Using 87Sr/86Sr LA-MC-ICP-MS Transects within Modern and Ancient Calcite Crystals to Determine Fluid Flow Events in Deep Granite Fractures
Abstract
:1. Introduction
2. Geological Setting
2.1. Äspö Hard Rock Laboratory—Site for Sampling of Modern Calcite and Water
2.2. Forsmark and Laxemar-Äspö—Sites for Sampling of Ancient Calcite and Modern Water
3. Materials and Methods
4. Results
4.1. Modern Calcite and Waters
4.2. Fracture Coating Calcite
5. Discussion
5.1. 87Sr/86Sr in Calcite as a Hydrochemical Marker
5.2. Calcite-Water Comparisons in Water Conductive Fractures
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Négrel, P.; Fouillac, C.; Brach, M. A strontium isotopic study of mineral and surface waters from the Cézallier (Massif Central, France): Implications for mixing processes in areas of disseminated emergences of mineral waters. Chem. Geol. 1997, 135, 89–101. [Google Scholar] [CrossRef]
- Luís, A.T.; Durães, N.; da Silva, E.F.; Ribeiro, S.; Silva, A.J.F.; Patinha, C.; Almeida, S.F.P.; Azevedo, M.R. Tracking multiple Sr sources through variations in 87Sr/86Sr ratios of surface waters from the Aljustrel massive sulphide mining area: Geological versus anthropogenic inputs. Appl. Geochem. 2019, 102, 108–120. [Google Scholar] [CrossRef]
- Brenot, A.; Petelet-Giraud, E.; Gourcy, L. Insight from surface water-groundwater interactions in an alluvial aquifer: Contributions of δ2H and δ18O of water, δ34SSO4 and δ18OSO4 of sulfates, 87Sr/86Sr ratio. Procedia Earth Planet. Sci. 2015, 13, 84–87. [Google Scholar] [CrossRef] [Green Version]
- Schmidt, G.; AlNajem, S.; Isenbeck-Schröter, M.; Freundt, F.; Kraml, M.; Eichstädter, R.; Aeschbach, W. Ascending deep fluids into shallow aquifer at hydraulically active segments of the western boundary fault of the Rhine Graben, Germany: Constraints from 87Sr/86Sr ratios. Procedia Earth Planet. Sci. 2017, 17, 81–84. [Google Scholar] [CrossRef]
- Baublys, K.A.; Hamilton, S.K.; Hofmann, H.; Golding, S.D. A strontium (87Sr/86Sr) isotopic study on the chemical evolution and migration of groundwaters in a low-rank coal seam gas reservoir (Surat Basin, Australia). Appl. Geochem. 2019, 101, 1–18. [Google Scholar] [CrossRef]
- Peterman, Z.E.; Wallin, B. Synopsis of strontium isotope variations in groundwater at Äspö, southern Sweden. Appl. Geochem. 1999, 14, 939–951. [Google Scholar] [CrossRef]
- Negrel, P.; Casanova, J.; Blomqvist, R.; Kaija, J.; Frape, S. Strontium isotopic characterization of the Palmottu hydrosystem (Finland): Water–rock interaction and geochemistry of groundwaters. Geofluids 2003, 3, 161–175. [Google Scholar] [CrossRef]
- McNutt, R.H.; Gascoyne, M.; Kamineni, D.C. 87Sr/86Sr values in groundwaters of the East Bull Lake pluton, superior province, Ontario, Canada. Appl. Geochem. 1987, 2, 93–101. [Google Scholar] [CrossRef]
- Widerlund, A.; Andersson, P.S. Late Holocene freshening of the Baltic Sea derived from high-resolution strontium isotope analyses of mollusk shells. Geology 2011, 39, 187–190. [Google Scholar] [CrossRef]
- van Geldern, R.; Joachimski, M. Carbon, oxygen and strontium isotope records of Devonian brachiopod shell calcite. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2006, 240, 47–67. [Google Scholar] [CrossRef]
- Adams, C.J.; Campbell, H.J.; Griffin, W.L. Isotopic microanalysis of seawater strontium in biogenic calcite to assess subsequent rehomogenisation during metamorphism. Chem. Geol. 2005, 220, 67–82. [Google Scholar] [CrossRef]
- Veizer, J.; Ala, D.; Azmy, K.; Bruckschen, P.; Buhl, D.; Bruhn, F.; Carden, G.A.F.; Diener, A.; Ebneth, S.; Godderis, Y.; et al. 87Sr/86Sr, δ13C and δ18O evolution of Phanerozoic seawater. Chem. Geol. 1999, 161, 59–88. [Google Scholar] [CrossRef] [Green Version]
- Capo, R.C.; DePaolo, D.J. Seawater strontium isotopic variations from 2.5 million years ago to the present. Science 1990, 249, 51–55. [Google Scholar] [CrossRef] [PubMed]
- Veizer, J. Trace elements and isotopes in sedimentary carbonates. Rev. Mineral. Geochem. 1983, 11, 265–299. [Google Scholar]
- McArthur, J.M.; Rio, D.; Massari, F.; Castradori, D.; Bailey, T.R.; Thirlwall, M.; Houghton, S. A revised pliocene record for marine-87Sr/86Sr used to date an interglacial event recorded in the Cockburn Island Formation, Antarctic Peninsula. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2006, 242, 126–136. [Google Scholar] [CrossRef]
- McNutt, R.H.; Frape, S.K.; Fritz, P.; Jones, M.G.; MacDonald, I.M. The 87Sr/86Sr values of canadian shield brines and fracture minerals with applications to groundwater mixing, fracture history, and geochronology. Geochim. Cosmochim. Acta 1990, 54, 205–215. [Google Scholar] [CrossRef]
- Frape, S.K.; Blyth, A.; Blomqvist, R.; McNutt, R.H.; Gascoyne, M. 5.17-Deep fluids in the continents: II. crystalline rocks. In Treatise on Geochemistry; Pergamon: Oxford, UK, 2003; pp. 541–580. [Google Scholar]
- McNutt, R.H. Strontium Isotopes. In Environmental Tracers in Subsurface Hydrology; Cook, P., Herczeg, A.L., Eds.; Springer: Berlin/Heidelberg, Germany, 2000; pp. 233–260. [Google Scholar]
- Négrel, P. Geochemical study of a granitic area—The margeride mountains, France: Chemical element behavior and 87Sr/86Sr constraints. Aquat. Geochem. 1999, 5, 125–165. [Google Scholar] [CrossRef]
- Tullborg, E.-L.; Drake, H.; Sandström, B. Palaeohydrogeology: A methodology based on fracture mineral studies. Appl. Geochem. 2008, 23, 1881–1897. [Google Scholar] [CrossRef]
- Horton, T.W.; Blum, J.D.; Craw, D.; Koons, P.O.; Chamberlain, C.P. Oxygen, carbon, and strontium isotopic constraints on timing and sources of crustal fluids in an active orogen: South Island, New Zealand. N. Z. J. Geol. Geophys. 2003, 46, 457–471. [Google Scholar] [CrossRef]
- Templeton, A.S.; Chamberlain, C.P.; Koons, P.O.; Craw, D. Stable isotopic evidence for mixing between metamorphic fluids and surface-derived waters during recent uplift of the Southern Alps, New Zealand. Earth Planet. Sci. Lett. 1998, 154, 73–92. [Google Scholar] [CrossRef]
- Sandström, B.; Tullborg, E.-L. Episodic fluid migration in the Fennoscandian Shield recorded by stable isotopes, rare earth elements and fluid inclusions in fracture minerals at Forsmark, Sweden. Chem. Geol. 2009, 266, 126–142. [Google Scholar] [CrossRef]
- Clauer, N.; Frape, S.K.; Fritz, B. Calcite veins of the Stripa granite (Sweden) as records of the origin of the groundwaters and their interactions with the granitic body. Geochim. Cosmochim. Acta 1989, 53, 1777–1781. [Google Scholar] [CrossRef]
- Vaselli, L.; Cortecci, G.; Tonarini, S.; Ottria, G.; Mussi, M. Conditions for veining and origin of mineralizing fluids in the Alpi Apuane (NW Tuscany, Italy): Evidence from structural and geochemical analyses on calcite veins hosted in Carrara marbles. J. Struct. Geol. 2012, 44, 76–92. [Google Scholar] [CrossRef]
- Uysal, I.T.; Feng, Y.-X.; Zhao, J.-X.; Bolhar, R.; Işik, V.; Baublys, K.A.; Yago, A.; Golding, S.D. Seismic cycles recorded in late Quaternary calcite veins: Geochronological, geochemical and microstructural evidence. Earth Planet. Sci. Lett. 2011, 303, 84–96. [Google Scholar] [CrossRef]
- Milodowski, A.E.; Bath, A.; Norris, S. Palaeohydrogeology using geochemical, isotopic and mineralogical analyses: Salinity and redox evolution in a deep groundwater system through Quaternary glacial cycles. Appl. Geochem. 2018, 97, 40–60. [Google Scholar] [CrossRef]
- Milodowski, A.E.; Tullborg, E.L.; Buil, B.; Gomez, P.; Turrero, M.-J.; Haszeldine, S.; England, G.; Gillespie, M.R.; Torres, T.; Ortiz, J.; et al. Application of Mineralogical, Petrological and Geochemical Tools for Evaluating the Palaeohydrogeological Evolution of the PADAMOT Study Sites. PADAMOT Project Technical Report WP2. 2005. Available online: http://nora.nerc.ac.uk/id/eprint/11494/ (accessed on 20 November 2008).
