Analysis of Enhanced Geothermal System Development Scenarios for District Heating and Cooling of the Göttingen University Campus
Abstract
:1. Introduction
2. Background
2.1. Geological Setting
- The lowermost unit (below 1500 m) represents low-grade metamorphic basement mainly consisting of Devonian and Carboniferous metasedimentary and metavolcanic successions (greywackes, slates, quartzites, cherts, diabase) that have been folded and thrusted during the Variscan Orogeny in the late Carboniferous;
- A Permian sedimentary sequence (several hundred meters of thickness) on top of the basement unit. It starts with either no or only locally deposited metavolcanics or sandstones of the Rotliegend as well as sequences of rock salt, potash salt, anhydrite, dolomite and clay-dominated layers of the Zechstein age;
- The uppermost major unit comprises the sedimentary cover (500 to 800 m of thickness) made up mainly of sandstones, clay rocks and limestones of the Triassic age (Buntsandstein, Muschelkalk and Keuper).
2.2. Current Energy System of the Campus
2.3. Initial Data and Scenarios
3. Materials and Methods
- —cost of hydraulic stimulation; assumed to be 2 M€/well.
- —cost of the main pipelines from the site to the campus (distribution pipelines are already a part of the existing HTDH network and not included here, and the cost of the planned distribution LTDH network is also not included); derived from work [66].
- —cost of equipment (pumps, heat exchangers, piping valves, auxiliaries), which can be calculated as follows:
- —cost of circulation pumps for district heating network. The values were obtained from price lists of manufacturers.
- —cost of surface heat exchangers; average specific cost is 0.009 M€/MWth [61].
- —cost of piping valves and auxiliaries; assumed to be 25% of the equipment cost.
- —annual cost of electricity for pumping. Submersible pumps’ electricity consumption was assumed to be 10% of the total heat production from EGS [67,71]. For the circulation pumps in the district heating network, specific values from Table 2 were used. The electricity price for non-households in Germany in 2020 was 178 €/MWhel [72].
- —annual cost of labor [64].
- —annual cost of maintenance and repair [64].
- —annual cost of insurance and legal assistance [64].
4. Results
4.1. Heat Demand of the Campus and Potential Heat Supply from EGS
4.2. Economic and Ecological Results
4.3. Sensitivity Analysis
5. Discussion
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- BMWi. Renewable Energy Sources in Figures. National and International Development 2019; BMWi: Berlin, Germany, 2020; p. 88. [Google Scholar]
- Bayer, P.; Attard, G.; Blum, P.; Menberg, K. The geothermal potential of cities. Renew. Sustain. Energy Rev. 2019, 106, 17–30. [Google Scholar] [CrossRef]
- Lu, S.M. A global review of enhanced geothermal system (EGS). Renew. Sustain. Energy Rev. 2018, 81, 2902–2921. [Google Scholar] [CrossRef]
- Anderson, A.; Rezaie, B. Geothermal technology: Trends and potential role in a sustainable future. Appl. Energy 2019, 248, 18–34. [Google Scholar] [CrossRef]
- Shortall, R.; Davidsdottir, B.; Axelsson, G. Geothermal energy for sustainable development: A review of sustainability impacts and assessment frameworks. Renew. Sustain. Energy Rev. 2015, 44, 391–406. [Google Scholar] [CrossRef]
