Previous, Current, and Future Trends in Research into Earthquake Precursors in Geofluids
Abstract
:1. Introduction
2. 600. B.C–1500 A.D.: The First Observations of Geofluid Variations before Earthquakes: The “Theory of Winds”
3. The Period 1500–1800: The Diffusion of Greek Theories
4. The Period 1800–1920: The First Observatories for Earthquake Precursors
- -
- The study of the frequency and magnitude of seismic events and of the features of seismic oscillations;
- -
- The study of the propagation rate of seismic waves to evaluate the state of tension in seismically active areas;
- -
- Geodetic measurements aimed at discovering slow deformations in the earth crust;
- -
- Gravimetric measurements; and
- -
- The study of the condition of springs and wells, and study of the composition of the gases in the earth crust.
5. Research Starting in the Modern Ages
5.1. The Former Soviet Union and the Russian Federation
5.2. China
5.3. USA
5.4. Japan
5.5. Turkey
5.6. Iceland
5.7. Taiwan
6. Why Monitor Geofluids?
7. Possible Experimental Applications
7.1. Indirect Geochemical Monitoring of Geofluids by Satellite Techniques
7.2. Indirect Geophysical Monitoring of Geofluids by Ambient Seismic Noise
7.3. Indirect Geophysical Monitoring of Geofluids by B-Value
7.4. New Parameters and New Indirect Monitoring Techniques of Geofluids
7.5. Forecastable and Unforecastable Seismic Events
8. Conclusions
- (1)
- New monitoring satellite-based techniques capable of evidencing possible fluctuations in gaseous emissions;
- (2)
- New ground-based monitoring networks in geofluids in areas characterized by relatively high heat flow areas;
- (3)
- Indirect monitoring techniques of geofluids by b-value monitoring;
- (4)
- Indirect monitoring techniques of geofluids by ambient noise monitoring; and
- (5)
- Indirect monitoring techniques of geofluids by magnetotelluric techniques.
Funding
Acknowledgments
Conflicts of Interest
Data Availability
References
- Giardini, D.; Grünthal, G.; Shedlock, K.M.; Zhang, P. The GSHAP Global Seismic Hazard Map. In International Handbook of Earthquake & Engineering Seismology; Lee, W., Kanamori, H., Jennings, P., Kisslinger, C., Eds.; International Geophysics Series 81 B; Academic Press: Amsterdam, The Netherlands, 2003; pp. 1233–1239. [Google Scholar]
- Wiss, M. Evaluation of Proposed Earthquake Precursors; American Geophysical Union: Washington, DC, USA, 1991. [Google Scholar] [CrossRef]
- Jordan, T.; Chen, Y.T.; Gasparini, P.; Madariaga, R.; Main, I.; Marzocchi, W.; Papadupoulos, G.; Sobolev, G.; Yamaoka, K.; Zschau, J. Operational earthquake forecasting—State of knowledge and guidelines for utilization. Ann. Geophys. 2011, 54, 316–391. [Google Scholar] [CrossRef]
- Johnston, M.J.S.; Linde, A.T. Implications of Crustal Strain During Conventional, Slow, and Silent earthquakes. In International Handbook of Earthquake and Engineering Seismology; 81A; Academic Press: Amsterdam, The Netherlands, 2002; pp. 589–605. [Google Scholar]
- King, C.-Y.; Igarashi, G. Earthquake-related Hydrologic and Geochemical Changes. In International Handbook of Earthquake and Engineering Seismology; 81A; Academic Press: Amsterdam, The Netherlands, 2002; pp. 637–645. [Google Scholar]
- Johnston, M.J.S. Electromagnetic Fields Generated by Earthquakes. In International Handbook of Earthquake and Engineering Seismology; 81A; Academic Press: Amsterdam, The Netherlands, 2002; pp. 1–15. [Google Scholar]
- Paudel, S.R.; Banjara, S.P.; Wagle, A.; Freund, F. Earthquake chemical precursors in groundwater: A review. J. Seismol. 2018. [Google Scholar] [CrossRef]
- Uyeda, S.; Nagao, T.; Kamogawa, M. Short term earthquake prediction: Current status of seismo-electromagnetics. Tectonophysics 2009, 470, 205–213. [Google Scholar] [CrossRef]
- Ismail-Zadeh, A.T.; Kossobokov, V.G. Earthquake prediction M8 algorithm. In Encyclopaedia of Solid Earth Geophysics; Gupta, H., Ed.; Springer: Heidelberg, Germany, 2011; pp. 178–182. [Google Scholar]
- Chadha, R.K. Seismic signals in Well Water Observations. In Encyclopedia of Solid Earth Geophysics; Gupta, H., Ed.; Encyclopedia of Earth Sciences Series; Springer: Cham, Switzerland, 2011. [Google Scholar]
- Biagi, P.F.; Contadakis, M. Earthquake precursors and seismic hazards. Nat. Hazards Earth Syst. Sci. 2008, 8, 573–1462. [Google Scholar]
- Biagi, P.F.; Contadakis, M. Earthquake precursors and seismic hazards. Nat. Hazard Earth Syst. Sci. 2009, 9, 3–216. [Google Scholar]
- Rhoades, D.; Savage, M.; Smith, E.; Gerstenberger, M.; Vere-Jones, D. (Eds.) Special Issue: Seismogenesis and Earthquake Forecasting: The Frank Evison; Springer: Berlin, Germany, 2010; Volume 1. [Google Scholar]
- Savage, M.K.; Smith, E.G.C.; Vere-Jones, D. (Eds.) Special Issue: Seismogenesis and Earthquake Forecasting: The Frank Evison; Springer: Berlin, Germany, 2011; Volume 2. [Google Scholar]
- Liu, J.-K.; Chen, C.-H.; Hattori, K. (Eds.) Earthquake Precursory Studies. J. Asian Earth Sci. 2015, 114, 279–434. [Google Scholar]