- Bath, A.; Milodowski, A.; Ruotsalainen, P.; Tullborg, E.-L.; Ruiz, A.C.; Aranyossy, J.-F. Evidences from mineralogy and geochemistry for the evolution of groundwater systems during the quaternary for use in radioactive waste repository safety assessment (EQUIP project). In EUR Report 19613; European Commission: Luxembourg, 2000. [Google Scholar]
- Frape, S.K.; Blyth, A.R.; Jones, M.G.; Blomqvist, R.; Tullborg, E.-L.; Mcnutt, R.H.; Mcdermott, F.; Ivanovich, M. A comparison of calcite fracture mineralogy and geochemistry for the Canadian and Fennoscandian shields. In Proceedings of the 7th International Symposium on Water-Rock Interaction; Kharaka, Y.K., Maest, S.A., Eds.; CRC Press: Boca Raton, FL, USA, 1992; pp. 787–791. [Google Scholar]
- Drake, H.; Tullborg, E.-L.; Hogmalm, K.J.; Åström, M.E. Trace metal distribution and isotope variations in low-temperature calcite and groundwater in granitoid fractures down to 1 km depth. Geochim. Cosmochim. Acta 2012, 84, 217–238. [Google Scholar] [CrossRef]
- Drake, H.; Tullborg, E.-L. Paleohydrogeological events recorded by stable isotopes, fluid inclusions and trace elements in fracture minerals in crystalline rock, Simpevarp area, SE Sweden. Appl. Geochem. 2009, 24, 715–732. [Google Scholar] [CrossRef]
- Maskenskaya, O.M.; Drake, H.; Broman, C.; Hogmalm, J.K.; Czuppon, G.; Åström, M.E. Source and character of syntaxial hydrothermal calcite veins in Paleoproterozoic crystalline rocks revealed by fine-scale investigations. Geofluids 2014, 14, 495–511. [Google Scholar] [CrossRef]
- Drake, H.; Heim, C.; Roberts, N.M.W.; Zack, T.; Tillberg, M.; Broman, C.; Ivarsson, M.; Whitehouse, M.J.; Åström, M.E. Isotopic evidence for microbial production and consumption of methane in the upper continental crust throughout the Phanerozoic eon. Earth Planet. Sci. Lett. 2017, 470, 108–118. [Google Scholar] [CrossRef] [Green Version]
- Drake, H.; Åström, M.E.; Heim, C.; Broman, C.; Åström, J.; Whitehouse, M.; Ivarsson, M.; Siljeström, S.; Sjövall, P. Extreme 13C-depletion of carbonates formed during oxidation of biogenic methane in fractured granite. Nat. Commun. 2015, 6, 7020. [Google Scholar] [CrossRef] [Green Version]
- Tillberg, M.; Drake, H.; Zack, T.; Kooijman, E.; Whitehouse, M.J.; Åström, M.E. In situ Rb-Sr dating of slickenfibres in deep crystalline basement faults. Sci. Rep. 2020, 10, 562. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Drake, H.; Whitehouse, M.J.; Heim, C.; Reiners, P.W.; Tillberg, M.; Hogmalm, K.J.; Dopson, M.; Broman, C.; Åström, M.E. Unprecedented 34S-enrichment of pyrite formed following microbial sulfate reduction in fractured crystalline rocks. Geobiology 2018, 16, 556–574. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tillberg, M.; Maskenskaya, O.M.; Drake, H.; Hogmalm, J.K.; Broman, C.; Fallick, A.E.; Åström, M.E. Fractionation of rare earth elements in greisen and hydrothermal veins related to a-type magmatism. Geofluids 2019, 20. [Google Scholar] [CrossRef] [Green Version]
- Sandström, B.; Tullborg, E.-L.; Larson, S.Å.; Page, L. Brittle tectonothermal evolution in the Forsmark area, central Fennoscandian Shield, recorded by paragenesis, orientation and 40Ar/39Ar geochronology of fracture minerals. Tectonophysics 2009, 478, 158–174. [Google Scholar] [CrossRef]
- Ying, Y.-C.; Chen, W.; Simonetti, A.; Jiang, S.-Y.; Zhao, K.-D. Significance of hydrothermal reworking for REE mineralization associated with carbonatite: Constraints from in situ trace element and C-Sr isotope study of calcite and apatite from the Miaoya carbonatite complex (China). Geochim. Cosmochim. Acta 2020, 280, 340–359. [Google Scholar] [CrossRef]
- Weber, M.; Wassenburg, J.A.; Jochum, K.P.; Breitenbach, S.F.M.; Oster, J.; Scholz, D. Sr-isotope analysis of speleothems by LA-MC-ICP-MS: High temporal resolution and fast data acquisition. Chem. Geol. 2017, 468, 63–74. [Google Scholar] [CrossRef]
- Drake, H.; Roberts, N.M.W.; Heim, C.; Whitehouse, M.J.; Siljeström, S.; Kooijman, E.; Broman, C.; Ivarsson, M.; Åström, E. Timing and origin of natural gas accumulation in the Siljan impact structure, Sweden. Nat. Commun. 2019, 10, 4736. [Google Scholar] [CrossRef]
- Campos-Alvarez, N.O.; Samson, I.M.; Fryer, B.J.; Ames, D.E. Fluid sources and hydrothermal architecture of the Sudbury Structure: Constraints from femtosecond LA-MC-ICP-MS Sr isotopic analysis of hydrothermal epidote and calcite. Chem. Geol. 2010, 278, 131–150. [Google Scholar] [CrossRef]
- Stanfors, R.; Rhen, I.; Tullborg, E.L.; Wikberg, P. Overview of geological and hydrogeological conditions of the Äspo Hard Rock Laboratory site. Appl. Geochem. 1999, 14, 819–834. [Google Scholar] [CrossRef]