- Olasolo, P.; Juárez, M.C.; Morales, M.P.; Damico, S.; Liarte, I.A. Enhanced geothermal systems (EGS): A review. Renew. Sustain. Energy Rev. 2016, 50, 133–144. [Google Scholar] [CrossRef]
- Jain, C.; Vogt, C.; Clauser, C. Maximum potential for geothermal power in Germany based on engineered geothermal systems. Geotherm. Energy 2015, 3:15, 1–20. [Google Scholar] [CrossRef] [Green Version]
- Chamorro, C.R.; García-Cuesta, J.L.; Mondéjar, M.E.; Pérez-Madrazo, A. Enhanced geothermal systems in Europe: An estimation and comparison of the technical and sustainable potentials. Energy 2014, 65, 250–263. [Google Scholar] [CrossRef]
- Garapati, N.; Alonge, O.B.; Hall, L.; Irr, V.J.; Zhang, Y.; Smith, J.D.; Jeanne, P.; Doughty, C. Feasibility of development of geothermal deep direct-use district heating and cooling system at west Virginia university campus-Morgantown, WV. In Proceedings of the 44th Workshop on Geothermal Reservoir Engineering Stanford University, Stanford, CA, USA, 11–13 February 2019; p. 12. [Google Scholar]
- Gustafson, J.O.; Smith, J.D.; Beyers, S.M.; Aswad, J.A.; Jordan, T.E.; Tester, J.W.; Ming Khan, T. Risk reduction in geothermal deep direct-use development for district heating: A cornell university case study. In Proceedings of the 44th Workshop on Geothermal Reservoir Engineering Stanford University, Stanford, CA, USA, 11–13 February 2019; p. 23. [Google Scholar]
- Dalmais, E.; Genter, A.; Trullenque, G.; Leoutre, E.; Leiss, B.; Wagner, B.; Mintsa, A.C.; Bär, K.; Rajsl, I. MEET Project: Toward the spreading of EGS across Europe. In Proceedings of the European Geothermal Congress, Den Haag, The Netherlands, 11–14 June 2019; p. 8. [Google Scholar]
- Menberg, K.; Pfister, S.; Blum, P.; Bayer, P. A matter of meters: State of the art in the life cycle assessment of enhanced geothermal systems. Energy Environ. Sci. 2016, 9, 2720–2743. [Google Scholar] [CrossRef]
- Chavot, P.; Heimlich, C.; Masseran, A.; Serrano, Y.; Zoungrana, J.; Bodin, C. Social shaping of deep geothermal projects in Alsace: Politics, stakeholder attitudes and local democracy. Geotherm. Energy 2018, 6, 1–21. [Google Scholar] [CrossRef]
- Ragnarsson, Á; Óladóttir, A.A.; Hauksdóttir, S.; Maury, J.; Maurel, C.; Manzella, A.; Ámannsson, H.; Drouin, V.; Haraldsdóttir, S.H.; Guðgeirsdóttir, G.; et al. Report on Environmental Concerns. Overall State of the Art on Deep Geothermal Environmental Data; Geoenvi. 2021. Available online: https://www.geoenvi.eu/publications/report-on-environmental-concerns-overall-state-of-the-art-on-deep-geothermal-environmental-data/ (accessed on 7 June 2021).
- Genter, A.; Evans, K.; Cuenot, N.; Fritsch, D.; Sanjuan, B. Contribution of the exploration of deep crystalline fractured reservoir of Soultz to the knowledge of enhanced geothermal systems (EGS). Comptes Rendus. Geosci. 2010, 342, 502–516. [Google Scholar] [CrossRef]
- Pratiwi, A.; Ravier, G.; Genter, A. Life-cycle climate-change impact assessment of enhanced geothermal system plants in the Upper Rhine Valley. Geothermics 2018, 75, 26–39. [Google Scholar] [CrossRef]
- Breede, K.; Dzebisashvili, K.; Liu, X.; Falcone, G. A systematic review of enhanced (or engineered) geothermal systems: Past, present and future. Geotherm. Energy 2013, 1, 4. [Google Scholar] [CrossRef] [Green Version]
- Mouchot, J.; Ravier, G.; Seibel, O.; Pratiwi, A. Deep geothermal plants operation in upper Rhine graben: Lessons learned. In Proceedings of the European Geothermal Congress 2019, Den Haag, The Netherlands, 11–14 June 2019; pp. 1–8. [Google Scholar]