- Ouzounov, D.; Pulinets, S.; Hattori, K.; Taylor, P. (Eds.) Pre-Earthquake Processes: A Multidisciplinary Approach to Earthquake Prediction Studies, Geophysical Monograph; American Geophysical Union: Washington, DC, USA; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2018; Volume 234, p. 365. [Google Scholar]
- King, C.-Y.; Manga, M. (Eds.) Hydrological, Geochemical and Geophysical Changes Related to Earthquakes and Slow-Slip Events; Birkhauser: Cham, Switzerland, 2019; p. 149. [Google Scholar]
- Bendandi, R. Un Principio Fondamentale dell’Universo. S.T.E.; Osservatorio Bendandi: Faenza, Italy, 1931; p. 300. [Google Scholar]
- Lorenzini, D. Guida dei Bagni della Porretta e Dintorni; Demetrio Lorenzini: Bologna, Italy, 1898. [Google Scholar]
- Imamura, G. Report on the observed variation of the Tochiomata hot spring immediately before the Nagano earthquake on July 15, 1947. Kagaku 1947, 11, 16–17. (In Japanese) [Google Scholar]
- Rikitake, T. Changes in the Dogo hot spring associated with the Nankai earthquake. Bull. Earthq. Res. Inst. Univ. Tokyo 1947, 5, 189–194. (In Japanese) [Google Scholar]
- Milne, J. Earthquakes in connection with electric and magnetic phenomena. Trans. Seismol. Soc. Jpn. 1890, 15, 135–163. [Google Scholar]
- Tanakadate, A.; Nagaoka, H. The disturbance of isomagnetic attending the Mino-Owari earthquake of 1891. J. Coll. Sci. Imperial Univ. Jpn. 1893, 5, 149–192. [Google Scholar]
- Bertelli, T. Di alcuni miglioramenti nella valutazione dei moti tromometrici proposti agli osservatori sismici d’Italia. Bull. Vulcanismo Ital. 1877, 4, 113–122. [Google Scholar]
- De Rossi, M.S. La Meteorologia Endogena; Fratelli Dumolard: Milano, Italy, 1879; Volume 1. [Google Scholar]
- Ferrari, G.; Albarello, D.; Martinelli, G. Tromometric Measurements as a Tool for Crustal Deformation Monitoring. Seismol. Res. Lett. 2000, 71, 562–569. [Google Scholar] [CrossRef]
- Galitzin, B.B. Izbrannie Trudiy (Selected Works), 2nd ed.; AN SSSR: Moscow, Russia, 1960. [Google Scholar]
- Chen, Y.T.; Gu, H.D.; Lu, Z.X. Variations of gravity before and after the Haicheng earthquake, 1975, and the Tangshan earthquake, 1976. Phys. Earth Planet Int. 1979, 18, 330–338. [Google Scholar] [CrossRef]
- Howell, B.F. History of Ideas on the Cause of Earthquakes. EOS 1986, 67, 1323–1326. [Google Scholar] [CrossRef]
- Cicerone, R.D.; Ebel, J.E.; Britton, J. A systematic compilation of earthquake precursors. Tectonophysics 2009, 476, 371–396. [Google Scholar] [CrossRef]
- Woith, H. Radon earthquake precursor: A short review. Eur. Phys. J. Spec. Top. 2015, 224, 611–627. [Google Scholar] [CrossRef]
- De Luca, G.; Di Carlo, G.; Tallini, M. A record of changes in the Gran Sasso groundwater before, during and after the 2016 Amatrice earthquake, central Italy. Sci. Rep. 2018, 8, 15982I. [Google Scholar] [CrossRef]
- Martinelli, G. Earthquakes, Prediction. Sciences of the Earth, An Encyclopedia of Events, People, and Phenomena; Good, G.A., Ed.; Garland Publishing, Inc.: New York, NY, USA, 1998; pp. 192–196. [Google Scholar]
- Schinche, T. De Fontibus Librorum Ciceronis Qui Sunt de Divinatione; 1875, Jena. Reprinted by Kessinger Publishing, LLC.; BiblioBazaar: Charleston, SC, USA, 2010; ISBN-13: 978-1168691897. [Google Scholar]
- Guidoboni, E. Earthquakes, Theories from Antiquity to 1600. In Sciences of the Earth, An Encyclopaedia of Events, People, and Phenomena; Good, G.A., Ed.; Garland Publishing: New York, NY, USA, 1998; Volume 1, pp. 197–205. [Google Scholar]
- Liner, C.L. Greek Seismology-Being an Annotated Sourcebook of Earthquake Theories and Concepts in Classical Antiquity; Samizdat Press: Belgrade, Serbia, 1997; p. 135. [Google Scholar]
- Siebert, L.; Simkin, T. Volcanoes of the World: An Illustrated Catalogue of Holocene Volcanoes and Their Eruptions; Global Volcanism Program; Smithsonian Institution: Washington, DC, USA, 2002. [Google Scholar]
- Vougioukalakis, G.E.; Fytikas, M. Volcanic hazards in the Aegean area, relative risk evaluation, monitoring and present state of the active volcanic centers. Dev. Volcanol. 2005, 7, 161–183. [Google Scholar]
- Roeloffs, E. Hydrologic Precursors to Earthquakes: A review. Pure Appl. Geophys. 1988, 126, 177–209. [Google Scholar] [CrossRef]
- Buoni, A.J. Del Terremoto: Dialogo di Jacopo Antonio Buoni Medico Ferrarese Distinto in Quattro Giornate; Gadaldini e Fratelli: Modena, Italy, 1571. [Google Scholar]
- Longobardo, N. (Long Huamin) (1626), Interpretazione del Terremoto; Italian translation by G. Matteucig, English translation by Yue Xiaozhu and Lu Dajiong; Centro Studi Internazionale “Before Day”: Napoli, Italy, 1988; p. 57. [Google Scholar]
- Wakita, H.; Nakamura, Y.; Sano, Y. Short-term and intermediate-term geochemical precursors. Pure Appl. Geophys. 1988, 126, 267–278. [Google Scholar] [CrossRef]
- Ma, Z.; Fu, Z.; Zhang, Y.; Wang, C.; Zhang, G.; Lin, D. Earthquake Prediction—Nine Major Earthquakes in China (1966–1976); Springer: Berlin/Heidelberg, Germany, 1990. [Google Scholar]