- Bäckblom, G.; Stanfors, R.; Gustafson, G.; Rhen, I.; Wikberg, P.; Olsson, O.; Thegerström, C. Äspö Hard Rock Laboratory—Research, development and demonstration for deep disposal of spent nuclear fuel. Tunn. Undergr. Space Technol. 1997, 12, 385–406. [Google Scholar] [CrossRef]
- Mathurin, F.A.; Åström, M.E.; Laaksoharju, M.; Kalinowski, B.E.; Tullborg, E.-L. Effect of tunnel excavation on source and mixing of groundwater in a coastal granitoidic fracture network. Environ. Sci. Technol. 2012, 46, 12779–12786. [Google Scholar] [CrossRef] [PubMed]
- Louvat, D.; Michelot, J.L.; Aranyossy, J.F. Origin and residence time of salinity in the Äspö groundwater system. Appl. Geochem. 1999, 14, 917–925. [Google Scholar] [CrossRef]
- Laaksoharju, M.; Tullborg, E.-L.; Wikberg, P.; Wallin, B.; Smellie, J. Hydrogeochemical conditions and evolution at the Äspo HRL, Sweden. Appl. Geochem. 1999, 14, 835–859. [Google Scholar] [CrossRef]
- Mahara, Y.; Igarashi, T.; Hasegawa, T.; Miyakawa, K.; Tanaka, Y.; Kiho, K. Dynamic changes in hydrogeochemical conditions caused by tunnel excavation at the Aspo Hard Rock Laboratory (HRL), Sweden. Appl. Geochem. 2001, 16, 291–315. [Google Scholar] [CrossRef]
- Nilsson, A.-C.; Gimeno, M.J.; Tullborg, E.-L.; Mathurin, F.; Smellie, J. Hydrogeochemical Data Report. Site Descriptive Modelling Äspö SDM. SKB Report R-13-26; Swedish Nuclear Fuel and Waste Management Co. (SKB): Stockholm, Sweden, 2013. [Google Scholar]
- Drake, H.; Tullborg, E.-L.; Sandberg, B.; Blomfeldt, T.; Åström, M.E. Extreme fractionation and micro-scale variation of sulphur isotopes during bacterial sulphate reduction in Deep groundwater systems. Geochim. Cosmochim. Acta 2015, 161, 1–18. [Google Scholar] [CrossRef]
- Yu, C.; Drake, H.; Lopez-Fernandez, M.; Whitehouse, M.; Dopson, M.; Åström, M.E. Micro-scale isotopic variability of low-temperature pyrite in fractured crystalline bedrock—A large Fe isotope fractionation between Fe(II)aq/pyrite and absence of Fe-S isotope co-variation. Chem. Geol. 2019, 522, 192–207. [Google Scholar] [CrossRef]
- Drake, H.; Mathurin, F.A.; Zack, T.; Schäfer, T.; Roberts, N.M.W.; Whitehouse, M.; Karlsson, A.; Broman, C.; Åström, M.E. Incorporation of metals into calcite in a deep anoxic granite aquifer. Environ. Sci. Technol. 2018, 52, 493–502. [Google Scholar] [CrossRef] [Green Version]
- Curti, E. Coprecipitation of radionuclides with calcite: Estimation of partition coefficients based on a review of laboratory investigations and geochemical data. Appl. Geochem. 1999, 14, 433–445. [Google Scholar] [CrossRef]
- Stephens, M.B.; Fox, A.; Paul, L.P.; Simeonov, A.; Isaksson, H.; Hermanson, J.; Oehman, J. Geology Forsmark. Site Descriptive Modelling Forsmark Stage 2.2; SKB-R-07-45; Swedish Nuclear Fuel and Waste Management Co.: Stockholm, Sweden, 2007. [Google Scholar]
- Wahlgren, C.-H.; Hermanson, J.; Forssberg, O.; Triumf, C.A.; Drake, H.; Tullborg, E.L. Geological Description of Rock Domains and Deformation Zones in the Simpevarp and Laxemar Subareas. Preliminary Site Description Laxemar Subarea—Version 1.2 SKB Report R-05-69; Swedish Nuclear Fuel and Waste Management Co. (SKB): Stockholm, Sweden, 2006. [Google Scholar]
- Saintot, A.; Stephens, M.B.; Viola, G.; Nordgulen, O. Brittle tectonic evolution and paleostress field reconstruction in the southwestern part of the Fennoscandian Shield, Forsmark, Sweden. Tectonics 2011, 30. [Google Scholar] [CrossRef] [Green Version]
- Drake, H.; Ivarsson, M.; Tillberg, M.; Whitehouse, M.; Kooijman, E. Ancient microbial activity in deep hydraulically conductive fracture zones within the forsmark target area for geological nuclear waste disposal, sweden. Geosciences 2018, 8, 211. [Google Scholar] [CrossRef] [Green Version]
- Viola, G.; Ganerod, G.V.; Wahlgren, C.-H. Unravelling 1.5 Gyr of brittle deformation history in the Laxemar-Simpevarp area, SE Sweden: A contribution to the Swedish site investigation study for the disposal of highly radioactive nuclear waste. Tectonics 2009, 28, TC5007. [Google Scholar] [CrossRef]
- Drake, H.; Tullborg, E.-L.; Page, L. Distinguished multiple events of fracture mineralisation related to far-field orogenic effects in Paleoproterozoic crystalline rocks, Simpevarp area, SE Sweden. Lithos 2009, 110, 37–49. [Google Scholar] [CrossRef]
- Wallin, B.; Peterman, Z. Calcite fracture fillings as indicators of palaeohydrogeology at Laxemar at the Äspö Hard Rock Laboratory, southern Sweden. Appl. Geochem. 1999, 14, 953–962. [Google Scholar] [CrossRef]
