Garnet-Rich Veins in an Ultrabasic Amphibolite from NE Sardinia, Italy: An Example of Vein Mineralogical Re-Equilibration during the Exhumation of a Granulite Terrane
Abstract
:1. Introduction
2. Geological Setting
3. Field Geology and Petrography
3.1. Ultrabasic Amphibolite
3.2. Vein System
4. Materials and Methods
5. Garnet-Rich Veins: Microfabrics and Mineral Chemistry
5.1. Microfabrics
5.2. Mineral Composition of Vein Samples
6. Derivation of P–T Conditions
6.1. P–T Conditions of the Host Rock
6.2. P–T Conditions for Stages I, II, and III of the Garnet Veins
7. Discussion
7.1. Garnet Growth as Function of P–T Conditions and Fluid Influx
7.2. Metamorphic Evolution
8. Concluding Remarks
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Manning, C.E. The solubility of quartz in H2O in the lower crust and upper mantle. Geochim. Cosmochim. Acta 1994, 58, 4831–4839. [Google Scholar] [CrossRef]
- Verlaguet, A.; Goffé, B.; Brunet, F.; Poinssot, C.; Vidal, O.; Findling, N.; Menut, D. Metamorphic veining and mass transfer in a chemically closed system: A case study in Alpine metabauxites (western Vanoise). J. Metamorph. Geol. 2011, 29, 275–300. [Google Scholar] [CrossRef]
- Rauchenstein-Martinek, K.; Wagner, T.; Wälle, M.; Heinrich, C.A.; Arlt, T. Chemical evolution of metamorphic fluids in the Central Alps, Switzerland: Insight from LA-ICPMS analysis of fluid inclusions. Geofluids 2016, 16, 877–908. [Google Scholar] [CrossRef] [Green Version]
- Liu, P.L.; Massonne, H.-J.; Harlov, D.E.; Jin, Z.M. High-pressure fluid-rock interaction and mass transfer during exhumation of deeply subducted rocks: Insights from an eclogite-vein system in the ultrahigh-pressure terrane of the Dabie Shan, China. G-Cubed 2019, 20, 5786–5817. [Google Scholar] [CrossRef]
- Groppo, C.; Compagnoni, R. Metamorphic veins from the serpentinites of the Piemonte Zone, western Alps, Italy: A review. Per. Miner. 2007, 76, 127–153. [Google Scholar]
- Carmignani, L.; Carosi, R.; Di Pisa, A.; Gattiglio, M.; Musumeci, G.; Oggiano, G.; Pertusati, P.C. The Hercynian chain in Sardinia (Italy). Geodin. Acta 1994, 5, 217–233. [Google Scholar] [CrossRef]
- Carmignani, L.; Oggiano, G.; Barca, S.; Conti, P.; Eltrudis, A.; Funedda, A.; Pasci, S.; Salvadori, I. Geologia della Sardegna. Note illustrative della Carta Geologica della Sardegna in scala 1:200,000. Mem. Descr. Carta Geol. Ital. 2001, 60, 283. [Google Scholar]
- Cruciani, G.; Franceschelli, M.; Musumeci, G.; Spano, M.E.; Tiepolo, M. U-Pb zircon dating and nature of metavolcanics and metarkoses from the Monte Grighini Unit: New insights on Late Ordovician magmatism in the Variscan belt in Sardinia, Italy. Int. J. Earth Sci. 2013, 102, 2077–2096. [Google Scholar] [CrossRef]
- Cruciani, G.; Franceschelli, M.; Massonne, H.-J.; Musumeci, G.; Spano, M.E. Thermomechanical evolution of the high-grade core in the nappe zone of Variscan Sardinia, Italy: The role of shear deformation and granite emplacement. J. Metamorph. Geol. 2016, 34, 321–342. [Google Scholar] [CrossRef]
