Shallow Geothermal Potential of the Sant’Eufemia Plain (South Italy) for Heating and Cooling Systems: An Effective Renewable Solution in a Climate-Changing Society
Abstract
:1. Introduction
2. Geological Setting
3. Methods
3.1. Subsoil Stratigraphy
3.2. Hydrostratigraphy
3.3. Thermophysical Properties of the Lithological Units
3.4. Climate Data
3.5. Geothermal Potential Estimation
3.6. Economic Cost Estimation
4. Results and Discussion
4.1. Climate Parameters and Classification
4.2. Hydrostratigraphic Reconstruction
4.3. Thermophysical Properties of the Underground
4.4. Specific Heat Extraction
4.5. Geothermal Potential for Heating and Cooling Mode
4.6. Depth to Be Drilled for Vertical Closed-Loop BHE Systems
4.7. Economic Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Moya, D.; Aldás, C.; Kaparaju, P. Geothermal Energy: Power Plant Technology and Direct Heat Applications. Renew. Sustain. Energy Rev. 2018, 94, 889–901. [Google Scholar] [CrossRef]
- Rybach, L.; Mongillo, M. Geothermal Sustainability—A Review with Identified Research Needs. Trans. Geotherm. Resour. Counc. 2006, 30, 1083–1090. [Google Scholar]
- Zhu, J.; Hu, K.; Lu, X.; Huang, X.; Liu, K.; Wu, X. A Review of Geothermal Energy Resources, Development, and Applications in China: Current Status and Prospects. Energy 2015, 93, 466–483. [Google Scholar] [CrossRef]
- Lund, J.W.; Toth, A.N. Direct Utilization of Geothermal Energy 2020 Worldwide Review. Geothermics 2021, 90, 101915. [Google Scholar] [CrossRef]
- Moeck, I.S. Catalog of Geothermal Play Types Based on Geologic Controls. Renew. Sustain. Energy Rev. 2014, 37, 867–882. [Google Scholar] [CrossRef] [Green Version]
- Florides, G.; Kalogirou, S. Ground Heat Exchangers-A Review of Systems, Models and Applications. Renew. Energy 2007, 32, 2461–2478. [Google Scholar] [CrossRef]
- Chow, T.T.; Long, H.; Mok, H.Y.; Li, K.W. Estimation of Soil Temperature Profile in Hong Kong from Climatic Variables. Energy Build. 2011, 43, 3568–3575. [Google Scholar] [CrossRef]
- Omer, A.M. Ground-Source Heat Pumps Systems and Applications. Renew. Sustain. Energy Rev. 2008, 12, 344–371. [Google Scholar] [CrossRef]
- Casasso, A.; Sethi, R.G. POT: A Quantitative Method for the Assessment and Mapping of the Shallow Geothermal Potential. Energy 2016, 106, 765–773. [Google Scholar] [CrossRef]
- Gemelli, A.; Mancini Adriano, A.; Longhi, S. GIS-Based Energy-Economic Model of Low Temperature Geothermal Resources: A Case Study in the Italian Marche Region. Renew. Energy 2011, 36, 2474–2483. [Google Scholar] [CrossRef]
- García-Gil, A.; Epting, J.; Garrido, E.; Vázquez-Suñé, E.; Lázaro, J.M.; Sánchez Navarro, J.Á.; Huggenberger, P.; Calvo, M.Á.M. A City Scale Study on the Effects of Intensive Groundwater Heat Pump Systems on Heavy Metal Contents in Groundwater. Sci. Total Environ. 2016, 572, 1047–1058. [Google Scholar] [CrossRef] [PubMed]
- Ondreka, J.; Rüsgen, M.I.; Stober, I.; Czurda, K. GIS-Supported Mapping of Shallow Geothermal Potential of Representative Areas in South-Western Germany—Possibilities and Limitations. Renew. Energy 2007, 32, 2186–2200. [Google Scholar] [CrossRef]