- Drake, H.; Sandström, B.; Tullborg, E.-L. Mineralogy and Geochemistry of Rocks and Fracture Fillings from Forsmark and Oskarshamn: Compilation of Data for SR-Can; SKB Report R-06-109; Swedish Nuclear Fuel and Waste Management Co. (SKB): Stockholm, Sweden, 2006. [Google Scholar]
- Laaksoharju, M.; Smellie, J.A.T.; Tullborg, E.-L.; Wallin, B.; Drake, H.; Gascoyne, M.; Gimeno, M.; Gurban, I.; Hallbeck, L.; Molinero, J.; et al. Bedrock Hydrogeochemistry Laxemar. Site Descriptive Modelling SDM-Site Laxemar. SKB Report R-08-93; Swedish Nuclear Fuel and Waste Management Co. (SKB): Stockholm, Sweden, 2009. [Google Scholar]
- Laaksoharju, M.; Smellie, J.; Tullborg, E.-L.; Gimeno, M.; Molinero, J.; Gurban, L.; Hallbeck, L. Hydrogeochemical evaluation and modelling performed within the Swedish site investigation programme. Appl. Geochem. 2008, 23, 1761–1795. [Google Scholar] [CrossRef]
- Laaksoharju, M.; Smellie, J.; Tullborg, E.-L.; Gimeno, M.; Hallbeck, L.; Molinero, J.; Waber, N. Bedrock Hydrogeochemistry Forsmark. Site Descriptive Modelling. SDM-Site Forsmark; SKB Report R-08-47; Swedish Nuclear Fuel and Waste Management Co. (SKB): Stockholm, Sweden, 2008. [Google Scholar]
- Gómez, J.B.; Gimeno, M.J.; Auqué, L.F.; Acero, P. Characterisation and modelling of mixing processes in groundwaters of a potential geological repository for nuclear wastes in crystalline rocks of Sweden. Sci. Total Environ. 2014, 468–469, 791–803. [Google Scholar] [CrossRef]
- Gimeno, M.J.; Auqué, L.F.; Acero, P.; Gómes, J.B. Hydrogeochemical characterisation and modelling of groundwaters in a potential geological repository for spent nuclear fuel in crystalline rocks (Laxemar, Sweden). Appl. Geochem. 2014, 45, 50–71. [Google Scholar] [CrossRef]
- Emo, R.B.; Smit, M.A.; Schmitt, M.; Kooijman, E.; Scherer, E.E.; Sprung, P.; Bleeker, W.; Mezger, K. Evidence for evolved Hadean crust from Sr isotopes in apatite within Eoarchean zircon from the acasta gneiss complex. Geochim. Cosmochim. Acta 2018, 235, 450–462. [Google Scholar] [CrossRef]
- Kiel, S.; Glodny, J.; Birgel, D.; Bulot, L.G.; Campbell, K.A.; Gaillard, C.; Graziano, R.; Kaim, A.; Lazăr, L.; Sandy, M.R.; et al. The paleoecology, habitats, and stratigraphic range of the enigmatic cretaceous brachiopod peregrinella. PLoS ONE 2014, 9, e109260. [Google Scholar] [CrossRef] [Green Version]
- Mokadem, F.; Parkinson, I.J.; Hathorne, E.C.; Anand, P.; Allen, J.T.; Burton, K.W. High-precision radiogenic strontium isotope measurements of the modern and glacial ocean: Limits on glacial–interglacial variations in continental weathering. Earth Planet. Sci. Lett. 2015, 415, 111–120. [Google Scholar] [CrossRef]
- Smellie, J.; Tullborg, E.-L. Quality assurance and categorisation of groundwater samples from the Laxemar-Simpevarp area. In Background Complementary Hydrogeochemical Studies, Site Descriptive Modelling, SDM-Site Laxemar, SKB Report R-08-111, R-08-111; Kalinowski, B.E., Ed.; Swedish Nuclear Fuel and Waste Management Co. (SKB): Stockholm, Sweden, 2009; pp. 163–347. [Google Scholar]
- Drake, H.; Ivarsson, M.; Bengtson, S.; Heim, C.; Siljeström, S.; Whitehouse, M.J.; Broman, C.; Belivanova, V.; Åström, M.E. Anaerobic consortia of fungi and sulfate reducing bacteria in deep granite fractures. Nat. Commun. 2017, 8, 55. [Google Scholar] [CrossRef]
- Drake, H.; Hallbeck, L.; Rosdahl, A.; Tullborg, E.-L.; Wallin, B.; Sandberg, B.; Blomfeldt, T. Investigation of Sulphide Production in Core-Drilled Boreholes in Äspö Hard Rock Laboratory. Boreholes KA3110A, KA3385A and KA3105A. SKB Report TR-13-12; Swedish Nuclear Fuel and Waste Management Co. (SKB): Stockholm, Sweden, 2013. [Google Scholar]
- Faure, G.; Mensing, T.M. Isotopes: Principles and Applications, 3rd ed.; John Wiley & Sons: Hoboken, NJ, USA, 2005. [Google Scholar]
- Faure, G. Stable Isotope Geochemistry, 2nd ed.; John Wiley & Sons: New York, NY, USA, 1986; p. 589. [Google Scholar]
- Smellie, J.; Tullborg, E.-L.; Nilsson, A.-C.; Sandstroem, B.; Waber, N.; Gimeno, M.; Gascoyne, M. Explorative Analysis of Major Components and Isotopes. SDM-Site Forsmark; Report SKB R-08-84; Swedish Nuclear Fuel and Waste Management Co.: Stockholm, Sweden, 2008. [Google Scholar]
- Selroos, J.-O.; Follin, S. Overview of hydrogeological site-descriptive modeling conducted for the proposed high-level nuclear waste repository site at Forsmark, Sweden. Hydrogeol. J. 2014, 22, 295–298. [Google Scholar] [CrossRef]
- Andersson, J.; Skagius, K.; Winberg, A.; Lindborg, T.; Ström, A. Site-descriptive modelling for a final repository for spent nuclear fuel in Sweden. Environ. Earth Sci. 2013, 69, 1045–1060. [Google Scholar] [CrossRef]