- Cruciani, G.; Franceschelli, M.; Puxeddu, M.; Tiepolo, M. Metavolcanics from Capo Malfatano, SW Sardinia, Italy: New insight on the age and nature of Ordovician volcanism in the Variscan foreland zone. Geol. J. 2018, 53, 1573–1585. [Google Scholar] [CrossRef]
- Massonne, H.-J.; Cruciani, G.; Franceschelli, M.; Musumeci, G. Anticlockwise pressure–temperature paths record Variscan upper-plate exhumation: Example from micaschists of the Porto Vecchio region, Corsica. J. Metamorph. Geol. 2018, 36, 55–77. [Google Scholar] [CrossRef]
- Cruciani, G.; Fancello, D.; Franceschelli, M.; Scodina, M.; Spano, M.E. Geothermobarometry of Al-silicate bearing migmatites from the Variscan chain of NE Sardinia, Italy: A P-T pseudosection approach. Per. Miner. 2014, 83, 19–40. [Google Scholar]
- Cruciani, G.; Franceschelli, M.; Foley, S.F.; Jacob, D.E. Anatectic amphibole and restitic garnet in Variscan migmatite from NE Sardinia, Italy: Insights into partial melting from mineral trace elements. Eur. J. Miner. 2014, 26, 381–395. [Google Scholar] [CrossRef]
- Massonne, H.-J.; Cruciani, G.; Franceschelli, M. Geothermobarometry on anatectic melts—A high-pressure Variscan migmatite from northeast Sardinia. Int. Geol. Rev. 2013, 55, 1490–1505. [Google Scholar] [CrossRef]
- Fancello, D.; Cruciani, G.; Franceschelli, M.; Massonne, H.-J. Trondhjemitic leucosomes in paragneisses from NE Sardinia: Geochemistry and P-T conditions of melting and crystallization. Lithos 2018, 304, 501–517. [Google Scholar] [CrossRef]
- Franceschelli, M.; Puxeddu, M.; Cruciani, G.; Dini, A.; Loi, M. Layered amphibolite sequence in NE Sardinia, Italy: Remnant of a pre-Variscan mafic–silicic layered intrusion? Contrib. Miner. Petrol. 2005, 149, 164–180. [Google Scholar] [CrossRef]
- Franceschelli, M.; Puxeddu, M.; Cruciani, G.; Utzeri, D. Metabasites with eclogite facies relics from Variscides in Sardinia, Italy: A review. Int. J. Earth Sci. 2007, 96, 795–815. [Google Scholar] [CrossRef]
- Cruciani, G.; Franceschelli, M.; Groppo, C. P-T evolution of eclogite-facies metabasite from NE Sardinia, Italy: Insights into the prograde evolution of Variscan eclogites. Lithos 2011, 121, 135–150. [Google Scholar] [CrossRef]
- Cruciani, G.; Franceschelli, M.; Groppo, C.; Oggiano, G.; Spano, M.E. Re-equilibration history and P-T path of eclogites from Variscan Sardinia, Italy: A case study from the medium-grade metamorphic complex. Int. J. Earth Sci. 2015, 104, 797–814. [Google Scholar] [CrossRef]
- Cruciani, G.; Franceschelli, M.; Langone, A.; Puxeddu, M.; Scodina, M. Nature and age of pre-Variscan eclogite protoliths from the low- to medium-grade metamorphic complex of north-central Sardinia (Italy) and comparison with coeval Sardinian eclogites in the northern Gondwana context. J. Geol. Soc. 2015, 172, 792–807. [Google Scholar] [CrossRef]
- Cruciani, G.; Franceschelli, M.; Massonne, H.-J.; Carosi, R.; Montomoli, C. Pressure–temperature and deformational evolution of high-pressure metapelites from Variscan NE Sardinia, Italy. Lithos 2013, 175, 272–284. [Google Scholar] [CrossRef]
- Cappelli, B.; Carmignani, L.; Castorina, F.; Di Pisa, A.; Oggiano, G.; Petrini, R. A Variscan suture zone in Sardinia: Geological, geochemical evidence, Paleozoic Orogenies in Europe (special issue). Geodin. Acta 1992, 5, 101–118. [Google Scholar] [CrossRef]