- Meng, N.; Li, T.; Jia, Y.; Qin, H.; Liu, Q.; Zhao, W.; Lei, G. Techno-economic performance comparison of enhanced geothermal system with typical cycle configurations for combined heating and power. Energy Convers. Manag. 2020, 205, 112409. [Google Scholar] [CrossRef]
- Moya, D.; Aldás, C.; Kaparaju, P. Geothermal energy: Power plant technology and direct heat applications. Renew. Sustain. Energy Rev. 2018, 94, 889–901. [Google Scholar] [CrossRef]
- Wei, G.; Meng, J.; Du, X.; Yang, Y. Performance analysis on a hot dry rock geothermal resource power generation system based on Kalina cycle. Energy Procedia 2015, 75, 937–945. [Google Scholar] [CrossRef] [Green Version]
- Raos, S.; Ilak, P.; Rajšl, I.; Bilić, T.; Trullenque, G. Multiple-criteria decision-making for assessing the enhanced geothermal systems. Energies 2019, 12, 1597. [Google Scholar] [CrossRef] [Green Version]
- Sanyal, S.K.; Morrow, J.W.; Butler, S.J.; Robertson-Tait, A. Is EGS commercially feasible? In Proceedings of the Annual Meeting of the Geothermal Resources Council 2007: Renewable Baseload Energy: Geothermal Heat Pumps to Engineered Reservoirs, Reno, NV, USA, 30 September–3 October 2007; p. 10. [Google Scholar]
- Sanyal, S.K.; Morrow, J.W.; Butler, S.J.; Robertson-Tait, A. Cost of electricity from enhanced geothermal systems. In Proceedings of the 32nd Workshop on Geothermal Reservoir Engineering, Stanford, CA, USA, 22–24 January 2007; p. 11. [Google Scholar]
- Van Erdeweghe, S.; Van Bael, J.; Laenen, B.; D’haeseleer, W. Feasibility study of a low-temperature geothermal power plant for multiple economic scenarios. Energy 2018, 155, 1004–1012. [Google Scholar] [CrossRef]
- Heidinger, P. Integral modeling and financial impact of the geothermal situation and power plant at Soultz-sous-Forêts. Comptes Rendus Geosci. 2010, 342, 626–635. [Google Scholar] [CrossRef]
- Cardemil, J.M.; Cortés, F.; Díaz, A.; Escobar, R. Thermodynamic evaluation of solar-geothermal hybrid power plants in northern Chile. Energy Convers. Manag. 2016, 123, 348–361. [Google Scholar] [CrossRef]
- Sener, A.C.; Van Dorp, J.R.; Keith, J.D. Perspectives on the economics of geothermal power. In Proceedings of the Transactions—Geothermal Resources Council, Reno, NV, USA, 4–7 October 2009; p. 8. [Google Scholar]
- Olasolo, P.; Juárez, M.C.; Olasolo, J.; Morales, M.P.; Valdani, D. Economic analysis of Enhanced Geothermal Systems (EGS). A review of software packages for estimating and simulating costs. Appl. Therm. Eng. 2016, 104, 647–658. [Google Scholar] [CrossRef]
- Renewable Power Generation Costs in 2019; International Renewable Energy Agency: Abu Dhabi, United Arab Emirates, 2020; 144p, Available online: https://www.irena.org/-/media/Files/IRENA/Agency/Publication/2020/Jun/IRENA_Power_Generation_Costs_2019.pdf (accessed on 7 June 2021).
- Kost, C.; Shammugam, S.; Jülch, V.; Nguyen, H.-T.; Schlegl, T. Stromgestehungskosten Erneuerbare Energien; Fraunhofer-Institut für Solare Energiesysteme ISE: Freiburg, Germany, 2018; 44p. [Google Scholar]
- Lazard. Lazard’s levelized cost of energy analysis—Version 13.0; Lazard: Hamilton, Bermuda, 2019; 20p. [Google Scholar]
- Levelized Cost and Levelized Avoided Cost of New Generation Resources in the Annual Energy Outlook 2020; U.S. Energy Information Administration: Washington, DC, USA, 2020; 22p.