- Follin, S.; Hartley, L.; Jackson, P.; Roberts, D.; Marsic, N. Hydrogeological Conceptual Model Development and Numerical Modeling Using CONNECTFLOW, Forsmark Modeling Stage 2.3. SKB R-08-23; Svensk Kärnbränslehantering AB: Stockholm, Sweden, 2008. [Google Scholar]
- Hartley, L.; Hunter, F.; Jackson, P.; McCarthy, R.; Gylling, B.; Marsic, N. Regional Hydrogeological Simulations Using CONECTFLOW. Preliminary Site Description. Laxemar Sub Area—Version 1.2; SKB-R--06-23; Swedish Nuclear Fuel and Waste Management Co.: Stockholm, Sweden, 2006. [Google Scholar]
- Sahlstedt, E.; Karhu, J.A.; Pitkänen, P.; Whitehouse, M. Biogenic processes in crystalline bedrock fractures indicated by carbon isotope signatures of secondary calcite. Appl. Geochem. 2016, 67, 30–41. [Google Scholar] [CrossRef] [Green Version]
- Sahlstedt, E.; Karhu, J.A.; Pitkänen, P. Indications for the past redox environments in deep groundwaters from the isotopic composition of carbon and oxygen in fracture calcite, Olkiluoto, SW Finland. Isot. Environ. Health Stud. 2010, 46, 370–391. [Google Scholar] [CrossRef] [PubMed]
- Blyth, A.R.; Frape, S.K.; Tullborg, E.L. A review and comparison of fracture mineral investigations and their application to radioactive waste disposal. Appl. Geochem. 2009, 24, 821–835. [Google Scholar] [CrossRef]
- Blyth, A.; Frape, S.; Blomqvist, R.; Nissinen, P. Assessing the past thermal and chemical history of fluids in crystalline rock by combining fluid inclusion and isotopic investigations of fracture calcite. Appl. Geochem. 2000, 15, 1417–1437. [Google Scholar] [CrossRef]
- Åberg, G. Precambrian geochronology of south-eastern Sweden. Geol. Fören. Stockh. Förh. 1978, 100, 125–154. [Google Scholar] [CrossRef]
- Sandström, B.; Page, L.; Tullborg, E.-L. Forsmark Site Investigation. 40Ar/39Ar (Adularia) and Rb-Sr (Adularia, Prehnite, Calcite) Ages of Fracture minerals; Report P-06-213; Swedish Nuclear Fuel and Waste Management Co. (SKB): Stockholm, Sweden, 2006. [Google Scholar]
Calcite | Water | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Borehole, Section | Crystal | Crystal Part | Sampling Time | 87Sr/86Sr | 2SE | Prop. 2SE 1 | 84Sr/86Sr | 2SE | 87Rb/86Sr 2 | 2SE | Total Sr-Beam | 87Sr/86Sr | Sr (mg/L) |
KA3105A:3 | 1 | rim | 34.8 | 0.71731 | 0.00014 | 0.00014 | 0.05666 | 0.00015 | 0.000017 | 0.000008 | 7.48 | 0.71729 | 5.47 |
KA3105A:3 | 1 | rim | 47.3 | 0.71735 | 0.00011 | 0.00011 | 0.05660 | 0.00010 | 0.000034 | 0.000009 | 7.07 | ||
KA3105A:3 | 2 | rim | 26.0 | 0.71734 | 0.00014 | 0.00014 | 0.05656 | 0.00011 | 0.000025 | 0.000010 | 7.40 | ||
KA3105A:3 | 3 | rim | 32.8 | 0.71733 | 0.00016 | 0.00016 | 0.05657 | 0.00007 | 0.000036 | 0.000007 | 9.25 | ||
KA3105A:3 | 3 | rim | 45.5 | 0.71746 | 0.00010 | 0.00010 | 0.05651 | 0.00007 | 0.000053 | 0.000008 | 6.47 | ||
KA3105A:2 | 1 | rim | 43.6 | 0.71781 | 0.00012 | 0.00012 | 0.05658 | 0.00010 | 0.000075 | 0.000013 | 6.23 | 0.717749 | 8.34 |
KA3105A:2 | 1 | rim | 44.5 | 0.71783 | 0.00013 | 0.00013 | 0.05655 | 0.00010 | 0.000081 | 0.000016 | 5.85 | ||
KA3105A:2 | 2 | rim | 46.0 | 0.71765 | 0.00008 | 0.00008 | 0.05665 | 0.00010 | 0.000031 | 0.000008 | 6.57 | ||
KA3105A:2 | 2 | rim | 46.0 | 0.71788 | 0.00011 | 0.00011 | 0.05661 | 0.00008 | 0.000096 | 0.000022 | 6.21 | ||
KA3105A:3 | 1 | inner | 43.1 | 0.71746 | 0.00010 | 0.00010 | 0.05660 | 0.00018 | <DL | <DL | 7.43 | ||
KA3105A:3 | 2 | inner | 36.0 | 0.71756 | 0.00015 | 0.00015 | 0.05651 | 0.00009 | 0.000028 | 0.000008 | 6.39 | ||
KA3105A:2 | 1 | inner | 48.0 | 0.71794 | 0.00012 | 0.00012 | 0.05653 | 0.00005 | 0.000031 | 0.000005 | 10.97 |
Sr Isotopes | C and O Isotopes in Calcite (SIMS) | Modern Water Data | |||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Borehole | Length(m) | Depth (m) | Crystal | Sampling Time | 87Sr/86Sr | 2SE | Prop. 2SE 1 | 84Sr/86Sr | 2SE | 87Rb/86Sr 2 | 2SE | Total Sr-Beam | δ13CPDB (SIMS) | ±σext | δ18OPDB (SIMS) | ±σext | 87Sr/86Sr 3 |
KFM01B | 24 | –24 | 1 | 41.6 | 0.71108 | 0.00073 | 0.00074 | 0.0579 | 0.0019 | 0.01371 | 0.00330 | 0.27 | –23.6 | 0.5 | –14.4 | 0.2 | 0.724317 |
KFM01B | 24 | –24 | 1 | 33.2 | 0.71276 | 0.00044 | 0.00044 | 0.0574 | 0.0011 | 0.00464 | 0.00090 | 0.54 | 13.6 | 0.5 | –13.8 | 0.2 | 0.724317 |
KFM01B | 24 | –24 | 1 | 44.8 | 0.71436 | 0.00027 | 0.00027 | 0.0569 | 0.0005 | 0.05777 | 0.00469 | 0.84 | 21.6 | 0.5 | –10.7 | 0.2 | 0.724317 |
KFM01C | 90 | –80 | 1 | 37.3 | 0.71511 | 0.00027 | 0.00028 | 0.0570 | 0.0006 | 0.03837 | 0.01073 | 1.09 | 21.9 | 0.4 | –11.2 | 0.2 | 0.720640 |