- Cruciani, G.; Dini, A.; Franceschelli, M.; Puxeddu, M.; Utzeri, D. Metabasite from the Variscan belt in NE Sardinia, Italy: Within-plate OIB-like melts with very high Sr and low Nd isotope ratios. Eur. J. Miner. 2010, 22, 509–523. [Google Scholar] [CrossRef]
- Cruciani, G.; Montomoli, C.; Carosi, R.; Franceschelli, M.; Puxeddu, M. Continental collision from two perspectives: A review of Variscan metamorphism and deformation in northern Sardinia. Per. Miner. 2015, 84, 657–699. [Google Scholar]
- Carosi, R.; Frassi, C.; Iacopini, D.; Montomoli, C. Post collisional transpressive tectonics in northern Sardinia (Italy). J. Virtual Explor. 2005, 19, 1–18. [Google Scholar] [CrossRef]
- Elter, F.M.; Padovano, M.; Kraus, R.K. The Variscan HT metamorphic rocks emplacement linked to the interaction between Gondwana and Laurussia plates: Structural constraints in NE Sardinia (Italy). Terra Nova 2010, 22, 369–377. [Google Scholar] [CrossRef]
- Di Vincenzo, G.; Carosi, R.; Palmeri, R. The relationship between tectono-metamorphic evolution and argon isotope records in white mica: Constraints from in situ 40Ar-39Ar laser analysis of the Variscan basement of Sardinia. J. Petrol. 2004, 45, 1013–1043. [Google Scholar] [CrossRef]
- Ferrara, G.; Rita, F.; Ricci, C.A. Isotopic age and tectonometamorphic history of the metamorphic basement of North-Eastern Sardinia. Contrib. Miner. Petrol. 1978, 68, 99–106. [Google Scholar] [CrossRef]
- Corsi, B.; Elter, F.M. Eo-Variscan (Devonian?) melting in the High-Grade Metamorphic Complex of the NE Sardinia Belt (Italy). Geodin. Acta 2006, 19, 155–164. [Google Scholar] [CrossRef] [Green Version]
- Casini, L.; Cuccuru, S.; Maino, M.; Oggiano, G.; Puccini, A.; Rossi, P. Structural map of Variscan northern Sardinia (Italy). J. Maps 2014, 11, 75–84. [Google Scholar] [CrossRef] [Green Version]
- Casini, L.; Cuccuru, S.; Puccini, A.; Oggiano, G.; Rossi, P. Evolution of the Corsica-Sardinia Batholith and late-orogenic shearing of the Variscides. Tectonophysics 2015, 646, 65–78. [Google Scholar] [CrossRef]
- Barca, S.; Carmignani, L.; Eltrudis, A.; Franceschelli, M. Origin and evolution of the Permian-Carboniferous basin of Mulargia Lake (South-Central Sardinia, Italy) related to the Late-Hercynian extensional tectonic. Comptes Rendus Acad. Sci. Paris 1995, 321, 171–178. [Google Scholar]
- Ghezzo, C.; Memmi, I.; Ricci, C.A. Un evento granulitico nel basamento metamorfico della Sardegna nord-orientale. Mem. Soc. Geol. Ital. 1979, 20, 23–38. [Google Scholar]
- Franceschelli, M.; Carcangiu, G.; Caredda, A.M.; Cruciani, G.; Memmi, I.; Zucca, M. Transformation of cumulate mafic rocks to granulite and re-equilibration in amphibolite and greenschist facies in NE Sardinia, Italy. Lithos 2002, 63, 1–18. [Google Scholar] [CrossRef]
- Scodina, M.; Cruciani, G.; Franceschelli, M.; Massonne, H.-J. Multilayer corona textures in the high-pressure ultrabasic amphibolite of Mt. Nieddu, NE Sardinia (Italy): Equilibrium versus disequilibrium. Per. Miner. 2020, 89, 169–186. [Google Scholar]