- Onoprienko, V.I. Boris Borisovich Golitsin: 1862–1916; Nauka: Moskva, Russia, 2002; p. 333. (In Russian) [Google Scholar]
- Mercalli, G. Vulcani e Fenomeni Vulcanici in Italia; Sala Bolognese: Milano, Italy, 1980; p. 374. [Google Scholar]
- Baratta, M. I Terremoti d’Italia. Saggio di Storia Geografia e Bibliografia Sismica Italiana; Sala Bolognese: Torino, Italy, 1979; p. 951. [Google Scholar]
- Luongo, G.; Carlino, S.; Cubellis, E.; Delizia, I.; Obrizzo, F. Casamicciola Milleottocentottantatre; Bibliopolis: Napoli, Italy, 2011; p. 282. ISBN 978-88-7088-610-8. [Google Scholar]
- Zarkov, V.N. Vnutrennee Stroenie Zemli i Planet; Nauka: Moscow, Russia, 1983; p. 404. (In Russian) [Google Scholar]
- Sobolev, G.A. Fundamentals of Earthquake Prediction; Electromagnetic Research Center: Moscow, Russia, 1995; p. 162. [Google Scholar]
- Semenov, A.M. Variations in the travel-time of transverse and longitudinal waves before violent earthquakes. Izv. Acad. Sci. USSR Phys. Solid Earth. 1969, 4, 245–248. [Google Scholar]
- Scholz, C.H.; Sykes, L.R.; Aggarwal, Y.P. Earthquake prediction: A physical basis. Science 1973, 181, 803. [Google Scholar] [CrossRef] [PubMed]
- Mjachkin, V.I.; Brace, W.F.; Sobolev, G.A.; Dietrich, J.H. Two models for earthquake forerunners. Pure Appl. Geophys. 1975, 113, 169–181. [Google Scholar] [CrossRef]
- Ulomov, V.I.; Mavashev, B.Z. A precursor of a strong tectonic earthquake. Dokl. Akad. Nauk. SSSR 1967, 176, 319–321. [Google Scholar]
- Sultankhodzhaev, A.N. Hydrogeosismic precursors to earthquakes. In Earthquake Prediction on International Symposium; UNESCO: Paris, France, 1984; pp. 181–191. [Google Scholar]
- Kissin, I.G. New data on crustal sensitive zones and formation of precursors and postseismic response to earthquakes. Russ. Geol. Geophys. 2007, 48, 429–441. [Google Scholar] [CrossRef]
- Gokhberg, M.B.; Morgounov, V.A.; Pokhotelov, O.A. Earthquake Prediction: Seismo-Electromagnetic Phenomena; Gordon and Breach Publishers, OPA: Amsterdam, The Netherlands, 1995; p. 193. [Google Scholar]
- Abdullabekov, K.N. Electromagnetic Phenomena in the Earth’s Crust; Balkema: Rotterdam, The Netherlands, 1991; p. 150, ISBN 10: 9061911710/ISBN 13: 9789061911715. [Google Scholar]
- Carapezza, M.; Nuccio, P.M.; Valenza, M. Geochemical precursors of earthquakes. In High Pressure Science and Technology; Vodar, B., Marteau, P.H., Eds.; Pergamon Press: New York, NY, USA, 1980; pp. 90–103. [Google Scholar]
- Dall’Aglio, M. Earthquake prediction by hydrogeochemical methods. Rend. Soc. Ital. Mineral. Petrol. 1976, 32, 421–436. [Google Scholar]
- Dall’Aglio, M. Ricerche Sui Premonitori Geochimici dei Terremoti. Passato, Presente e Futuro, in Terremoti in Italia. Atti dei Convegni Lincei; Accademia Nazionale dei Lincei: Roma, Italy, 1995; pp. 295–300. [Google Scholar]
- Barsukov, V.L.; Varshal, G.M.; Garanin, A.B.; Serebrennikov, V.S. Hydrochemical precursors of earthquakes, in Earthquake prediction. In Proceedings of the International Symposium on Earthquakes Prediction, Unesco, Paris, France; 1984; pp. 169–180. [Google Scholar]
- Sidorenko, A.V.; Sadovsky, M.A.; Nersesov, I.L.; Popov, E.A.; Soloviev, S.L. Soviet Experience in Earthquake Prediction in the USSR and the Prospects for Its Development. In International Symposium on Earthquake Prediction; Terra Scientific Publishing Company: Tokyo, Japan, 1984; pp. 565–573. [Google Scholar]
- Asimov, M.S.; Mavlyanov, F.A.; Erzhanov, J.S.; Kalmurzaev, K.E.; Kurbanov, M.K.; Kashin, L.N.; Negmatulaev, S.H.; Nersesov, I.L. On the state of research concerning earthquake prediction in the Soviet republics of central Asia. In International Symposium on Earthquake Prediction; Terra Scientific Publishing Company: Tokyo, Japan, 1984; pp. 585–595. [Google Scholar]
- Sidorin, A.Y. Search for earthquake precursors in multidisciplinary data monitoring of geophysical and biological parameters. Nat. Hazards Earth Syst. Sci. 2003, 3, 153–158. [Google Scholar] [CrossRef]
- Semenov, R.M.; Kashkovskii, V.V.; Lopatin, M.N. Hydrogeochemical earthquake precursor in the southern Baikal region. Russian Geol. Geophys. 2017, 58, 1553–1560. [Google Scholar] [CrossRef]
- Kopylova, G.N.; Boldina, S.V. Hydrogeoseismological Research in Kamchatka: 1977–2017. J. Volcanol. Seismol. 2019, 13, 71–84. [Google Scholar] [CrossRef] [Green Version]
- Wang, B.; Liu, Y.; Sun, X.; Ma, Y.; Zhang, L.; Ren, H.; Fang, Z. Hydrogeological and Geochemical Observations for earthquake Prediction Research in China: A Brief Overview. Pure Appl. Geophys. 2018, 175, 2541–2555. [Google Scholar] [CrossRef]
- Chen, Q.-F.; Wang, K. The Wenchuan Earthquake and Earthquake Prediction in China. Bull. Seismol. Soc. Am. 2010, 100, 2840–2857. [Google Scholar] [CrossRef]
- Dikun, W. China’s national seismic well-network for observation of groundwater behaviour (water level and hydrogeochemistry) and typical earthquake cases. J. Earthq. Predict. Res. 1993, 2, 1–16. [Google Scholar]
- Tian, S.; Tang, J.; Wang, J.-G.; Xu, X.-G.; Cui, X.-F.; Zhang, M.-D.; Cao, J.-Q. Continuous electromagnetic measurements at ststionary stations and its applications to earthquake prediction research. Dizhen Dizhi. 2009, 31, 551–558. [Google Scholar]