KFM01C | 90 | –80 | 2 | 50.5 | 0.71529 | 0.00023 | 0.00023 | 0.0565 | 0.0004 | 0.00039 | 0.00006 | 1.31 | n.a. | n.a. | 0.720640 | ||
KFM02A | 107 | –107 | 1 | 33.9 | 0.71429 | 0.00051 | 0.00051 | 0.0572 | 0.0009 | 0.00275 | 0.00069 | 0.48 | 16.2 | 0.7 | –11.4 | 0.2 | 0.719362 |
KFM02A | 118 | –118 | 1 | 45.8 | 0.71462 | 0.00017 | 0.00018 | 0.0568 | 0.0004 | 0.00015 | 0.00004 | 1.25 | 10.7 | 0.7 | –9.8 | 0.2 | 0.719362 |
KFM02A | 118 | –118 | 1 | 40.1 | 0.71375 | 0.00041 | 0.00041 | 0.0576 | 0.0014 | 0.01404 | 0.00378 | 0.42 | 9.2 | 0.6 | –9.3 | 0.2 | 0.719362 |
KFM02A | 118 | –118 | 1 | 47.5 | 0.71379 | 0.00053 | 0.00053 | 0.0569 | 0.0016 | 0.06375 | 0.01525 | 0.30 | 8.4 | 0.6 | –9.2 | 0.2 | 0.719362 |
KFM03A | 380 | –380 | 1 | 43.1 | 0.71479 | 0.00069 | 0.00069 | 0.0564 | 0.0017 | 0.00357 | 0.00129 | 0.28 | –8.0 | 0.5 | –11.1 | 0.2 | 0.717339 |
KFM04A | 306 | –306 | 1 | 47.0 | 0.71519 | 0.00018 | 0.00019 | 0.0569 | 0.0005 | 0.00008 | 0.00004 | 1.44 | –14.8 | 0.6 | –13.0 | 0.2 | 0.716865 |
KFM04A | 306 | –306 | 2 | 41.8 | 0.71473 | 0.00030 | 0.00030 | 0.0575 | 0.0010 | 0.00015 | 0.00008 | 0.68 | –46.3 | 0.5 | –14.0 | 0.2 | 0.716865 |
KFM05A | 110 | –87 | 1 | 49.5 | 0.71347 | 0.00068 | 0.00068 | 0.0590 | 0.0025 | 0.00040 | 0.00015 | 0.30 | –16.9 | 0.5 | –10.7 | 0.1 | 0.720640 |
KFM05A | 110 | –87 | 1 | 27.1 | 0.71473 | 0.00025 | 0.00025 | 0.0569 | 0.0004 | 0.00050 | 0.00019 | 2.00 | –16.8 | 0.4 | –11.3 | 0.2 | 0.720640 |
KFM05A | 110 | –87 | 1 | 46.9 | 0.71470 | 0.00025 | 0.00025 | 0.0568 | 0.0007 | 0.00046 | 0.00007 | 0.81 | –11.4 | 0.4 | –12.2 | 0.2 | 0.720640 |
KFM05A | 110 | –87 | 1 | 44.8 | 0.71438 | 0.00025 | 0.00025 | 0.0566 | 0.0008 | 0.00052 | 0.00009 | 0.79 | 16.4 | 0.4 | –14.2 | 0.2 | 0.720640 |
KFM05A | 110 | –87 | 1 | 56.0 | 0.71570 | 0.00070 | 0.00070 | 0.0564 | 0.0010 | 0.01251 | 0.00259 | 1.23 | 11.3 | 0.4 | –11.9 | 0.2 | 0.720640 |
KFM05A | 110 | –87 | 1 | 41.5 | 0.71571 | 0.00028 | 0.00028 | 0.0568 | 0.0004 | 0.00011 | 0.00003 | 1.63 | 13.3 | 0.4 | –11.7 | 0.2 | 0.720640 |
KFM06A | 110 | –96 | 1 | 49.5 | 0.71347 | 0.00068 | 0.00068 | 0.0590 | 0.0025 | 0.00040 | 0.00015 | 0.30 | –22.2 | 0.4 | n.a. | 0.719319 | |
KFM06A | 110 | –96 | 1 | 39.3 | 0.71490 | 0.00033 | 0.00033 | 0.0569 | 0.0009 | 0.00219 | 0.00095 | 0.69 | –19.5 | 0.4 | n.a. | 0.719319 | |
KFM06C | 103 | –90 | 1 | 51.6 | 0.71508 | 0.00022 | 0.00022 | 0.0569 | 0.0004 | 0.00011 | 0.00004 | 1.30 | n.a. | n.a. | 0.719319 | ||
KFM06C | 103 | –90 | 2 | 45.3 | 0.71385 | 0.00047 | 0.00047 | 0.0578 | 0.0013 | 0.00041 | 0.00014 | 0.40 | n.a. | n.a. | 0.719319 | ||
KFM07A | 968 | –800 | 1 | 49.0 | 0.71606 | 0.00071 | 0.00071 | 0.0567 | 0.0019 | 0.00099 | 0.00032 | 0.30 | –23.1 | 0.4 | –10.2 | 0.3 | 0.717855 |
KFM07A | 968 | –800 | 1 | 40.0 | 0.71630 | 0.00067 | 0.00067 | 0.0563 | 0.0021 | 0.00129 | 0.00046 | 0.29 | –33.3 | 0.4 | –10.3 | 0.3 | 0.717855 |
KFM08B | 44 | –44 | 1 | 17.0 | 0.71551 | 0.00030 | 0.00030 | 0.0570 | 0.0007 | 0.00020 | 0.00008 | 1.14 | –21.7 | 0.4 | –12.7 | 0.2 | 0.719092 |
KFM08B | 44 | –44 | 1 | 45.3 | 0.71506 | 0.00048 | 0.00048 | 0.0566 | 0.0012 | 0.00039 | 0.00013 | 0.41 | –67.2 | 0.4 | –12.0 | 0.2 | 0.719092 |
KFM08B | 44 | –44 | 1 | 27.3 | 0.71547 | 0.00035 | 0.00035 | 0.0565 | 0.0005 | 0.00158 | 0.00029 | 1.14 | –62.1 | 0.4 | –11.6 | 0.2 | 0.719092 |
KFM08B | 44 | –44 | 2 | 21.5 | 0.71592 | 0.00028 | 0.00029 | 0.0566 | 0.0004 | 0.00011 | 0.00009 | 1.08 | –35.4 | 0.4 | –6.4 | 0.2 | 0.719092 |
KFM08B | 44 | –44 | 3 | 21.1 | 0.71513 | 0.00031 | 0.00032 | 0.0561 | 0.0006 | 0.00014 | 0.00006 | 1.07 | –35.4 | 0.4 | –6.4 | 0.2 | 0.719092 |
KFM08B | 44 | –44 | 4 | 32.3 | 0.71588 | 0.00037 | 0.00037 | 0.0561 | 0.0006 | 0.00091 | 0.00042 | 1.16 | –35.4 | 0.4 | –6.4 | 0.2 | 0.719092 |
KFM11A | 793 | –673 | 1 | 46.0 | 0.71404 | 0.00067 | 0.00068 | 0.0580 | 0.0017 | 0.00013 | 0.00017 | 0.29 | 28.4 | 0.6 | –8.8 | 0.2 | 0.717188 |
Sr Isotopes | C and O Isotopes in Calcite (SIMS) | Modern Water Data | |||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Borehole | Length (m) | Depth (m) | Crystal | Sampling Time | 87Sr/86Sr | 2SE | Prop. 2SE 1 | 84Sr/86Sr | 2SE | 87Rb/86Sr 2 | 2SE | Total Sr-Beam | δ13CPDB (SIMS) | ±σext | δ18OPDB (SIMS) | ±σext | 87Sr/86Sr 3 |
KKR02 | 48 | −48 | 1 | 44.7 | 0.71593 | 0.00044 | 0.00044 | 0.0573 | 0.0009 | 0.00020 | 0.00009 | 0.62 | −70.9 | 0.4 | −10.5 | 0.2 | n.a. |
KKR02 | 48 | −48 | 1 | 47.0 | 0.71541 | 0.00051 | 0.00051 | 0.0570 | 0.0011 | 0.00059 | 0.00015 | 0.39 | −20.9 | 0.4 | −8.2 | 0.2 | n.a. |
KAS02 | 802 | −802 | 1 | 21.6 | 0.71446 | 0.00066 | 0.00066 | 0.0565 | 0.0009 | 0.00012 | 0.00012 | 0.61 | −77.9 | 0.4 | −7.8 | 0.2 | 0.719128 |