- Massonne, H.-J. Formation of amphibole and clinozoisite-epidote in eclogite owing to fluid infiltration during exhumation in a subduction channel. J. Petrol. 2012, 53, 1969–1998. [Google Scholar] [CrossRef]
- Brandelik, A. CALCMIN—An EXCELTM Visual Basic application for calculating mineral structural formulae from electron microprobe analyses. Comput. Geosci. 2009, 35, 1540–1551. [Google Scholar] [CrossRef]
- Hawthorne, F.C.; Oberti, R.; Harlow, G.E.; Maresch, W.V.; Martin, R.F.; Schumacher, J.C.; Welch, M.D. IMA Report—Nomenclature of the amphibole supergroup. Am. Miner. 2012, 97, 2031–2048. [Google Scholar] [CrossRef]
- Connolly, J.A.D. Multivariable phase diagrams: An algorithm based on generalized thermodynamics. Am. J. Sci. 1990, 290, 666–718. [Google Scholar] [CrossRef]
- Connolly, J.A.D. The geodynamic equation of state: What and how. Geochem. Geophys. 2009, 10. [Google Scholar] [CrossRef]
- Holland, T.J.B.; Powell, R. An improved and extended internally consistent thermodynamic dataset for phases of petrological interest, involving a new equation of state for solids. J. Metamorph. Geol. 2011, 29, 333–383. [Google Scholar] [CrossRef]
- Holland, T.J.B.; Powell, R. An internally consistent thermodynamic data set for phases of petrological interest. J. Metamorph. Geol. 1998, 16, 309–343. [Google Scholar] [CrossRef]
- Holland, T.J.B.; Powell, R. Thermodynamics of order-disorder in minerals, 2. Symmetric formalism applied to solid solutions. Am. Miner. 1996, 81, 1425–1437. [Google Scholar] [CrossRef]
- Green, E.C.R.; Holland, T.J.B.; Powell, R. An order-disorder model for omphacitic pyroxenes in the system jadeite-diopside-hedenbergite-acmite with applications to eclogitic rocks. Am. Miner. 2007, 92, 1181–1189. [Google Scholar] [CrossRef]
- Holland, T.J.B.; Baker, J.M.; Powell, R. Mixing properties and activity-composition relationships of chlorites in the system MgO–FeO–Al2O3–SiO2–H2O. Eur. J. Miner. 1998, 10, 395–406. [Google Scholar] [CrossRef]
- Powell, R.; Holland, T. Relating formulations of the thermodynamics of mineral solid solutions: Activity modeling of pyroxenes, amphiboles, and micas. Am. Miner. 1999, 84, 1–14. [Google Scholar] [CrossRef]
- Dale, J.; Powell, R.; White, R.W.; Elmer, F.L.; Holland, T.J.B. A thermodynamic model for Ca–Na clinoamphiboles in Na2O–CaO–FeO–MgO–Al2O3–SiO2–H2O–O for petrological calculations. J. Metamorph. Geol. 2005, 23, 771–791. [Google Scholar] [CrossRef]
- Newton, R.C.; Charlu, T.V.; Kleppa, O.J. Thermochemistry of the high structural state plagioclases. Geochim. Cosmochim. Acta 1981, 44, 933–941. [Google Scholar] [CrossRef]
- Ellis, D.J.; Green, D.H. An experimental study of the effect of Ca upon garnet-clinopyroxene Fe–Mg exchange equilibria. Contrib. Miner. Petrol. 1979, 71, 13–22. [Google Scholar] [CrossRef]
- Pattison, D.R.M.; Newton, R.C. Experimental calibration of the garnet–clinopyroxene Fe–Mg exchange thermometer. Contrib. Miner. Petrol. 1989, 101, 87–103. [Google Scholar] [CrossRef]
- Krogh-Ravna, E. The garnet–clinopyroxene Fe2+–Mg geothermometer: An updated calibration. J. Metamorph. Geol. 2000, 18, 211–219. [Google Scholar] [CrossRef] [Green Version]