- Aghahosseini, A.; Breyer, C. From hot rock to useful energy: A global estimate of enhanced geothermal systems potential. Appl. Energy 2020, 279, 115769. [Google Scholar] [CrossRef]
- Beckers, K.F.; Lukawski, M.Z.; Anderson, B.J.; Moore, M.C.; Tester, J.W. Levelized costs of electricity and direct-use heat from Enhanced Geothermal Systems. J. Renew. Sustain. Energy 2014, 6, 013141. [Google Scholar] [CrossRef]
- Willems, C.J.L.; Nick, H.M. Towards optimisation of geothermal heat recovery: An example from the West Netherlands Basin. Appl. Energy 2019, 247, 582–593. [Google Scholar] [CrossRef]
- Pathak, V.; Babadagli, T.; Majorowicz, J.A.; Unsworth, M.J. Evaluation of engineered geothermal systems as a heat source for oil sands production in Northern Alberta. Nat. Resour. Res. 2014, 23, 247–265. [Google Scholar] [CrossRef]
- Galantino, C.R.; Beyers, S.; Lindsay Anderson, C.; Tester, J.W. Optimizing Cornell’s future geothermal district heating performance through systems engineering and simulation. Energy Build. 2021, 230, 110529. [Google Scholar] [CrossRef]
- Gładysz, P.; Sowiżdżał, A.; Miecznik, M.; Pająk, L. Carbon dioxide-enhanced geothermal systems for heat and electricity production Energy and economic analyses for central Poland. Energy Convers. Manag. 2020, 220, 113142. [Google Scholar] [CrossRef]
- IEA. Germany 2020—Energy Policy Review; International Energy Agency: Paris, France, 2020; 229p. [Google Scholar]
- Rubczyński, A.; Rączka, J.; Macuk, R. Good heating practices from Denmark and Germany. Conclusions for Poland; Forum Energii: Warsaw, Poland, 2018; 84p. [Google Scholar]
- Trullenque, G.; Genter, A.; Leiss, B.; Wagner, B.; Bouchet, R.; Léoutre, E.; Malnar, B.; Bär, K.; Rajšl, I. Upscaling of EGS in Different Geological Conditions: A European Perspective. In Proceedings of the 43rd Workshop on Geothermal Reservoir Engineering Stanford University, Stanford, CA, USA, 12–14 February 2018; pp. 1–10. [Google Scholar]
- Leiss, B.; Wagner, B. EU-Projekt MEET: Neue Ansätze “Enhanced Geothermal Systems (EGS)”—Göttinger Unicampus als Demoprojekt. Geotherm. Energie 2019, 91, 26–28. [Google Scholar] [CrossRef]
- Leiss, B.; Vollbrecht, A.; Tanner, D.; Wemmer, K. Tiefengeothermisches Potential in der Region Göttingen—geologische Rahmenbedingungen. In Neue Untersuchungen zur Geologie der Leinetalgrabenstruktur—Bausteine zur Erkundung des geothermischen Nutzungspotentials in der Region Göttingen; Leiss, B., Tanner, D., Vollbrecht, A., Arp, G., Eds.; Universitätsverlag Göttingen: Göttingen, Germany, 2011; pp. 163–170. [Google Scholar]
- Wang, G.; Song, X.; Shi, Y.; Yang, R.; Yulong, F.; Zheng, R.; Li, J. Heat extraction analysis of a novel multilateral-well coaxial closed-loop geothermal system. Renew. Energy 2021, 163, 974–986. [Google Scholar] [CrossRef]
- Lea, E. A Step Towards A Lower Carbon Future: Integrating Closed Loop Geothermal Technology in District Cooling Applications; University of Calgary: Calgary, AB, Canada, 2020; 79p. [Google Scholar]
- Leiss, B.; Romanov, D.; Wagner, B. Risks and Challenges of the Transition to an Integrated Geothermal Concept for the Göttingen University Campus. In Proceedings of the 1st Geoscience & Engineering in Energy Transition Conference, Virtual Conference, 16–18 November 2020; pp. 1–4. Available online: https://www.earthdoc.org/content/papers/10.3997/2214-4609.202021044 (accessed on 7 June 2021).