KAS02 | 802 | −802 | 1 | 30.7 | 0.71440 | 0.00057 | 0.00057 | 0.0575 | 0.0010 | 0.00019 | 0.00008 | 0.70 | −76.8 | 0.3 | −8.9 | 0.2 | 0.719128 |
KSH01A | 206 | −204 | 1 | 19.7 | 0.71563 | 0.00038 | 0.00038 | 0.0578 | 0.0013 | 0.00025 | 0.00011 | 0.66 | 19.1 | 0.4 | −12.0 | 0.2 | 0.715614 |
KSH01A | 206 | −204 | 1 | 32.0 | 0.71528 | 0.00028 | 0.00028 | 0.0572 | 0.0007 | 0.00007 | 0.00006 | 0.95 | −25.8 | 0.4 | −9.4 | 0.1 | 0.715614 |
KSH01A | 206 | −204 | 1 | 48.5 | 0.71511 | 0.00021 | 0.00021 | 0.0570 | 0.0005 | 0.00006 | 0.00004 | 1.21 | −20.7 | 0.4 | −8.3 | 0.2 | 0.715614 |
KSH01A | 242 | −240 | 1 | 45.3 | 0.71592 | 0.00028 | 0.00028 | 0.0575 | 0.0010 | 0.02761 | 0.00681 | 0.68 | −88.6 | 0.5 | −4.9 | 0.3 | 0.715614 |
KSH03A | 863 | −680 | 1 | 44.6 | 0.71636 | 0.00018 | 0.00018 | 0.0562 | 0.0004 | 0.00011 | 0.00004 | 1.33 | −49.6 | 0.4 | −13.5 | 0.2 | 0.716456 |
KSH03A | 863 | −680 | 1 | 41.8 | 0.71424 | 0.00029 | 0.00029 | 0.0562 | 0.0007 | 0.00029 | 0.00008 | 0.80 | −58.8 | 0.4 | −7.9 | 0.2 | 0.716456 |
KSH03A | 863 | −680 | 2 | 44.2 | 0.71617 | 0.00018 | 0.00019 | 0.0567 | 0.0004 | 0.00011 | 0.00004 | 1.36 | −13.1 | 0.4 | −14.6 | 0.2 | 0.716456 |
KSH03A | 863 | −680 | 2 | 29.5 | 0.71544 | 0.00037 | 0.00038 | 0.0571 | 0.0008 | 0.00016 | 0.00017 | 0.74 | −47.7 | 0.5 | −13.6 | 0.1 | 0.716456 |
KSH03A | 863 | −680 | 2 | 26.5 | 0.71535 | 0.00029 | 0.00030 | 0.0572 | 0.0007 | 0.00436 | 0.00075 | 0.95 | −11.1 | 0.4 | −10.1 | 0.2 | 0.716456 |
KSH03A | 863 | −680 | 2 | 41.4 | 0.71443 | 0.00042 | 0.00042 | 0.0577 | 0.0012 | 0.00526 | 0.00099 | 0.80 | −65.9 | 0.4 | −7.9 | 0.2 | 0.716456 |
KLX01 | 20 | −20 | 1 | 31.2 | 0.71630 | 0.00027 | 0.00027 | 0.0560 | 0.0005 | 0.00031 | 0.00008 | 1.32 | −92.4 | 0.5 | −7.3 | 0.2 | 0.716951 |
KLX01 | 37 | −37 | 1 | 43.8 | 0.70985 | 0.00041 | 0.00041 | 0.0574 | 0.0009 | 0.00031 | 0.00008 | 0.71 | −11.4 | 0.5 | −11.2 | 0.2 | 0.716951 |
KLX01 | 37 | −37 | 1 | 36.0 | 0.71405 | 0.00055 | 0.00055 | 0.0571 | 0.0013 | 0.01065 | 0.00210 | 0.45 | 0.9 | 0.5 | −9.1 | 0.2 | 0.716951 |
KLX01 | 37 | −37 | 2 | 29.5 | 0.71466 | 0.00028 | 0.00028 | 0.0571 | 0.0006 | 0.00379 | 0.00239 | 0.97 | 0.6 | 0.5 | −6.1 | 0.2 | 0.716951 |
KLX01 | 220 | −220 | 1 | 27.8 | 0.71346 | 0.00066 | 0.00066 | 0.0560 | 0.0012 | 0.05454 | 0.01729 | 0.57 | −50.4 | 0.4 | −11.9 | 0.2 | 0.716951 |
KLX01 | 220 | −220 | 2 | 45.6 | 0.71243 | 0.00035 | 0.00035 | 0.0571 | 0.0009 | 0.00276 | 0.00169 | 0.68 | −48.3 | 0.4 | −10.2 | 0.2 | 0.716951 |
KLX01 | 220 | −220 | 3 | 10.8 | 0.71291 | 0.00071 | 0.00071 | 0.0575 | 0.0014 | 0.01495 | 0.00929 | 0.73 | −46.2 | 0.3 | −10.1 | 0.2 | 0.716951 |
KLX01 | 220 | −220 | 3 | 27.1 | 0.71560 | 0.00071 | 0.00071 | 0.0572 | 0.0014 | 0.03222 | 0.00495 | 0.45 | −11.6 | 0.4 | −9.5 | 0.2 | 0.716951 |
KLX07A | 193 | −150 | 1 | 39.9 | 0.71640 | 0.00015 | 0.00015 | 0.0563 | 0.0003 | 0.00010 | 0.00003 | 2.40 | −13.8 | 0.5 | −10.6 | 0.2 | 0.715849 |
KLX07A | 193 | −150 | 1 | 45.5 | 0.71595 | 0.00016 | 0.00016 | 0.0567 | 0.0002 | 0.00027 | 0.00008 | 2.32 | −16.7 | 0.5 | −9.7 | 0.2 | 0.715849 |
KLX07A | 193 | −150 | 1 | 21.7 | 0.71510 | 0.00058 | 0.00058 | 0.0568 | 0.0004 | 0.00027 | 0.00007 | 2.03 | 0.0 | 0.5 | −5.1 | 0.2 | 0.715849 |
KLX07A | 356 | −280 | 1 | 42.9 | 0.71569 | 0.00030 | 0.00030 | 0.0565 | 0.0008 | 0.00440 | 0.00107 | 0.65 | −6.6 | 0.5 | −9.2 | 0.4 | 0.715849 |
KLX07A | 356 | −280 | 2 | 44.2 | 0.71610 | 0.00046 | 0.00046 | 0.0573 | 0.0009 | 0.11668 | 0.01445 | 0.61 | −6.7 | 0.5 | −9.1 | 0.4 | 0.715849 |
KLX07A | 356 | −280 | 2 | 45.0 | 0.71529 | 0.00038 | 0.00038 | 0.0572 | 0.0010 | 0.00664 | 0.00163 | 0.53 | −6.4 | 0.5 | −7.6 | 0.3 | 0.715849 |
KLX07A | 356 | -280 | 3 | 29.1 | 0.71502 | 0.00061 | 0.00061 | 0.0572 | 0.0015 | 0.00517 | 0.00170 | 0.39 | −12.1 | 0.5 | −6.6 | 0.2 | 0.715849 |
KLX07A | 356 | −280 | 3 | 47.5 | 0.71572 | 0.00038 | 0.00038 | 0.0559 | 0.0012 | 0.00035 | 0.00012 | 0.50 | −32.3 | 0.5 | −10.2 | 0.2 | 0.715849 |
KLX07A | 883 | -700 | 1 | 17.3 | 0.71530 | 0.00063 | 0.00063 | 0.0576 | 0.0012 | 0.00015 | 0.00013 | 0.67 | −93.1 | 0.4 | −6.4 | 0.4 | 0.717460 |
KLX07A | 883 | −700 | 2 | 8.8 | 0.71535 | 0.00078 | 0.00078 | 0.0577 | 0.0012 | 0.00007 | 0.00018 | 0.63 | −88.5 | 0.4 | −8.2 | 0.4 | 0.717460 |
KLX09 | 192 | −192 | 1 | 48.5 | 0.71182 | 0.00026 | 0.00026 | 0.0571 | 0.0006 | 0.00005 | 0.00006 | 1.01 | −19.2 | 0.4 | −11.8 | 0.2 | 0.717363 |
KLX09 | 192 | −192 | 1 | 40.9 | 0.71690 | 0.00019 | 0.00019 | 0.0562 | 0.0005 | 0.00010 | 0.00005 | 1.35 | -1.2 | 0.4 | −8.1 | 0.2 | 0.717363 |