- Ping, Z.; Guoze, Z.; Ji, T.; Feng, L.; Weihuai, S.; Bing, H.; Lifeng, W.; Li, Z. Establishment of the ELF Network in Yunnan and Electromagnetic Precursory Monitoring Results of the Yangbi Ms 5.1 Earthquake on March 27, 2017. Earthq. Res. China 2018, 32, 254–264. [Google Scholar]
- Chen, S.; Jiang, C.; Zhuang, J. Statistical Evaluation of Efficiency and Possibility of Earthquake Predictions with Gravity Field Variation and its Analytic Signal in Western China. Pure Appl. Geophys. 2016, 173, 305–319. [Google Scholar] [CrossRef]
- Zhu, Y.; Liu, F.; Zhang, G.; Xu, Y. Development and prospect of mobile gravity monitoring and earthquake forecasting in recent ten years in China. Geod. Geodyn. 2019, 10, 485–491. [Google Scholar] [CrossRef]
- Shi, Z.; Wang, G.; Liu, C. Advances in research on earthquake fluids hydrogeology in China: A review. Earthq. Sci. 2013, 26, 415–425. [Google Scholar] [CrossRef] [Green Version]
- Huang, F.; Li, M.; Ma, Y.; Han, Y.; Tian, L.; Yan, W.; Li, X. Studies on earthquake precursors in China: A review for recent 50 years. Geod. Geodyn. 2017, 8, 1–12. [Google Scholar] [CrossRef]
- Wang, H.; Zhang, Y.; Liu, J.; Shen, X.; Yu, H.; Jiang, Z.; Zhang, G. Pre-Earthquake Observations and Their Application in Earthquake Prediction in China. A Review of Historical and Recent Progress. In Pre-Earthquake Processes: A Multidisciplinary Approach to Earthquake Prediction Studies; Ouzounov, D., Pulinets, S., Hattori, K., Taylor, P., Eds.; Geophysical Monograph 234; American Geophysical Union: Washington, DC, USA; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2018; pp. 19–39. [Google Scholar]
- Zheng, G.; Xu, S.; Liang, S.; Shi, P.; Zhao, J. Gas emission from the Qingzhu River after the 2008 Wenchuan Earthquake, Southwest China. Chem. Geol. 2013, 339, 187–193. [Google Scholar] [CrossRef]
- Zhou, X.; Chen, Z.; Cui, Y. Environmental impact of CO2, Rn, Hg, degassing from the rupture zones produced by Wenchuan Ms 8.0 earthquake in western Sichuan, China. Environ. Geochem. Health 2015. [Google Scholar] [CrossRef]
- Chen, Z.; Li, Y.; Liu, Z.; Zheng, G.; Xu, W.; Yan, W.; Yi, L. CH4 and CO2emissions from mud volcanoes onthe southern margin of the Junggar Basin, NW China: Origin, output, and relation to regional tectonics. J. Geophys. Res. Solid Earth 2019, 124, 5030–5044. [Google Scholar] [CrossRef]
- Chen, Z.; Li, Y.; Martinelli, G.; Liu, Z.; Lu, C.; Zhao, Y. Spatial and temporal variations of CO2 emissions from the active fault zones in the capital area of China. Appl. Geochem. 2020, 112. [Google Scholar] [CrossRef]
- Whitcomb, J.H.; Garmany, J.D.; Anderson, D.L. A bare precursory change in seismic body-wave velocities occurring before the earthquake in San Fernando. Calif. Sci. 1973, 180, 632–635. [Google Scholar]
- Castle, R.O.; Alt, J.N.; Savage, J.C.; Balazs, E.I. Elevation Changes Preceding the San Fernando Earthquake of February 9, 1971. Geology 1974, 2, 61–66. [Google Scholar] [CrossRef]
- Wiss, M. Interpretation of the southern California uplift in terms of the dilatancy hypothesis. Nature 1977, 266, 805–808. [Google Scholar] [CrossRef]
- Norwegian Refugee Council. Panel on the Public Policy implications of earthquake prediction of the Advisory Committee on emergency planning. In Earthquake Prediction and Public Policy; National Academy of Sciences: Washington, DC, USA, 1975; p. 142. [Google Scholar]
- Hough, S.E. Predicting the Unpredictable. The Tumultuous Science of Earthquake Prediction; Princeton University Press: Princeton, NJ, USA, 2010; p. 260. [Google Scholar]
- Bakun, W.H. The Parkfield, California earthquake prediction experiments. In Prediction of Earthquakes, Occurrence and Ground Motion, Proceedings of the ECE/UN Seminar, Lisbon, Portugal, 14–18 November 1988; Oliveira, C.S., Ed.; Laboratório Nacional de Engenharia Civil: Lisbon, Portugal, 1990; pp. 681–693. [Google Scholar]
- Roeloffs, E.; Langbein, J. The earthquake prediction experiment at Parkfield, California. Rev. Geophys. 1994, 32, 315–336. [Google Scholar] [CrossRef] [Green Version]
- Roeloffs, E.; Quilty, E. Water level and strain changes preceding and fofllowing the August 4, 1985 Kettleman Hills, California, earthquake. Pure Appl. Geophys. 1997, 149, 21–60. [Google Scholar] [CrossRef]
- Lu, Z.; Wen, L. Strong hydro-related localized long-periodcrustal deformation observed in the Plate Boundary Observatory borehole strainmeters. Geophys. Res. Lett. 2018, 45, 12856–12865. [Google Scholar] [CrossRef]
- Goltz, J.; Roeloffs, E. Imminent Communication: Earthquake Early Warning and Short-Term Forecasting in Japan and the US. In Disaster Risk Communication; Yamori, K., Ed.; Springer: Berlin, Germany, 2018. [Google Scholar] [CrossRef]
- Rikitake, T. Earthquake Prediction. Developments in Solid Earth Geophysics, 9; Elsevier Scientific Publishing Company: Amsterdam, The Netherlands; Oxford, UK; New York, NY, USA, 1976; 357 p. [Google Scholar]
