, Mineralogie & Geophysik: Bochum, Germany, 2008.
- Dunnet, D. A Technique of Finite Strain Analysis Using Elliptical Particles. Tectonophysics 1969, 7, 117–136. [Google Scholar] [CrossRef]
- Lisle, R.J. Geological Strain Analysis. A Manual for the Rf/φ Method; Pergamon Press: New York, NY, USA, 1985. [Google Scholar]
- Erslev, E.A. Normalized Center-to-Center Strain Analysis of Packed Aggregates. J. Struct. Geol. 1988, 10, 201–209. [Google Scholar] [CrossRef]
- Erslev, E.A.; Ge, H. Least-Squares Center-to-Center and Mean Object Ellipse Fabric Analysis. J. Struct. Geol. 1990, 12, 1047–1059. [Google Scholar] [CrossRef]
- Katsiavrias, N.; Triantaphyllis, E. Geological Map of Greece, Livadhion Sheet, 1:50.000; Institute of Geology and Mineral Exploration (IGME): Athens, Greece, 1988. [Google Scholar]
- Panozzo, R.H. Two-Dimensional Analysis of Shape-Fabric Using Projections of Digitized Lines in a Plane. Tectonophysics 1983, 95, 279–294. [Google Scholar] [CrossRef]
- Lister, G.S. Discussion: Crossed-Girdle c-Axis Fabrics in Quartzites Plastically Deformed by Plane Strain and Progressive Simple Shear. Tectonophysics 1977, 39, 51–54. [Google Scholar] [CrossRef]
- Migiros, G. Geological Map of Greece, Gonni Sheet, 1:50.000; Institute of Geology and Mineral Exploration (IGME): Athens, Greece, 1985. [Google Scholar]
- Wallis, S.R. Vorticity Analysis in a Metachert from the Sanbagawa Belt, SW Japan. J. Struct. Geol. 1992, 14, 271–280. [Google Scholar] [CrossRef]
- Wallis, S. Vorticity Analysis and Recognition of Ductile Extension in the Sanbagawa Belt, SW Japan. J. Struct. Geol. 1995, 17, 1077–1093. [Google Scholar] [CrossRef]
- Xypolias, P. Vorticity Analysis in Shear Zones: A Review of Methods and Applications. J. Struct. Geol. 2010, 32, 2072–2092. [Google Scholar] [CrossRef]
- Law, R.D.; Knipe, R.J.; Dayan, H. Strain Path Partitioning within Thrust Sheets: Microstructural and Petrofabric Evidence from the Moine Thrust Zone at Loch Eriboll, Northwest Scotland. J. Struct. Geol. 1984, 6, 477–497. [Google Scholar] [CrossRef]
- Platt, J.P.; Behrmann, J.H. Structures and Fabrics in a Crustal-Scale Shear Zone, Betic Cordillera, SE Spain. J. Struct. Geol. 1986, 8, 15–33. [Google Scholar] [CrossRef]
- Schmid, S.M.; Casey, M. Complete Fabric Analysis of Some Commonly Observed Quartz C-Axis Patterns. Miner. Rock Deform. Lab. Stud. 1986, 36, 263–286. [Google Scholar]
- Vissers, R.L.M. Asymmetric Quartz C-Axis Fabrics and Flow Vorticity: A Study Using Rotated Garnets. J. Struct. Geol. 1989, 11, 231–244. [Google Scholar] [CrossRef]
- Law, R.D. Crystallographic Fabrics: A Selective Review of Their Applications to Research in Structural Geology. Geol. Soc. Lond. Spec. Publ. 1990, 54, 335–352. [Google Scholar] [CrossRef]
- Wernicke, B. Low-Angle Normal Faults in the Basin and Range Province: Nappe Tectonics in an Extending Orogen. Nature 1981, 291, 645–648. [Google Scholar] [CrossRef]
- Dewey, J.F. Extensional Collapse of Orogens. Tectonics 1988, 7, 1123–1139. [Google Scholar] [CrossRef]
- Gautier, P.; Brun, J.-P. Ductile Crust Exhumation and Extensional Detachments in the Central Aegean (Cyclades and Evvia Islands). Geodin. Acta 1994, 7, 57–85. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vrontzos, I.; Katrivanos, E.; Lazos, I.; Papadopoulou, L.; Kilias, A. Strain Analysis and Kinematics of Deformation of the Tectonic Nappe Pile in Olympos-Ossa Mountainous Area: Implication for the Exhumation History of the HP/LT Ampelakia Unit and the Olympos-Ossa Tectonic Window (Eastern Thessaly, Central Greece). Geosciences 2024, 14, 179. https://doi.org/10.3390/geosciences14070179
Vrontzos I, Katrivanos E, Lazos I, Papadopoulou L, Kilias A. Strain Analysis and Kinematics of Deformation of the Tectonic Nappe Pile in Olympos-Ossa Mountainous Area: Implication for the Exhumation History of the HP/LT Ampelakia Unit and the Olympos-Ossa Tectonic Window (Eastern Thessaly, Central Greece). Geosciences. 2024; 14(7):179. https://doi.org/10.3390/geosciences14070179
Chicago/Turabian StyleVrontzos, Ioannis, Emmanouil Katrivanos, Ilias Lazos, Lambrini Papadopoulou, and Adamantios Kilias. 2024. "Strain Analysis and Kinematics of Deformation of the Tectonic Nappe Pile in Olympos-Ossa Mountainous Area: Implication for the Exhumation History of the HP/LT Ampelakia Unit and the Olympos-Ossa Tectonic Window (Eastern Thessaly, Central Greece)" Geosciences 14, no. 7: 179. https://doi.org/10.3390/geosciences14070179
APA StyleVrontzos, I., Katrivanos, E., Lazos, I., Papadopoulou, L., & Kilias, A. (2024). Strain Analysis and Kinematics of Deformation of the Tectonic Nappe Pile in Olympos-Ossa Mountainous Area: Implication for the Exhumation History of the HP/LT Ampelakia Unit and the Olympos-Ossa Tectonic Window (Eastern Thessaly, Central Greece). Geosciences, 14(7), 179. https://doi.org/10.3390/geosciences14070179