- Nakamura, D. A new formulation of garnet-clinopyroxene geothermometer based on accumulation and statistical analysis of a large experimental dataset. J. Metamorph. Geol. 2009, 27, 495–508. [Google Scholar] [CrossRef]
- Scodina, M.; Cruciani, G.; Franceschelli, M.; Massonne, H.-J. Anticlockwise P-T evolution of amphibolites from NE Sardinia, Italy: Geodynamic implications for the tectonic evolution of the Variscan Corsica-Sardinia block. Lithos 2019, 324, 763–775. [Google Scholar] [CrossRef]
- Krogh-Ravna, E. Distribution of Fe2q and Mg between coexisting garnet and hornblende in synthetic and natural systems: An empirical calibration of the garnet–hornblende Fe–Mg geothermometer. Lithos 2000, 53, 265–277. [Google Scholar] [CrossRef]
- Perchuk, L.L.; Aranovich, L.Y.; Podlesskii, K.K.L.; Lavrent’eva, I.V.; Gerasimov, V.Y.; Fed’Kin, V.V.; Kitsul, V.I.; Karasokov, L.P.; Berdnikov, N.V. Precambrian granulites of the Aldan shield, eastern Siberia, USSR. J. Metamorph. Geol. 1985, 3, 265–310. [Google Scholar] [CrossRef]
- Liou, J.G.; Zhang, R.Y.; Ernst, W.G.; Rumble, D., III; Maruyama, S. High-pressure minerals from deeply subducted metamorphic rocks. In Ultrahigh-Pressure Mineralogy; Hemley, R.J., Ed.; Walter de Gruyter: Berlin, Germany, 1998; Volume 37, pp. 33–96. [Google Scholar]
- Okamoto, A.; Michibayashi, K. Misorientations of garnet aggregate within a vein: An example from the Sanbagawa metamorphic belt, Japan. J. Metamorph. Geol. 2006, 24, 353–366. [Google Scholar] [CrossRef]
- Caddick, M.J.; Konopásek, J.; Thompson, A.B. Preservation of garnet growth zoning and the duration of prograde metamorphism. J. Petrol. 2010, 51, 2327–2347. [Google Scholar] [CrossRef] [Green Version]
- Oliver, N.H.S. Review and classification of structural controls on fluid flow during regional metamorphism. J. Metamorph. Geol. 1996, 14, 477–492. [Google Scholar] [CrossRef]
- Yardley, B.W.D.; Bottrell, S.H. Silica mobility and fluid movement during metamorphism of the Connemara. J. Metamorph. Geol. 1992, 10, 453–464. [Google Scholar] [CrossRef]
- Cruciani, G.; Franceschelli, M.; Musumeci, G.; Scodina, M. Geology of the Montigiu Nieddu metamorphic basement, NE Sardinia (Italy). J. Maps 2020, 16, 543–551. [Google Scholar] [CrossRef]
- Cruciani, G.; Fancello, D.; Franceschelli, M.; Massonne, H.-J.; Langone, A.; Scodina, M. Geochemical and geochronological dataset of rutile from a Variscan metabasite in Sardinia, Italy. Data Brief 2020, 31, 105925. [Google Scholar] [CrossRef] [PubMed]
MN50A | MN21V | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Grt1 | Cpx | Grt2 Core | Grt2 Mant | Grt2 i.rim | Grt2 o.rim | Grt1 | Spl1 | Spl2 | Chl | Ep1 | Ep2 | Ep3 | Mrg | |
SiO2 | 38.73 | 53.20 | 39.09 | 37.94 | 39.04 | 38.99 | 39.13 | - | 0.05 | 25.84 | 39.14 | 38.68 | 39.39 | 30.74 |
TiO2 | 0.01 | 0.01 | 0.04 | 0.05 | 0.05 | 0.03 | 0.02 | 0.02 | 0.03 | 0.02 | 0.01 | 0.02 | 0.02 | - |
Al2O3 | 21.10 | 1.03 | 22.25 | 20.99 | 22.23 | 21.82 | 22.21 | 58.23 | 59.33 | 21.00 | 31.76 | 27.82 | 33.12 | 49.63 |
Cr2O3 | - | - | - | - | - | - | - | 0.01 | 0.01 | - | - | - | - | - |