- Schiel, K.; Baume, O.; Caruso, G.; Leopold, U. GIS-Based Modelling of Shallow Geothermal Energy Potential for CO2 Emission Mitigation in Urban Areas. Renew. Energy 2016, 86, 1023–1036. [Google Scholar] [CrossRef]
- Noorollahi, Y.; Arjenaki, H.G.; Ghasempour, R. Thermo-Economic Modeling and GIS-Based Spatial Data Analysis of Ground Source Heat Pump Systems for Regional Shallow Geothermal Mapping. Renew. Sustain. Energy Rev. 2017, 72, 648–660. [Google Scholar] [CrossRef]
- Viesi, D.; Galgaro, A.; Visintainer, P.; Crema, L. GIS-Supported Evaluation and Mapping of the Geo-Exchange Potential for Vertical Closed-Loop Systems in an Alpine Valley, the Case Study of Adige Valley (Italy). Geothermics 2018, 71, 70–87. [Google Scholar] [CrossRef]
- Cannata, C.B.; Cianflone, G.; Vespasiano, G.; De Rosa, R. Preliminary Analysis of Sediments Pollution of the Coastal Sector between Crotone and Strongoli (Calabria—Southern Italy). Rend. Online Soc. Geol. Ital. 2016, 38, 17–20. [Google Scholar] [CrossRef]
- Cianflone, G.; Vespasiano, G.; Tolomei, C.; De Rosa, R.; Dominici, R.; Apollaro, C.; Walraevens, K.; Polemio, M. Different Ground Subsidence Contributions Revealed by Integrated Discussion of Sentinel-1 Datasets, Well Discharge, Stratigraphical and Geomorphological Data: The Case of the Gioia Tauro Coastal Plain (Southern Italy). Sustainability 2022, 14, 2926. [Google Scholar] [CrossRef]
- Vespasiano, G.; Cianflone, G.; Romanazzi, A.; Apollaro, C.; Dominici, R.; Polemio, M.; De Rosa, R. A Multidisciplinary Approach for Sustainable Management of a Complex Coastal Plain: The Case of Sibari Plain (Southern Italy). Mar. Pet. Geol. 2019, 109, 740–759. [Google Scholar] [CrossRef]
- Vespasiano, G.; Cianflone, G.; Cannata, C.B.; Apollaro, C.; Dominici, R.; Rosa, R.D. Analysis of Groundwater Pollution in the Sant’Eufemia Plain (Calabria—South Italy). Ital. J. Eng. Geol. Environ. 2016, 16, 5–15. [Google Scholar] [CrossRef]
- Vespasiano, G.; Notaro, P.; Cianflone, G. Water-Mortar Interaction in a Tunnel Located in Southern Calabria (Southern Italy). Environ. Eng. Geosci. 2018, 24, 305–315. [Google Scholar] [CrossRef]
- Vespasiano, G.; Cianflone, G.; Marini, L.; De Rosa, R.; Polemio, M.; Walraevens, K.; Vaselli, O.; Pizzino, L.; Cinti, D.; Capecchiacci, F.; et al. Hydrogeochemical and Isotopic Characterization of the Gioia Tauro Coastal Plain (Calabria—Southern Italy): A Multidisciplinary Approach for a Focused Management of Vulnerable Strategic Systems. Sci. Total Environ. 2023, 862, 160694. [Google Scholar] [CrossRef]
- Cianflone, G.; Vespasiano, G.; De Rosa, R.; Dominici, R.; Apollaro, C.; Vaselli, O.; Pizzino, L.; Tolomei, C.; Capecchiacci, F.; Polemio, M. Hydrostratigraphic Framework and Physicochemical Status of Groundwater in the Gioia Tauro Coastal Plain (Calabria—Southern Italy). Water 2021, 13, 3279. [Google Scholar] [CrossRef]
- Cianflone, G.; Cavuoto, G.; Punzo, M.; Dominici, R.; Sonnino, M.; Di Fiore, V.; Pelosi, N.; Tarallo, D.; Lirer, F.; Marsella, E.; et al. Late Quaternary Stratigraphic Setting of the Sibari Plain (Southern Italy): Hydrogeological Implications. Mar. Pet. Geol. 2018, 97, 422–436. [Google Scholar] [CrossRef]