- Lund, H.; Werner, S.; Wiltshire, R.; Svendsen, S.; Thorsen, J.E.; Hvelplund, F.; Mathiesen, B.V. Generation district heating (4GDH). integrating smart thermal grids into future sustainable energy systems. Energy 2014, 68, 1–11. [Google Scholar] [CrossRef]
- Kaarup Olsen, P.; Holm Christiansen, C.; Hofmeister, M.; Svend Svendsen, J.-E.T. Guidelines for Low-Temperature District Heating. EUDP 2010-II Full-Scale Demonstr. Low-Temp. Dist. Heat. Exist. Build. 2014, 68, 1–43. [Google Scholar]
- Leiss, B.; Wagner, B.; Heinrichs, T.; Romanov, D.; Tanner, D.; Vollbrecht, A.; Wemmer, K. Integrating deep, medium and shallow geothermal energy into district heating and cooling system as an energy transition approach for the Göttingen University Campus. In Proceedings of the World Geothermal Congress 2021, Reykjavik, Iceland, 24–27 October 2021; pp. 1–9. [Google Scholar]
- Agemar, T.; Suchi, E.; Moeck, I. Die Rolle der Tiefen Geothermie bei der Wärmewende—Wie Deutschland 60% Erneuerbare Wärme bis 2050 Schaffen Könnte; LIAG: Hannover, Germany, 2018; 14p. [Google Scholar]
- Lukosevicius, V. Thermal Energy Prodcution from Low Temperature Geothermal Brine—Technological Aspects and Energy Efficiency; United Nations University: Tokyo, Japan, 1993; p. 42. [Google Scholar]
- Bauer, M.; Freeden, W.; Jacobi, H.; Neu, T. Handbuch Tiefe Geothermie. Prospektion, Exploration, Realisierung, Nutzung; Springer: Berlin/Heidelberg, Germany, 2014; 867p. [Google Scholar]
- CO2-Bepreisung. Available online: https://www.bundesregierung.de/breg-de/themen/klimaschutz/co2-bepreisung-1673008 (accessed on 12 December 2020).
- Carbon Taxes in Europe. Available online: https://taxfoundation.org/carbon-taxes-in-europe-2020/ (accessed on 16 April 2021).
- International Energy Agency District Heating. IEA-ETSAP Techonology Brief E16. ETSAP Energy Technol. Syst. Anal. Program. 2013, 7. Available online: https://iea-etsap.org/E-TechDS/PDF/E16_DistrHeat_EA_Final_Jan2013_GSOK.pdf (accessed on 7 June 2021).
- Pan, S.Y.; Gao, M.; Shah, K.J.; Zheng, J.; Pei, S.L.; Chiang, P.C. Establishment of enhanced geothermal energy utilization plans: Barriers and strategies. Renew. Energy 2019, 132, 19–32. [Google Scholar] [CrossRef]
- Stefánsson, V. Investment cost for geothermal power plants. Geothermics 2002, 31, 263–272. [Google Scholar] [CrossRef]
- GEORISK: Providing financial de-risking schemes for geothermal. Available online: https://www.georisk-project.eu/wp-content/uploads/2020/08/D6.4-GEORISK_Brochure_smaller.pdf (accessed on 11 December 2020).
- Deutscher Wetterdienst. Available online: https://www.dwd.de/EN/Home/home_node.html (accessed on 11 December 2020).