- Hatuda, Z. Radon content and its change in soil air near the ground surface. In Memoires of the College of Science; series B XX; University of Kyoto: Kyoto, Japan, 1953; pp. 285–306. [Google Scholar]
- Okabe, S. Time variation of the atmospheric radon-content near the ground surface with relation to some geophysical phenomena. In Memories of the College of Science; Series A; University of Kyoto: Kyoto, Japan, 1956; Volume 28, pp. 99–115. [Google Scholar]
- Tsuboi, C.; Wadati, K.; Hagiwara, T. Prediction of Earthquakes—Progress to Date and Plans for Further Development; Report of the Earthquake Prediction Research Group of Japan; Earthquake Research Institute of Tokyo: Tokyo, Japan, 1962. [Google Scholar]
- Rikitake, T. A five year plan for earthquake prediction research in Japan. Tectonophysics 1966, 3, 1–15. [Google Scholar] [CrossRef]
- Hayakawa, M. Earthquake Precursor Studies in Japan. In Pre-Earthquake Processes: A Multidisciplinary Approach to Earthquake Prediction Studies; Ouzounov, D., Pulinets, S., Hattori, K., Taylor, P., Eds.; Geophysical Monograph; American Geophysical Union: Washington, DC, USA; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2018; Volume 234, pp. 7–18. [Google Scholar]
- Uyeda, S. On Earthquake Prediction in Japan. Proc. Jpn. Acad. Ser. B Phys. Biol. Sci. 2013, 89, 391–400. [Google Scholar] [CrossRef] [Green Version]
- Itaba, S.; Koizumi, N.; Matsumoto, N.; Ohtani, R. Continuous Observation of Groundwater and Crustal Deformation for forecasting Tonankai and Nankai Earthquakes in Japan. Pure Appl. Geophys. 2010, 167, 1105–1114. [Google Scholar] [CrossRef]
- Matsumoto, N.; Koizumi, N. Recent hydrological and geochemical research for earthquake prediction in Japan. Nat. Hazards 2011, 69, 1247–1260. [Google Scholar] [CrossRef]
- Kitagawa, Y.; Koizumi, N. Detection of short-term slow slip events along the Nankai Trough via groundwater observations. Geophys. Res. Lett. 2013, 40. [Google Scholar] [CrossRef]
- Zschau, J.; Ergunay, O. (Eds.) Turkish–German Earthquake Research Project; IASPEI: Ankara, Turkey, 1989. [Google Scholar]
- Woith, H.; Wang, R.; Maiwald, U.; Pekdeger, A.; Zschau, J. On the origin of geochemical anomalies in groundwaters induced by the Adana 1998 earthquake. Chem. Geol. 2013, 339, 177–186. [Google Scholar] [CrossRef]
- Yuce, G.; Ugurluoglu, D. Earthquake dates and water level changes in Wells inthe Eskisehir region, Turkey. Hydrol. Earth Syst. Sci. 2003, 7, 777–781. [Google Scholar] [CrossRef]
- Yuce, G.; Ugurluoglu, D.Y.; Adar, N.; Yalcin, T.; Yaltirak, C.; Streil, T.; Oeser, V. Monitoring of earthquake precursors by multi-parameter stations in Eskisehir region (Turkey). Appl. Geochem. 2010, 25, 572–579. [Google Scholar] [CrossRef]
- Inan, S.; Ergintav, S.; Saatçilar, R.; Tüzel, B.; İravul, Y. Turkey makes major investment in earthquake research. Eos Trans. Am. Geophys. Union 2007, 34, 333–334. [Google Scholar] [CrossRef] [Green Version]
- Inan, S.; Akgül, T.; Seyis, C.; Saatcilar, R.; Baykut, S.; Ergintav, S.; Bas, M. Geochemical monitoring in theMarmara region (NW Turkey): A search for precursors of seismic activity. J. Geophys. Res. 2008, 113, B03401. [Google Scholar] [CrossRef] [Green Version]
- Disaster and Emergency Management Authority. National Earthquake Strategy and Action Plan 2012–2023; Disaster and Emergency Management Authority: Ankara, Turkey, 2011; p. 73. [Google Scholar]
- Hauksson, E.; Goddard, J. Radon earthquake precursor studies in Iceland. J. Geophys. Res. 1981, 86, 7037–7054. [Google Scholar] [CrossRef] [Green Version]
- Stefansson, R. Advances in Earthquake Prediction Research and Risk Mitigation; Springer: Berlin/Heidelberg, Germany, 2011; p. 245. [Google Scholar]
- Einarsson, P.; Theodórsson, P.; Hjartardóttir, Á.R.; Gudjónsson, G.I. Radon changes associated with the earthquake sequence in June 2000 in the South Iceland Seismic Zone. Pure Appl. Geophys. 2008. [Google Scholar] [CrossRef]
- Skelton, A.; Liljedahl-Claesson, L.; Wästeby, N.; Andrén, M.; Stockmann, G.; Sturkell, E.; Keller, N. Hydrochemical changes before and after earthquakes based on long-term measurements of multiple parameters at two sites in northern Iceland—A review. J. Geophys. Res. Solid Earth. 2019, 124, 2702–2720. [Google Scholar] [CrossRef]
- Tsai, Y.B.; Teng, T.L.; Yeh, Y.H.; Yu, S.B.; Liu, K.K.; Wang, J.H. Status of earthquake prediction research in Taiwan. ROC Bull. Inst. Earth Sci. 1983, 3, 1–26. [Google Scholar]
- Chen, C.H.; Tang, C.C.; Cheng, C.C.; Wang, K.C.; Wen, C.H.; Lin, S.; Wen, C.H.; Meng, Y.Y.; Yeh, G.; Jan, T.K.; et al. Groundwater-strain coupling before the 1999 Mw 7.6 Taiwan Chi-Chi earthquake. J. Hydrol. 2015, 524, 378–384. [Google Scholar] [CrossRef]
- Fu, C.C.; Yang, T.F.; Tsai, M.C.; Lee, L.; Liu, T.K.; Walia, V.; Chen, C.-H.; Chang, W.Y.; Kumar, A.; Lai, T.H. Exploring the relationship between soil degassing and seismic activity by continuous radon monitoring in the Longitudinal Valley of eastern Taiwan. Chem. Geol. 2017, 469, 163–175. [Google Scholar] [CrossRef]