FeO | 21.86 | 6.93 | 23.81 | 19.61 | 17.39 | 19.42 | 20.46 | 25.37 | 22.62 | 23.68 | - | - | - | - |
Fe2O3 | - | - | - | - | - | - | - | 5.86 | 5.12 | - | 2.64 | 7.65 | 0.92 | 1.53 |
MnO | 1.50 | 0.05 | 0.68 | 0.47 | 0.35 | 0.64 | 1.18 | 0.43 | 0.18 | 0.41 | - | - | - | - |
Mn2O3 | - | - | - | - | - | - | - | - | - | - | - | 0.02 | 0.02 | - |
MgO | 7.03 | 14.74 | 7.35 | 1.61 | 5.96 | 5.91 | 7.15 | 9.91 | 12.05 | 17.11 | 0.05 | 0.06 | 0.03 | 0.78 |
CaO | 10.05 | 23.02 | 8.43 | 19.47 | 16.03 | 13.89 | 10.99 | 0.16 | - | - | 24.68 | 23.97 | 25.19 | 11.66 |
Na2O | - | - | 0.00 | 0.00 | 0.01 | 0.00 | 0.00 | - | - | - | - | - | - | 0.99 |
K2O | - | - | - | - | - | - | - | - | - | - | - | - | - | 0.08 |
H2O | - | - | - | - | - | - | - | - | - | 11.52 | 1.97 | 1.93 | 1.98 | 4.50 |
Total | 100.28 | 98.98 | 101.65 | 100.14 | 101.07 | 100.70 | 101.14 | 99.93 | 99.39 | 99.58 | 100.25 | 100.15 | 100.68 | 99.91 |
oxygen | 12 | 6 | 12 | 12 | 12 | 12 | 12 | 4 | 4 | 28 | 12.5 | 12.5 | 12.5 | 22 |
Si | 2.98 | 1.99 | 2.97 | 2.97 | 2.96 | 2.98 | 2.93 | - | 0.00 | 5.38 | 2.98 | 3.00 | 2.98 | 4.10 |
Ti | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | - |
Al | 1.92 | 0.05 | 1.99 | 1.94 | 1.99 | 1.96 | 1.96 | 1.88 | 1.89 | 5.15 | 2.85 | 2.55 | 2.95 | 7.79 |
Cr | - | - | - | - | - | - | - | 0.00 | 0.00 | - | - | - | - | - |
Fe3+ | - | - | 0.00 | 0.00 | 0.00 | 0.00 | 0.04 | - | - | - | 0.15 | 0.45 | 0.05 | 0.15 |
Fe2+ | 1.41 | 0.22 | 1.51 | 1.29 | 1.10 | 1.24 | 1.24 | 0.58 | 0.51 | 4.12 | - | - | - | - |
Mn | 0.09 | 0.00 | 0.04 | 0.03 | 0.02 | 0.04 | 0.07 | 0.01 | 0.00 | 0.07 | - | - | - | - |
Mn3+ | - | - | - | - | - | - | - | - | - | - | - | 0.00 | 0.00 | - |
Mg | 0.81 | 0.82 | 0.83 | 0.19 | 0.67 | 0.67 | 0.80 | 0.40 | 0.49 | 5.31 | 0.01 | 0.01 | 0.00 | 0.15 |
Ca | 0.83 | 0.92 | 0.69 | 1.63 | 1.30 | 1.14 | 0.88 | 0.00 | - | - | 2.02 | 1.99 | 2.04 | 1.66 |
Na | - | - | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | - | - | - | - | - | - | 0.26 |
K | - | - | - | - | - | - | - | - | - | - | - | - | - | 0.01 |
H | - | - | - | - | - | - | - | - | - | 16.00 | 1.00 | 1.00 | 1.00 | 4.00 |
Alm | 0.45 | 0.49 | 0.41 | 0.36 | 0.40 | 0.41 | ||||||||
Prp | 0.26 | 0.27 | 0.06 | 0.22 | 0.22 | 0.27 | ||||||||
Grs | 0.26 | 0.22 | 0.52 | 0.42 | 0.37 | 0.29 | ||||||||
Sps | 0.03 | 0.01 | 0.01 | 0.01 | 0.01 | 0.02 |
MN22 | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Grt2 Core | Grt2 Mant | Grt2 i.rim | Grt2 o.rim | Grt1 | Spl1 | Spl2 | Chl | Ep1 | Ep2 | Ep3 | Mrg | |
SiO2 | 39.12 | 38.40 | 39.50 | 39.18 | 39.43 | - | 0.04 | 23.57 | 39.16 | 38.72 | 39.50 | 31.82 |
TiO2 | 0.07 | 0.04 | 0.07 | 0.07 | 0.02 | - | - | 0.03 | 0.03 | 0.04 | 0.01 | 0.01 |
Al2O3 | 22.42 | 21.52 | 22.23 | 21.29 | 21.81 | 58.12 | 60.12 | 24.43 | 31.73 | 28.11 | 33.77 | 49.43 |
Cr2O3 | - | 0.01 | 0.01 | - | - | - | - | - | - | - | - | - |
FeO | 23.90 | 20.38 | 16.53 | 18.98 | 21.58 | 25.52 | 22.24 | 27.56 | - | - | - | 0.21 |
Fe2O3 | - | - | - | - | - | 5.86 | 4.77 | - | 3.00 | 7.50 | 0.22 | - |
MnO | 0.60 | 0.44 | 0.36 | 0.57 | 1.62 | 0.47 | 0.15 | 0.52 | - | - | - | - |
Mn2O3 | - | - | - | - | - | - | - | - | 0.04 | 0.02 | - | - |