- Taussi, M.; Borghi, W.; Gliaschera, M.; Renzulli, A. Defining the Shallow Geothermal Heat-Exchange Potential for a Lower Fluvial Plain of the Central Apennines: The Metauro Valley (Marche Region, Italy). Energies 2021, 14, 768. [Google Scholar] [CrossRef]
- Piga, B.; Casasso, A.; Pace, F.; Godio, A.; Sethi, R. Thermal Impact Assessment of Groundwater Heat Pumps (GWHPs): Rigorous vs. Simplified Models. Energies 2017, 10, 1385. [Google Scholar] [CrossRef] [Green Version]
- Casasso, A.; Pestotnik, S.; Rajver, D.; Jež, J.; Prestor, J.; Sethi, R. Assessment and Mapping of the Closed-Loop Shallow Geothermal Potential in Cerkno (Slovenia). Energy Procedia 2017, 125, 335–344. [Google Scholar] [CrossRef] [Green Version]
- Malinverno, A.; Ryan, W.B.F. Extension in Tyrrhenian Sea & shortening in the Apennines as result of arc migration driven bysinking of the lithosphere. Tectonics 1986, 5, 227–254. [Google Scholar]
- Gueguen, E.; Doglioni, C.; Fernandez, M. On the Post-25 Ma Geodynamic Evolution of the Western Mediterranean. Tectonophysics 1998, 298, 259–269. [Google Scholar] [CrossRef]
- Knott, S.D.; Turco, E. Late Cenozoic Kinematics of the Calabrian Arc, Southern Italy. Tectonics 1991, 10, 1164–1172. [Google Scholar] [CrossRef]
- Van Dijk, J.P.; Bello, M.; Brancaleoni, G.P.; Cantarella, G.; Costa, V.; Frixa, A.; Golfetto, F.; Merlini, S.; Riva, M.; Torricelli, S.; et al. A Regional Structural Model for the Northern Sector of the Calabrian Arc (Southern Italy). Tectonophysics 2000, 324, 267–320. [Google Scholar] [CrossRef]
- Tansi, C.; Muto, F.; Critelli, S.; Iovine, G. Neogene-Quaternary Strike-Slip Tectonics in the Central Calabrian Arc (Southern Italy). J. Geodyn. 2007, 43, 393–414. [Google Scholar] [CrossRef]
- Brutto, F.; Muto, F.; Loreto, M.F.; De Paola, N.; Tripodi, V.; Critelli, S.; Facchin, L. The Neogene-Quaternary Geodynamic Evolution of the Central Calabrian Arc: A Case Study from the Western Catanzaro Trough Basin. J. Geodyn. 2016, 102, 95–114. [Google Scholar] [CrossRef] [Green Version]
- Amodio-Morelli, L.; Bonardi, G.; Colonna, V.; Dietrich, D.; Giunta, G.; Ippolito, F.; Liguori, V.; Lorenzoni, S.; Paglionico, A.; Perrone, V.; et al. L’arco Calabro-Peloritano Nell’orogene Appenninico-Maghrebide. Mem. Soc. Geol. Ital. 1976, 17, 1–60. [Google Scholar]
- Langone, A.; Gueguen, E.; Prosser, G.; Caggianelli, A.; Rottura, A. The Curinga-Girifalco Fault Zone (Northern Serre, Calabria) and Its Significance within the Alpine Tectonic Evolution of the Western Mediterranean. J. Geodyn. 2006, 42, 140–158. [Google Scholar] [CrossRef]
- Cianflone, G.; Dominici, R. Stratigrafi a Fisica Della Successione Sedimentaria Miocenica Del Settore Nord-Orientale Della Stretta Di Catanzaro (Calabria Centro-Orientale). Rend. Online Soc. Geol. Ital. 2011, 17, 63–69. [Google Scholar] [CrossRef]