- Fu, C.-C.; Lee, L.-C. Continuous Monitoring of Fluid and Gas Geochemistry for Seismic Study in Taiwan. In Pre-Earthquake Processes: A Multidisciplinary Approach to Earthquake Prediction Studies; Ouzounov, D., Pulinets, S., Hattori, K., Taylor, P., Eds.; Geophysical Monograph 234; American Geophysical Union: Washington, DC, USA; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2018; pp. 199–218. [Google Scholar]
- Thomas, D. Geochemical Precursors to Seismic Activity. Pure Appl. Geophys. 1988, 126, 241–266. [Google Scholar] [CrossRef]
- Arieh, E.; Merzer, A.M. Fluctuations in oil flow before and after earthquakes. Nature 1974, 534–535. [Google Scholar] [CrossRef]
- Bodvarsson, G. Confined fluids as strain meters. J. Geophys. Res. 1970, 75, 2711–2718. [Google Scholar] [CrossRef]
- Wang, C.-Y.; Manga, M. Earthquakes and Water; Springer: Berlin/Heidelberg, Germany, 2010; p. 225. [Google Scholar] [CrossRef] [Green Version]
- Fyfe, W.S.; Price, N.J.; Thompson, A.B. Fluids in the Earth’s Crust; Elsevier Scientific Publishing Company: Amsterdam, The Netherlands, 1978; p. 383. [Google Scholar]
- Frezzotti, M.L.; Peccerillo, A.; Panza, G. Carbonate metasomatism and CO2 litosphere-astenosphere degassing beneath the Western Mediterranean: An integrated model arising from petrological and geophysical data. Chem. Geol. 2009, 262, 108–120. [Google Scholar] [CrossRef] [Green Version]
- Skelton, A.; Andrén, M.; Kristmannsdòttir, H.; Stockmann, G.; Morth, C.-M.; Sveinbjornsdottir, A.; Jonsson, S.; Sturkell, E.; Gudrunardottir, H.R.; Hjartarson, H.; et al. Changes in groundwater chemistry before two consecutive earthquakes in Iceland. Nat. Geosci. 2014, 7, 752–756. [Google Scholar] [CrossRef] [Green Version]
- Rice, J.R.; Cleary, M.P. Some basic stress diffusion solutions for fluid-saturated elastic porous media with compressible constituents. Rev. Geophys. Space Phys. 1976, 14, 227–241. [Google Scholar] [CrossRef]
- Roeloffs, E. Poroelastic techiques in the study of earthquake related-related hydrologic phenomena. Adv. Geophys. 1996, 37, 135–195. [Google Scholar] [CrossRef]
- Fine, R.A.; Millero, F.J. Compressibility of water as a function of temperture and pressure. J. Chem. Physics. 1973, 59, 5529–5536. [Google Scholar] [CrossRef]
- Popov, E.; Vartanyan, G.S. Investigation of geodynamic processes in connection with strong earthquakes prediction. In Proceedings of the ECE/UN Seminar on Prediction of Earthquakes, Lisbon, Portugal, 14–18 November 1988; Oliveira, C.S., Ed.; Laboratório Nacional de Engenharia Civil: Lisbon, Portugal, 1990; pp. 681–693. [Google Scholar]
- Vartanyan, G.S.; Bashmakov, V.I. Variation in the Hydrogeologic strain field during intensive geodynamic processes. Int. Geol. Rev. 1990, 32, 109–112. [Google Scholar] [CrossRef]
- Vartanyan, G.S.; Bredehoeft, J.D.; Roeloffs, E. Hydrogeological methods for studying tectonic stress. Sov. Geol. 1992, 9, 3–12. (In Russian) [Google Scholar]
- Chelidze, T.; Matcharashvili, T.; Melikadze, G. Earthquakes’ Signatures in Dynamics of Water Level Variations in Boreholes. In Synchronization and Triggering: From Fracture to Earthquake Processes; De Rubeis, V., Czechowski, Z., Teysseyre., R., Eds.; Springer: Berlin/Heidelberg, Germany, 2010; pp. 287–303. [Google Scholar] [CrossRef]
- Huang, F.; Jian, C.; Tang, Y.; Xu, G.; Deng, Z.; Chi, G.-C.; Farrar, C.D. Response changes of some wells in the mainland subsurface fluid monitoring network of China, due to the September 21, 1999, Ms 7.6 Chi-Chi earthquake. Tectonophysics 2004, 390, 217–234. [Google Scholar] [CrossRef]
- Wang, K.; Chen, Q.-F.; Sun, S.; Wang, A. Predicting the 1975 Haicheng Earthquake. Bull. Seismol. Soc. Am. 2006, 96, 757–795. [Google Scholar] [CrossRef]
- Roeloffs, E. Evidence for Aseismic Deformation Rate Changes Prior to Earthquakes. Annu. Rev. Earth Planet. Sci. 2006, 34, 591–627. [Google Scholar] [CrossRef] [Green Version]
- Matsumoto, N.; Kitagawa, Y.; Koizumi, N. Groundwater-level anomalies associated with a hypothetical preslip prior to the anticipated Tokai earthquake: Detectability using the groundwater observation network of the Geological Survey of Japan, AIST. Pure Appl. Geophys. 2007, 164, 2377–2396. [Google Scholar] [CrossRef]
- Roeloffs, E. Radon and rock deformation. Nature 1999, 399, 104–105. [Google Scholar] [CrossRef]
- Ozima, M.; Podosek, F.A. Noble Gas Geochemistry; Cambridge University Press: Cambridge, UK, 2001; p. 302. [Google Scholar]
- Onda, S.; Sano, Y.; Takahata, N.; Kagoshima, T.; Miyajima, T.; Shibata, T.; Pinti, D.L.; Lan, T.; Kim, N.; Kim, N.K.; et al. Groundwater oxygen isotope anomaly before the M 6.6 Tottori earthquake in Southwest Japan. Sci. Rep. 2018, 8, 4800. [Google Scholar] [CrossRef] [Green Version]
- Hilton, D.R. The Leaking Mantle. Science 2007, 318, 1389–1390. [Google Scholar] [CrossRef]
- Mamyrin, B.A.; Tolstikhin, I.N.; Khabarin, L.V. Possible use of 3He and 4He ratios in predicting earthquakes. Geokimya 1979, 3, 384–386. (In Russian) [Google Scholar]