MgO | 7.78 | 1.78 | 6.39 | 6.14 | 7.72 | 9.79 | 12.44 | 12.51 | 0.06 | 0.08 | - | 0.18 |
CaO | 7.79 | 18.73 | 16.34 | 14.11 | 9.09 | 0.11 | 0.03 | - | 24.39 | 23.99 | 24.94 | 12.34 |
Na2O | 0.03 | - | 0.01 | - | 0.04 | - | - | - | 0.02 | - | - | 0.61 |
K2O | - | - | - | 0.03 | - | - | - | - | - | - | - | 0.58 |
H2O | - | - | - | - | - | - | - | 11.35 | 1.97 | 1.94 | 1.99 | 4.33 |
Total | 101.60 | 101.30 | 101.42 | 100.35 | 101.34 | 99.88 | 99.79 | 99.97 | 100.41 | 100.40 | 100.43 | 99.61 |
oxygen | 12 | 12 | 12 | 12 | 12 | 4 | 4 | 28 | 12.5 | 12.5 | 12.5 | 22 |
Si | 2.97 | 2.97 | 2.97 | 2.99 | 2.97 | - | 0.00 | 4.98 | 2.98 | 2.99 | 2.98 | 4.41 |
Ti | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | - | - | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
Al | 1.99 | 1.96 | 1.97 | 1.92 | 1.93 | 1.88 | 1.90 | 6.08 | 2.85 | 2.56 | 3.00 | 8.06 |
Cr | - | 0.00 | 0.00 | - | - | - | - | - | - | - | - | - |
Fe3+ | - | - | - | - | 0.07 | 0.12 | 0.10 | - | 0.17 | 0.43 | 0.01 | - |
Fe2+ | 1.51 | 1.32 | 1.04 | 1.22 | 1.29 | 0.58 | 0.50 | 4.87 | - | - | - | 0.02 |
Mn | 0.04 | 0.03 | 0.02 | 0.04 | 0.10 | 0.01 | 0.00 | 0.09 | - | - | - | - |
Mn3+ | - | - | - | - | - | - | - | - | 0.00 | 0.00 | - | - |
Mg | 0.88 | 0.20 | 0.72 | 0.70 | 0.87 | 0.40 | 0.49 | 3.94 | 0.01 | 0.01 | - | 0.04 |
Ca | 0.63 | 1.55 | 1.32 | 1.16 | 0.73 | 0.00 | 0.00 | - | 1.99 | 1.99 | 2.02 | 1.83 |
Na | 0.00 | - | 0.00 | - | 0.01 | - | - | - | 0.00 | - | - | 0.16 |
K | - | - | - | 0.00 | - | - | - | - | - | - | - | 0.10 |
H | - | - | - | - | - | - | - | 16.00 | 1.00 | 1.00 | 1.00 | 4.00 |
Alm | 0.49 | 0.42 | 0.34 | 0.39 | 0.43 | |||||||
Prp | 0.29 | 0.07 | 0.23 | 0.23 | 0.29 | |||||||
Grs | 0.21 | 0.50 | 0.43 | 0.37 | 0.24 | |||||||
Sps | 0.01 | 0.01 | 0.01 | 0.01 | 0.03 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cruciani, G.; Franceschelli, M.; Massonne, H.-J.; Musumeci, G.; Scodina, M. Garnet-Rich Veins in an Ultrabasic Amphibolite from NE Sardinia, Italy: An Example of Vein Mineralogical Re-Equilibration during the Exhumation of a Granulite Terrane. Geosciences 2020, 10, 344. https://doi.org/10.3390/geosciences10090344
Cruciani G, Franceschelli M, Massonne H-J, Musumeci G, Scodina M. Garnet-Rich Veins in an Ultrabasic Amphibolite from NE Sardinia, Italy: An Example of Vein Mineralogical Re-Equilibration during the Exhumation of a Granulite Terrane. Geosciences. 2020; 10(9):344. https://doi.org/10.3390/geosciences10090344
Chicago/Turabian StyleCruciani, Gabriele, Marcello Franceschelli, Hans-Joachim Massonne, Giovanni Musumeci, and Massimo Scodina. 2020. "Garnet-Rich Veins in an Ultrabasic Amphibolite from NE Sardinia, Italy: An Example of Vein Mineralogical Re-Equilibration during the Exhumation of a Granulite Terrane" Geosciences 10, no. 9: 344. https://doi.org/10.3390/geosciences10090344
APA StyleCruciani, G., Franceschelli, M., Massonne, H. -J., Musumeci, G., & Scodina, M. (2020). Garnet-Rich Veins in an Ultrabasic Amphibolite from NE Sardinia, Italy: An Example of Vein Mineralogical Re-Equilibration during the Exhumation of a Granulite Terrane. Geosciences, 10(9), 344. https://doi.org/10.3390/geosciences10090344