- Giuseppe Cianflone, G.; Dominici, R.; Sonnino, M. Studio Preliminare Delle Facies Evaporitiche e Carbonatiche Del Messiniano Della Stretta Di Catanzaro (Calabria Centrale). Rend. Online Soc. Geol. Ital. 2012, 21, 71–73. [Google Scholar]
- Costanzo, A.; Cipriani, M.; Feely, M.; Cianflone, G.; Dominici, R. Messinian Twinned Selenite from the Catanzaro Trough, Calabria, Southern Italy: Field, Petrographic and Fluid Inclusion Perspectives. Carbonates Evaporites 2019, 34, 743–756. [Google Scholar] [CrossRef]
- Vespasiano, G.; Marini, L.; Muto, F.; Auqué, L.F.; Cipriani, M.; De Rosa, R.; Critelli, S.; Gimeno, M.J.; Blasco, M.; Dotsika, E.; et al. Chemical, Isotopic and Geotectonic Relations of the Warm and Cold Waters of the Cotronei (Ponte Coniglio), Bruciarello and Repole Thermal Areas, (Calabria—Southern Italy). Geothermics 2021, 96, 102228. [Google Scholar] [CrossRef]
- Cipriani, M.; Dominici, R.; Costanzo, A.; D’Antonio, M.; Guido, A. A Messinian Gypsum Deposit in the Ionian Forearc Basin (Benestare, Calabria, Southern Italy): Origin and Paleoenvironmental Indications. Minerals 2021, 11, 1305. [Google Scholar] [CrossRef]
- VIDEPI Project. Visibilità Dei Dati Afferenti All’attività Di Esplorazione Petrolifera in Italia. Available online: https://www.videpi.com/videpi/videpi.asp (accessed on 1 January 2023).
- Longhitano, S.G.; Chiarella, D.; Muto, F. Three-Dimensional to Two-Dimensional Cross-Strata Transition in the Lower Pleistocene Catanzaro Tidal Strait Transgressive Succession (Southern Italy). Sedimentology 2014, 61, 2136–2171. [Google Scholar] [CrossRef]
- Pirrotta, C.; Barberi, G.; Barreca, G.; Brighenti, F.; Carnemolla, F.; De Guidi, G.; Monaco, C.; Pepe, F.; Scarfì, L. Recent Activity and Kinematics of the Bounding Faults of the Catanzaro Trough (Central Calabria, Italy): New Morphotectonic, Geodetic and Seismological Data. Geosciences 2021, 11, 405. [Google Scholar] [CrossRef]
- Punzo, M.; Cianflone, G.; Cavuoto, G.; De Rosa, R.; Dominici, R.; Gallo, P.; Lirer, F.; Pelosi, N.; Di Fiore, V. Active and Passive Seismic Methods to Explore Areas of Active Faulting. The Case of Lamezia Terme (Calabria, Southern Italy). J. Appl. Geophys. 2021, 188, 104316. [Google Scholar] [CrossRef]
- Vespasiano, G.; Marini, L.; Apollaro, C.; De Rosa, R. Preliminary Geochemical Characterization of the Thermal Waters of Caronte SPA Springs (Calabria, South Italy). Rend. Online Soc. Geol. Ital. 2016, 39, 138–141. [Google Scholar] [CrossRef]
- Vespasiano, G.; Apollaro, C.; De Rosa, R.; Muto, F.; Larosa, S.; Fiebig, J.; Mulch, A.; Marini, L. The Small Spring Method (SSM) for the Definition of Stable Isotope-Elevation Relationships in Northern Calabria (Southern Italy). Appl. Geochem. 2015, 63, 333–346. [Google Scholar] [CrossRef]
- Apollaro, C.; Vespasiano, G.; Muto, F.; De Rosa, R.; Barca, D.; Marini, L. Use of Mean Residence Time of Water, Flowrate, and Equilibrium Temperature Indicated by Water Geothermometers to Rank Geothermal Resources. Application to the Thermal Water Circuits of Northern Calabria. J. Volcanol. Geotherm. Res. 2016, 328, 147–158. [Google Scholar] [CrossRef]