- Italiano, F.; Martinelli, G.; Nuccio, M. Anomalies of mantle derived helium during the 1997–1998 seismic swarm of umbria-Marche, Italy. Geophys. Res. Lett. 2001, 28, 839–842. [Google Scholar] [CrossRef]
- Sano, Y.; Takahata, N.; Kagoshima, T.; Shibata, T.; Onoue, T.; Zhao, D. Groundwater helium anomaly reflects strain change during the 2016 Kumamoto earthquake in Southern Japan. Sci. Rep. 2016, 6, 37939. [Google Scholar] [CrossRef] [PubMed]
- Wiss, M.; Booth, D.C. The IASPEI procedure for the evaluation of earthquake precursors. Geophys. J. Int. 1997, 131, 423–424. [Google Scholar] [CrossRef]
- Kasahara, K. Migration of crustal deformation. Tectonophysics 1979, 52, 329–341. [Google Scholar] [CrossRef]
- Silver, P.G.; Valette-Silver, N.G.; Kolbek, O. Detection of hydrothermal precursors to large Northern California earthquakes. In The Loma Prieta, California, Earthquake of October 17, 1989: Earthquake Occurrence Preseismic Observations; Johnston, M.J.S., Ed.; Professional Paper 1550-C; USGS: Reston, VA, USA, 1993; pp. c73–c80. [Google Scholar]
- Albarello, D.; Martinelli, G. Piezometric levels as possible geodynamic indicators: Analysis of the data from a regional deep waters monitoring network in Northern Italy. Geophys. Res. Lett. 1994, 21, 1955–1958. [Google Scholar] [CrossRef]
- Buntebarth, G.; Chelidze, T. (Eds.) Time-Dependent Microtemperature and Hydraulic Signals Associated with Tectonic/Seismic Activity; Nodia Institute of Geophysics, Georgian Academy of Sciences: Tbilisi, Georgia, 2005; p. 244. [Google Scholar]
- Ord, A.; Hobbs, B.E. The strength of the continental crust, detachment zones and the development of plastic instabilities. Tectonophysics 1989, 158, 269–289. [Google Scholar] [CrossRef]
- Agnew, D.C. Strainmeters and tiltmeters. Rev. Geophys. 1986, 24, 579–624. [Google Scholar] [CrossRef]
- Kumpel, H.-J. Poroelasticity: Parameters reviewed. Geophys. J. Int. 1991, 105, 783–799. [Google Scholar] [CrossRef] [Green Version]
- Swolfs, H.S.; Walsh, J.B. The theory and prototype development of a stress-monitoring system. Bull. Seismol. Soc. Am. 1990, 80, 197–208. [Google Scholar]
- Woith, H.; Venedikov, A.P.; Milkereit, C.; Parlaktuna, M.; Pekdeger, A. Observation of crustal deformation by means of wellhead pressure monitoring. Bull. Inf. Marees Terr. 2006, 141, 11277–11285. [Google Scholar]
- Hauksson, E. Radon content of groundwater as an earthquake precursor: Evaluation of worldwide data and physical basis. J. Geophys. Res. Solid Earth 1981, 86, 9397–9410. [Google Scholar] [CrossRef] [Green Version]
- Friedmann, H. Anomalies in the Radon Content of Spring Water as Earthquake Precursor Phenomena. Earthq. Predict. Res. 1985, 1, 179–189. [Google Scholar]
- Kissin, I.G.; Grinevsky, A.O. Main features of hydrogeodynamic earthquake precursors. Tectonophysics 1990, 178, 277–286. [Google Scholar] [CrossRef]
- Toutain, J.-P.; Baubron, J.-C. Gas geochemistry and seismotectonics: A review. Tectonophysics 1999, 304, 1–27. [Google Scholar] [CrossRef]
- Hartmann, J.; Levy, J.K. Hydrogeological and Gasgeochemical Earthquake Precursors—A Review for Applications. Nat. Hazards 2005, 34, 279–304. [Google Scholar] [CrossRef]
- Ghosh, D.; Deb, A.; Sengupta, R. Anomalous radon emission as precursor of earthquake. J. Appl. Geophys. 2009, 69, 67–81. [Google Scholar] [CrossRef]
- Petraki, E.; Nikolopoulos, D.; Panagiotaras, D.; Cantzos, D.; Yannakopoulos, P.; Nomicos, C.; Stonham, J. Radon-222: A Potential Short-Term Earthquake Precursor. J. Earth Sci. Clim. Chang. 2015, 6, 282. [Google Scholar] [CrossRef]
- Woith, H.; Petersen, G.M.; Hainzl, S.; Dahm, T. Review: Can Animals Predict Earthquakes? Bull. Seismol. Soc. Am. 2018, 108, 1031–1045. [Google Scholar] [CrossRef]
- Ohnaka, M. Earthquake source nucleation: A physical model for short-term precursors. Tectonophysics 1992, 211, 149–178. [Google Scholar] [CrossRef]
- Goutorbe, B.; Poort, J.; Lucazeau, F.; Raillard, S. Global heat flow trends resolved from multiple geological and geophysical proxies. Geophys. J. Int. 2011, 187, 1405–1419. [Google Scholar] [CrossRef] [Green Version]
- Lucazeau, F. Analysis and Mapping of an Updated Terrestrial Heat Flow Data Set. Geochem. Geophys. Geosyst. 2019, 20, 4001–4024. [Google Scholar] [CrossRef] [Green Version]
- Zencher, F.; Bonafede, M.; Stefansson, R. Near-lithostatic pore pressure at seismogenic depths: A thermoporoelastic model. Geophys. J. Int. 2006, 166, 1318–1334. [Google Scholar] [CrossRef] [Green Version]
- Ranalli, G. Rheology of the Earth; Chapman and Hall: Padstow, UK, 1995; p. 413. [Google Scholar]
- Peresan, A.; Kossobokov, V.; Romashkova, L.; Panza, G. Intermediate-term middle-range earthquake predictions in Italy: A review. Earth Sci. Rev. 2005, 69, 97–132. [Google Scholar] [CrossRef]
- Mantovani, E.; Viti, M.; Babbucci, D.; Albarello, D.; Cenni, N.; Vannucchi, A. Long-term earthquake triggering in the Southern and Northern Apennines. J. Seismol. 2010, 14, 53–65. [Google Scholar] [CrossRef]