- Bertani, R. Deep geothermal energy for heating and cooling. In Renewable Heating and Cooling: Technologies and Applications; Woodhead Publishing: Sawston, UK, 2016; pp. 67–88. ISBN 9781782422181. [Google Scholar]
- Beckers, K.F.; McCabe, K. GEOPHIRES v2.0: Updated geothermal techno-economic simulation tool. Geotherm. Energy 2019, 7. [Google Scholar] [CrossRef]
- Eyerer, S.S.; Hofbauer, S.C.; Wieland, C.; Zosseder, K.; Bauer, W.; Baumann, T.; Heberle, F.; Hackl, C.; Irl, M.; Spliethoff, H. Potential der Hydrothermalen Geothermie zur Stromerzeugung in Deutschland; Geothermie-Allianz Bayern: Munich, Germany, 2017; 53p, Available online: https://www.mse.tum.de/fileadmin/w00bvc/www/gab/Potential_der_hydrothermalen_Geothermie_zur_Stromerzeugung_in_Deutschland.pdf (accessed on 7 June 2021).
- Weinand, J.M.; McKenna, R.; Kleinebrahm, M.; Mainzer, K. Assessing the contribution of simultaneous heat and power generation from geothermal plants in off-grid municipalities. Appl. Energy 2019, 255, 113824. [Google Scholar] [CrossRef]
- Yost, K.; Valentin, A.; Einstein, H.H. Estimating cost and time of wellbore drilling for Engineered Geothermal Systems (EGS)—Considering uncertainties. Geothermics 2015, 53, 85–99. [Google Scholar] [CrossRef]
- Vivian, J.; Emmi, G.; Zarrella, A.; Jobard, X.; Pietruschka, D.; De Carli, M. Evaluating the cost of heat for end users in ultra low temperature district heating networks with booster heat pumps. Energy 2018, 153, 788–800. [Google Scholar] [CrossRef]
- Danish Energy Agency. Technology Data for Generation of Electricity and District Heating; DEA: Copenhagen, Denmark, 2020; 414p. [Google Scholar]
- Schlagermann, P. Exergoökonomische Analyse geothermischer Strombereitstellung am Beispiel des Oberrheingrabens; Dr. Hut: München, Germany, 2014. [Google Scholar]
- Mines, G. GETEM User Manual; INL: Idaho Falls, ID, USA, 2016; 194p. [Google Scholar]
- Federal reserve bank of, St. Luis Producer Price Index by Commodity: Machinery and Equipment: Pumps, Compressors, and Equipment. Available online: https://fred.stlouisfed.org/series/WPU1141 (accessed on 11 December 2020).
- Majorowicz, J.; Grasby, S.E. Deep geothermal energy in Canadian sedimentary basins vs. fossils based energy we try to replace—Exergy [KJ/KG] compared. Renew. Energy 2019, 141, 259–277. [Google Scholar] [CrossRef]
- The Statistical Office of the European Union. Available online: https://ec.europa.eu/eurostat (accessed on 12 December 2020).
- IEA. Projected Costs of Generating Electricity 2015; IAE: Paris, France, 2015. [Google Scholar]
- Short, W.; Packey, D.; Holt, T. A Manual for the Economic Evaluation of Energy Efficiency and Renewable Energy Technologies; NREL: Golden, CO, USA, 1995; 121p. [Google Scholar]
- Buck, M.; Redl, C.; Hein, F.; Jones, D. The European Power Sector in 2019; Agora Energiewende and Sandbag: Berlin, Germany, 2020; 48p. [Google Scholar]
- Juhrich, K. CO2 Emission Factors for Fossil Fuels; Umweltbundesamt: Dessau-Roßlau, Germany, 2016; 48p. [Google Scholar]
- Eyerer, S.; Schifflechner, C.; Hofbauer, S.; Bauer, W.; Wieland, C.; Spliethoff, H. Combined heat and power from hydrothermal geothermal resources in Germany: An assessment of the potential. Renew. Sustain. Energy Rev. 2020, 120, 109661. [Google Scholar] [CrossRef]
- Werner, S. European District Heating Price Series; Energiforsk: Stockholm, Sweden, 2016; 58p. [Google Scholar]