KLX09 | 192 | −192 | 1 | 29.2 | 0.71670 | 0.00031 | 0.00031 | 0.0566 | 0.0006 | 0.00159 | 0.00056 | 1.15 | 0.6 | 0.4 | −8.0 | 0.2 | 0.717363 |
KLX09 | 740 | −740 | 1 | 37.9 | 0.70779 | 0.00034 | 0.00034 | 0.0573 | 0.0010 | 0.00029 | 0.00008 | 0.58 | −4.8 | 0.4 | −20.9 | 0.2 | 0.716186 |
KLX09 | 740 | −740 | 1 | 43.1 | 0.71413 | 0.00056 | 0.00056 | 0.0580 | 0.0016 | 0.02299 | 0.00770 | 0.36 | −29.9 | 0.4 | −7.9 | 0.2 | 0.716186 |
KLX09 | 740 | −740 | 1 | 50.7 | 0.71601 | 0.00023 | 0.00023 | 0.0567 | 0.0004 | 0.00038 | 0.00014 | 1.20 | −27.4 | 0.4 | −7.5 | 0.2 | 0.716186 |
KLX09 | 740 | −740 | 2 | 37.5 | 0.70572 | 0.00049 | 0.00049 | 0.0577 | 0.0014 | 0.00303 | 0.00162 | 0.35 | −5.4 | 0.4 | −19.5 | 0.2 | 0.716186 |
KLX09 | 740 | −740 | 2 | 50.4 | 0.71541 | 0.00041 | 0.00041 | 0.0573 | 0.0008 | 0.00024 | 0.00008 | 0.61 | −16.6 | 0.4 | −11.9 | 0.2 | 0.716186 |
KLX10C | 122 | −122 | 1 | 49.1 | 0.71322 | 0.00022 | 0.00022 | 0.0569 | 0.0004 | 0.00018 | 0.00005 | 1.36 | −9.7 | 0.4 | −10.0 | 0.2 | 0.717363 |
KLX10C | 122 | −122 | 1 | 44.4 | 0.71390 | 0.00015 | 0.00015 | 0.0567 | 0.0002 | 0.00011 | 0.00003 | 3.21 | −9.8 | 0.4 | −8.9 | 0.2 | 0.717363 |
KLX10C | 122 | −122 | 1 | 18.1 | 0.71609 | 0.00023 | 0.00023 | 0.0567 | 0.0005 | 0.00158 | 0.00007 | 1.70 | 1.6 | 0.4 | −10.4 | 0.2 | 0.717363 |
KLX10C | 122 | −122 | 1 | 24.2 | 0.71651 | 0.00045 | 0.00045 | 0.0567 | 0.0006 | 0.00527 | 0.00118 | 1.23 | −13.0 | 0.4 | −9.7 | 0.2 | 0.717363 |
KLX13A | 393 | −393 | 1 | 41.6 | 0.71630 | 0.00026 | 0.00026 | 0.0571 | 0.0006 | 0.00027 | 0.00005 | 1.02 | −24.6 | 0.5 | −7.4 | 0.4 | 0.715201 |
KLX13A | 393 | −393 | 2 | 33.7 | 0.71656 | 0.00033 | 0.00033 | 0.0573 | 0.0008 | 0.01996 | 0.00389 | 0.86 | −119.2 | 0.5 | −4.8 | 0.4 | 0.715201 |
KLX13A | 393 | −393 | 2 | 31.1 | 0.71502 | 0.00025 | 0.00025 | 0.0571 | 0.0008 | 0.00019 | 0.00008 | 0.84 | −15.5 | 0.5 | −7.1 | 0.4 | 0.715201 |
KLX14A | 80 | −70 | 1 | 45.2 | 0.71105 | 0.00019 | 0.00019 | 0.0568 | 0.0004 | 0.00315 | 0.00058 | 1.39 | −8.4 | 0.4 | −15.7 | 0.2 | 0.715818 |
KLX14A | 80 | −70 | 1 | 40.5 | 0.71135 | 0.00031 | 0.00031 | 0.0570 | 0.0009 | 0.00059 | 0.00011 | 0.57 | −8.6 | 0.4 | −13.6 | 0.2 | 0.715818 |
KLX14A | 80 | −70 | 1 | 26.2 | 0.71318 | 0.00051 | 0.00051 | 0.0576 | 0.0012 | 0.01035 | 0.00220 | 0.58 | −8.4 | 0.4 | −9.3 | 0.2 | 0.715818 |
KLX14A | 80 | −70 | 1 | 45.2 | 0.71461 | 0.00051 | 0.00051 | 0.0571 | 0.0016 | 0.01759 | 0.00528 | 0.38 | −4.7 | 0.4 | −8.7 | 0.2 | 0.715818 |
KLX14A | 80 | −70 | 1 | 22.7 | 0.71457 | 0.00048 | 0.00048 | 0.0573 | 0.0010 | 0.00017 | 0.00009 | 0.84 | −9.1 | 0.4 | −5.1 | 0.3 | 0.715818 |
KLX14A | 80 | −70 | 2 | 50.0 | 0.71220 | 0.00066 | 0.00066 | 0.0556 | 0.0013 | 0.00101 | 0.00016 | 0.42 | −13.7 | 0.5 | −13.9 | 0.4 | 0.715818 |
KLX14A | 80 | −70 | 2 | 48.0 | 0.71223 | 0.00045 | 0.00045 | 0.0561 | 0.0012 | 0.00094 | 0.00014 | 0.42 | −13.2 | 0.5 | −12.4 | 0.4 | 0.715818 |
KLX14A | 80 | −70 | 2 | 49.0 | 0.71126 | 0.00065 | 0.00065 | 0.0572 | 0.0017 | 0.00156 | 0.00020 | 0.29 | −6.0 | 0.5 | −15.7 | 0.4 | 0.715818 |
KLX14A | 80 | −70 | 2 | 46.1 | 0.71347 | 0.00066 | 0.00066 | 0.0567 | 0.0012 | 0.00237 | 0.00043 | 0.45 | −7.6 | 0.5 | −12.4 | 0.4 | 0.715818 |
KLX14A | 92 | −92 | 1 | 41.6 | 0.71596 | 0.00029 | 0.00029 | 0.0571 | 0.00071 | 0.13288 | 0.02007 | 0.80 | −60.5 | 0.6 | −5.6 | 0.2 | 0.715818 |
KLX14A | 92 | −92 | 1 | 47.4 | 0.71647 | 0.00033 | 0.00033 | 0.0570 | 0.00067 | 0.11757 | 0.01518 | 0.69 | −60.5 | 0.6 | −5.6 | 0.2 | 0.715818 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Drake, H.; Kooijman, E.; Kielman-Schmitt, M. Using 87Sr/86Sr LA-MC-ICP-MS Transects within Modern and Ancient Calcite Crystals to Determine Fluid Flow Events in Deep Granite Fractures. Geosciences 2020, 10, 345. https://doi.org/10.3390/geosciences10090345
Drake H, Kooijman E, Kielman-Schmitt M. Using 87Sr/86Sr LA-MC-ICP-MS Transects within Modern and Ancient Calcite Crystals to Determine Fluid Flow Events in Deep Granite Fractures. Geosciences. 2020; 10(9):345. https://doi.org/10.3390/geosciences10090345
Chicago/Turabian StyleDrake, Henrik, Ellen Kooijman, and Melanie Kielman-Schmitt. 2020. "Using 87Sr/86Sr LA-MC-ICP-MS Transects within Modern and Ancient Calcite Crystals to Determine Fluid Flow Events in Deep Granite Fractures" Geosciences 10, no. 9: 345. https://doi.org/10.3390/geosciences10090345
APA StyleDrake, H., Kooijman, E., & Kielman-Schmitt, M. (2020). Using 87Sr/86Sr LA-MC-ICP-MS Transects within Modern and Ancient Calcite Crystals to Determine Fluid Flow Events in Deep Granite Fractures. Geosciences, 10(9), 345. https://doi.org/10.3390/geosciences10090345