- Apollaro, C.; Tripodi, V.; Vespasiano, G.; De Rosa, R.; Dotsika, E.; Fuoco, I.; Critelli, S.; Muto, F. Chemical, Isotopic and Geotectonic Relations of the Warm and Cold Waters of the Galatro and Antonimina Thermal Areas, Southern Calabria, Italy. Mar. Pet. Geol. 2019, 109, 469–483. [Google Scholar] [CrossRef]
- Apollaro, C.; Caracausi, A.; Paternoster, M.; Randazzo, P.; Aiuppa, A.; De Rosa, R.; Fuoco, I.; Mongelli, G.; Muto, F.; Vanni, E.; et al. Fluid Geochemistry in a Low-Enthalpy Geothermal Field along a Sector of Southern Apennines Chain (Italy). J. Geochem. Explor. 2020, 219, 106618. [Google Scholar] [CrossRef]
- Randazzo, P.; Caracausi, A.; Aiuppa, A.; Cardellini, C.; Chiodini, G.; Apollaro, C.; Paternoster, M.; Rosiello, A.; Vespasiano, G. Active Degassing of Crustal CO2 in Areas of Tectonic Collision: A Case Study from the Pollino and Calabria Sectors (Southern Italy). Front. Earth Sci. 2022, 10, 946707. [Google Scholar] [CrossRef]
- Apollaro, C.; Di Curzio, D.; Fuoco, I.; Buccianti, A.; Dinelli, E.; Vespasiano, G.; Castrignanò, A.; Rusi, S.; Barca, D.; Figoli, A.; et al. A Multivariate Non-Parametric Approach for Estimating Probability of Exceeding the Local Natural Background Level of Arsenic in the Aquifers of Calabria Region (Southern Italy). Sci. Total Environ. 2022, 806, 150345. [Google Scholar] [CrossRef] [PubMed]
- ISPRA. Indagini Nel Sottosuolo. Available online: https://sgi2.isprambiente.it/mapviewer/ (accessed on 15 January 2023).
- Casmez (Cassa Speciale per Il Mezzogiorno). Progetto Speciale 26; CMP: Roma, Italy, 1987. [Google Scholar]
- VIGOR Project. Valutazione Del PotenzIale Geotermico Delle RegiOni Della Convergenza. Available online: http://www.vigor-geotermia.it/ (accessed on 15 January 2023).
- Pirrotta, C.; Parrino, N.; Pepe, F.; Tansi, C.; Monaco, C. Geomorphological and Morphometric Analyses of the Catanzaro Trough (Central Calabrian Arc, Southern Italy): Seismotectonic Implications. Geosciences 2022, 12, 324. [Google Scholar] [CrossRef]
- Ramos-Escudero, A.; Gil-García, I.C.; García-Cascales, M.S.; Molina-Garcia, A. Energy, Economic and Environmental GIS–Based Analysis of Shallow Geothermal Potential in Urban Areas—A Spanish Case Example. Sustain. Cities Soc. 2021, 75, 103267. [Google Scholar] [CrossRef]
- Ramos-Escudero, A.; Garc, M.S.; Urchueguía, J.F. Evaluation of the Shallow Geothermal Potential for Heating and Cooling and Its Integration in the Socioeconomic Environment: A Case Study in the Region of Murcia, Spain. Energies 2021, 14, 5740. [Google Scholar] [CrossRef]
- ASTM. Standard Test Method for Classification of Soils for Engineering Purposes. In Annual Book of ASTM Standards—Unified Soil Classification System; ASTM Designation D 2487-83, 04-08; American Society for Testing and Materials: West Conshohocken, PA, USA, 1983. [Google Scholar]
- TCSM. Technical Commission for Seismic Microzonation. Graphic and Data Archiving Standards. Version 4.1; National Department of Civil Protection: Rome, Italy, 2015. Available online: www.centromicrozonazionesismica.it/it/download/send/26-standardms-41/71 (accessed on 15 January 2023).