- Romanov, D.; Leiss, B. Summary of Göttingen Site Optimization for Integration of Geothermal Resources in the Energy Supply; MEET Report, Deliverable D6.12; Universitätsenergie Göttingen: Göttingen, Germany, 2021; 22p. [Google Scholar]
- Kunze, C.; Hertel, M. Contested deep geothermal energy in Germany—The emergence of an environmental protest movement. Energy Res. Soc. Sci. 2017, 27, 174–180. [Google Scholar] [CrossRef]
- Deichmann, N.; Giardini, D. Earthquakes induced by the stimulation of an enhanced geothermal system below Basel (Switzerland). Seismol. Res. Lett. 2009, 80, 784–798. [Google Scholar] [CrossRef]
- Knoblauch, T.A.K.; Trutnevyte, E. Siting enhanced geothermal systems (EGS): Heat benefits versus induced seismicity risks from an investor and societal perspective. Energy 2018, 164, 1311–1325. [Google Scholar] [CrossRef]
Case | [km] | [%] | [%] | [%] | [%] | [€/t] | [%] | [years] | [%/years] | [°C] | ||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Unfavorable deviation | 10 | 130 | 130 | 9.1 | ___ | ___ | 15 | 8 | 2 | 70 | ||
Reference case | 5 | 100 | 100 | 7.0 | 0 | 55 | 10 | 6 | 1 | 60 | ||
Favorable deviation | 0.5 | 85 | 85 | 6.0 | 50 | 80 | 65 | 100 | 5 | 4 | 0.5 | 55 |
[km] | [%] | [kWel/MWth] |
---|---|---|
0.5 | 5 | 5 |
5 | 10 | 7.5 |
10 | 15 | 10 |
Activity | Year | ||||||||
---|---|---|---|---|---|---|---|---|---|
0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | |
Feasibility study | |||||||||
Permitting and public survey | |||||||||
Research well financing (~45%) | |||||||||
Research well drilling | |||||||||
Research work | |||||||||
Stimulation tests | |||||||||
Injection well financing (~37%) | |||||||||
Injection well drilling | |||||||||
Transformation of the well: research → production | |||||||||
Stimulation tests | |||||||||
Surface infrastructure financing (~18%) | |||||||||
Surface infrastructure construction | |||||||||
Start-up and commissioning | |||||||||
Start of operation |
Application | Type of Heat Consumer | Expected Heat Demand (100%) [GWhth/a] | CO2 Emissions from Fossil-Fuel System [t/a] | Potential Heat Supply from EGS | ||
---|---|---|---|---|---|---|
Minimum [%] | Average [%] | Maximum [%] | ||||
Heating | New buildings | 110.8 | 27,991 | 6.8 | 30.8 | 60.6 |
Remaining buildings | 78.8 | 19,920 | 0.0 | 5.0 | 15.3 | |
Buildings total | 189.6 | 47,910 | 4.0 | 20.1 | 41.8 | |
Cooling | Absorption chillers | 19.9 | 5029 | 0.0 | 6.1 | 34.0 |
Heating & Cooling | Total | 209.5 | 52,939 | 3.6 | 18.8 | 41.1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Romanov, D.; Leiss, B. Analysis of Enhanced Geothermal System Development Scenarios for District Heating and Cooling of the Göttingen University Campus. Geosciences 2021, 11, 349. https://doi.org/10.3390/geosciences11080349
Romanov D, Leiss B. Analysis of Enhanced Geothermal System Development Scenarios for District Heating and Cooling of the Göttingen University Campus. Geosciences. 2021; 11(8):349. https://doi.org/10.3390/geosciences11080349
Chicago/Turabian StyleRomanov, Dmitry, and Bernd Leiss. 2021. "Analysis of Enhanced Geothermal System Development Scenarios for District Heating and Cooling of the Göttingen University Campus" Geosciences 11, no. 8: 349. https://doi.org/10.3390/geosciences11080349
APA StyleRomanov, D., & Leiss, B. (2021). Analysis of Enhanced Geothermal System Development Scenarios for District Heating and Cooling of the Göttingen University Campus. Geosciences, 11(8), 349. https://doi.org/10.3390/geosciences11080349