- Anderson, M.P.; Woessner, W.W.; Hunt, R.J. Applied Groundwater Modeling: Simulation of Flow and Advective Transport; Academic Press: Cambridge, MA, USA, 2015. [Google Scholar]
- Logan, J. Estimating Transmissibility from Routine Production Tests of Water Wells. Groundwater 1964, 2, 35–37. [Google Scholar] [CrossRef]
- Di Sipio, E.; Galgaro, A.; Destro, E.; Giaretta, A.; Chiesa, S.; Team, V. Thermal Conductivity of Rocks and Regional Mapping. In Proceedings of the European Geothermal Congress 2013, Pisa, Italy, 3–7 June 2013; pp. 3–7. [Google Scholar]
- Márquez, J.M.A.; Bohórquez, M.Á.M.; Melgar, S.G. Ground Thermal Diffusivity Calculation by Direct Soil Temperature Measurement. Application to Very Low Enthalpy Geothermal Energy Systems. Sensors 2016, 16, 306. [Google Scholar] [CrossRef] [Green Version]
- Dalla Santa, G.; Galgaro, A.; Sassi, R.; Cultrera, M.; Scotton, P.; Mueller, J.; Bertermann, D.; Mendrinos, D.; Pasquali, R.; Perego, R.; et al. An Updated Ground Thermal Properties Database for GSHP Applications. Geothermics 2020, 85, 101758. [Google Scholar] [CrossRef]
- VDI 4640. German Guidelines: Thermal Use of the Underground. Available online: https://www.antpedia.com/standard/%0A6266555-8.html (accessed on 20 January 2023).
- Signorelli, S.; Kohl, T. Regional Ground Surface Temperature Mapping from Meteorological Data. Glob. Planet. Chang. 2004, 40, 267–284. [Google Scholar] [CrossRef]
- Galgaro, A.; Di Sipio, E.; Teza, G.; Destro, E.; De Carli, M.; Chiesa, S.; Zarrella, A.; Emmi, G.; Manzella, A. Empirical Modeling of Maps of Geo-Exchange Potential for Shallow Geothermal Energy at Regional Scale. Geothermics 2015, 57, 173–184. [Google Scholar] [CrossRef] [Green Version]
- Casasso, A.; Sethi, R. Assessment and Mapping of the Shallow Geothermal Potential in the Province of Cuneo (Piedmont, NW Italy). Renew. Energy 2017, 102, 306–315. [Google Scholar] [CrossRef]
- Casasso, A.; Della Valentina, S.; Di Feo, A.F.; Capodaglio, P.; Cavorsin, R.; Guglielminotti, R.; Sethi, R. Ground Source Heat Pumps in Aosta Valley (NW Italy): Assessment of Existing Systems and Planning Tools for Future Installations. Rend. Online Soc. Geol. Ital. 2018, 46, 59–66. [Google Scholar] [CrossRef] [Green Version]
- Zangheri, P.; Armani, R.; Pietrobon, M.; Pagliano, L.; Boneta Fernandez, M.; Müller, A. Heating and Cooling Energy Demand and Loads for Building Types in Different Countries of the EU; Polytechnic University of Turin, End-Use Efficiency Research Group: Turin, Italy, 2014; p. 3. [Google Scholar]
Common Parameter Values | |||
---|---|---|---|
Parameter | Symbol | Range Values | Unit |
Ground thermal conductivity | λ | 0.69–2.90 | W m−1 K−1 |
Ground thermal capacity | (SVC) ρc | 1.17–3.33 | MJ m−3 K−1 |
Heating season period | the | 120 | day |
Threshold fluid temperature (heating mode) | TlimHe | −2 | °C |
Cooling season period | Tcc | 120 | day |
Threshold fluid temperature (cooling mode) | TlimC | 35 | °C |
Simulation time period | ts | 50 | year |
BHE depth | L | 100 | meter |
Borehole radius | rb | 0.075 | meter |
Borehole thermal resistance | Rb | 0.1 | mK/W |
Non-Coring Drilling Cost (EUR m−1) | Provisional Coatings Cost (EUR m−1) | |||
---|---|---|---|---|
Drilled terranes | depth < 30 m | depth > 30 m | depth < 10 m | depth > 10 m |
Sedimentary infill | 40.6 | 49.8 | 12.2 | 16.8 |
Crystalline bedrock | 49.8 | 59 |
Urban Area | SHE- Heating | SHE- Cooling | QBHE —Heating | QBHE—Cooling | BHE Depth Heating | BHE Depth Cooling | Drilling Cost Heating | Drilling Cost Cooling |
---|---|---|---|---|---|---|---|---|
kW | kW | MWh y−1 | MWh y−1 | m | m | EUR | EUR | |
Falerna Scalo | 4.99 | 5.56 | 6.76 | 6.78 | 100 | 90 | 6900 | 6318 |
Gizzeria Lido | 5.20 | 5.79 | 7.02 | 7.15 | 96 | 86 | 6836 | 6276 |
Santa Eufemia | 5.69 | 6.34 | 7.44 | 7.50 | 91 | 82 | 6804 | 6248 |
Aeroporto | 5.96 | 6.64 | 8.02 | 7.98 | 85 | 76 | 6671 | 6124 |
Industrial Zone | 5.56 | 6.19 | 7.62 | 7.47 | 90 | 81 | 6602 | 6025 |
Lamezia Terme | 5.27 | 5.87 | 6.56 | 6.94 | 96 | 87 | 6468 | 5899 |
Nocera Scalo | 5.69 | 6.34 | 7.22 | 7.63 | 90 | 81 | 6349 | 5795 |
Acconia | 5.46 | 6.08 | 7.36 | 7.22 | 93 | 84 | 6303 | 5779 |
Falerna | 5.40 | 6.01 | 6.72 | 7.69 | 93 | 84 | 6156 | 5581 |
Maida | 6.02 | 6.70 | 7.09 | 7.85 | 85 | 76 | 5933 | 5362 |
San Pietro a Maida | 6.52 | 7.26 | 7.54 | 8.51 | 81 | 72 | 5506 | 4956 |
Jacurso | 6.54 | 7.28 | 7.06 | 8.41 | 85 | 76 | 5427 | 4877 |
Nocera Terinese | 6.02 | 6.71 | 7.23 | 8.26 | 86 | 77 | 5376 | 4795 |
Curinga | 6.56 | 7.31 | 7.68 | 8.59 | 81 | 73 | 5246 | 4750 |
Platania | 6.50 | 7.24 | 7.30 | 9.68 | 78 | 70 | 4667 | 4135 |
Pizzo | 7.55 | 8.41 | 8.68 | 9.07 | 75 | 67 | 4419 | 3941 |
Francavilla | 7.62 | 8.48 | 8.45 | 9.61 | 69 | 62 | 4302 | 3819 |
Filadelfia | 7.67 | 8.54 | 8.39 | 10.09 | 68 | 61 | 4142 | 3683 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vespasiano, G.; Cianflone, G.; Taussi, M.; De Rosa, R.; Dominici, R.; Apollaro, C. Shallow Geothermal Potential of the Sant’Eufemia Plain (South Italy) for Heating and Cooling Systems: An Effective Renewable Solution in a Climate-Changing Society. Geosciences 2023, 13, 110. https://doi.org/10.3390/geosciences13040110
Vespasiano G, Cianflone G, Taussi M, De Rosa R, Dominici R, Apollaro C. Shallow Geothermal Potential of the Sant’Eufemia Plain (South Italy) for Heating and Cooling Systems: An Effective Renewable Solution in a Climate-Changing Society. Geosciences. 2023; 13(4):110. https://doi.org/10.3390/geosciences13040110
Chicago/Turabian StyleVespasiano, Giovanni, Giuseppe Cianflone, Marco Taussi, Rosanna De Rosa, Rocco Dominici, and Carmine Apollaro. 2023. "Shallow Geothermal Potential of the Sant’Eufemia Plain (South Italy) for Heating and Cooling Systems: An Effective Renewable Solution in a Climate-Changing Society" Geosciences 13, no. 4: 110. https://doi.org/10.3390/geosciences13040110
APA StyleVespasiano, G., Cianflone, G., Taussi, M., De Rosa, R., Dominici, R., & Apollaro, C. (2023). Shallow Geothermal Potential of the Sant’Eufemia Plain (South Italy) for Heating and Cooling Systems: An Effective Renewable Solution in a Climate-Changing Society. Geosciences, 13(4), 110. https://doi.org/10.3390/geosciences13040110