- Gorny, V.I.; Salman, A.G.; Tronin, A.A.; Shilin, B.B. The earth outgoing IR radiation as an indicator of seismic activity. Proc. Acad. Sci. USSR 1988, 301, 67–69. [Google Scholar]
- Tronin, A.A. Satellite thermal survey-a new tool for the study of seismoactive regions. Int. J. Remote Sens. 1996, 17, 1439–1455. [Google Scholar] [CrossRef]
- Qiang, Z.J.; Xu, X.D.; Dian, C.D. Thermal infrared anomaly precursor of impending earthquakes. Pure Appl. Geophys. 1997, 149, 159–171. [Google Scholar] [CrossRef]
- Pulinets, S.A.; Ouzounov, D. Lithosphere-atmosphere-ionosphere coupling (LAIC) model-an unified concept for earthquake precursors validation. J. Asian Earth Sci. 2011, 41, 371–382. [Google Scholar] [CrossRef]
- De Santis, A.; Marchetti, D.; Pavón-Carrasco, F.J.; Cianchini, G.; Perrone, L.; Abbattista, C.; Cesaroni, C. Precursory worldwide signatures of earthquake occurrences on Swarm satellite data. Sci. Rep. 2019, 9, 20287. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pulinets, S.A.; Ouzounov, D.; Karelin, A.V.; Boyarchuk, K.A.; Pokhmelnykh, L.A. The physical nature of thermal anomalies observed before strong earthquakes. Phys. Chem. Earth. 2006, 31, 143–153. [Google Scholar] [CrossRef]
- Surkov, V.V. Pre-seismic variation of atmospheric radon activity as a possible reason forabnormal atmospheric effects. Ann. Geophys. 2015, 58. [Google Scholar] [CrossRef]
- Martinelli, G.; Solecki, A.T.; Tchorz-Trzeciakiewicz, D.E.; Piekarz, M.; Grudzinska, K.K. Laboratory measurements on radon exposure effects on local environmental temperature: Implications for satellite TIR measurements. Phys. Chem. Earth 2015, 85–86, 114–118. [Google Scholar] [CrossRef]
- Tramutoli, V.; Aliano, C.; Corrado, R.; Filizzola, C.; Genoano, N.; Lisi, M.; Martinelli, G.; Pergola, N. On the possibile origin of thermal infrared radiation (TIR) anomalies in earthquake-prone areas observed using robust satellite techniques (RST). Chem. Geol. 2013, 339, 157–168. [Google Scholar] [CrossRef]
- Ouzounov, D.; Freund, F. Mid-infrared emission prior to strong earthquakes analyzed by remote sensing data. Adv. Space Res. 2004, 33, 268–273. [Google Scholar] [CrossRef]
- Kuo, C.-L.; Ho, Y.-Y.; Lee, L.-C. Electrical Coupling Between the Ionosphere and Surface Charges in the Earthquake Fault Zone. In Pre-Earthquake Processes: A Multidisciplinary Approach to Earthquake Prediction Studies; Geophysical Monograph; Ouzounov, D., Pulinets, S., Hattori, K., Taylor, P., Eds.; American Geophysical Union: Washington, DC, USA; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2018; Volume 234, p. 365. [Google Scholar]
- Freund, F. Toward a unified solid-state theory for pre-earthquake signals. Acta Geophys. 2010, 58, 719–766. [Google Scholar] [CrossRef]
- Martinelli, G.; Plescia, P.; Tempesta, E. Electromagnetic Emissions from Quartz Subjected to Shear Stress: Spectral Signature and Geophysical Implications. Geosciences 2020, 10, 140. [Google Scholar] [CrossRef] [Green Version]
- Woith, H.; Parolai, S.; Boxberger, T.; Picozzi, M.; Özmen, Ö.T.; Milkereit, C.; Luhr, G.B.; Zschau, J. Spatio-temporal variability of seismic noise above a geothermal reservoir. J. Appl. Geophys. 2014, 106, 128–138. [Google Scholar] [CrossRef]
- Calderoni, G.A.; Rovelli, A.; Di Giovambattista, R. Transient anomaly in fault zone-trapped waves during the preparatory phase of the 6 April 2009, Mw 6.3 L’Aquila earthquake. Geophys. Res. Lett. 2015, 42, 1750–1757. [Google Scholar] [CrossRef] [Green Version]
- Chaves, E.J.; Schwartz, S.Y. Monitoring transient changes within overpressured regions of subduction zones using ambient seismic noise. Sci. Adv. 2016, 2, e1501289. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chiodini, G.; Cardellini, C.; Amato, A.; Boschi, E.; Caliro, S.; Frondini, F.; Ventura, G. Carbon dioxide Earth degassing and seismogenesis in central and southern Italy. Geophys. Res. Lett. 2004, 31, L07615. [Google Scholar] [CrossRef]
- Tamburello, G.; Pondrelli, S.; Chiodini, G.; Rouwet, D. Global-scale control of extensional tectonics on CO2 earth degassing. Nat. Commun. 2018, 9, 4608. [Google Scholar] [CrossRef] [PubMed]
- Yamashita, T.; Tsutsumi, A. Involvement of Fluids in Earthquake Ruptures; Springer: Tokyo, Japan, 2018; p. 187. [Google Scholar]
- Sammonds, P.R.; Meredith, P.G.; Main, I.G. Role of pore fluids in the generation of seismic precursors to shear fracture. Nature 1992, 359, 228–230. [Google Scholar] [CrossRef]
- Wang, Y.-H.; Chen, K.-C.; Leu, P.; Chang, C.-H. Precursor Times of abnormal b-values prior to mainshocks. J. Seismol. 2016. [Google Scholar] [CrossRef]
- Wang, J.-H. A Mechanism Causing b-value Anomalies Prior to a Mainshock. Bull. Seismol. Soc. Am. 2016, 106, 1663–1671. [Google Scholar] [CrossRef]
- Zhao, B.; Yang, G.; Wang, J.; Dong, F. Research on b-Values Based on Fault Buffers. Pure Appl. Geophys. 2020, 177, 71–80. [Google Scholar] [CrossRef]
- Lisi, M.; Filizzola, C.; Genzano, N.; Paciello, R.; Pergola, N.; Tramutoli, V. Reducing atmospheric noise in RST analysis of TIR satellite radiances for earthquakes prone areas satellite Monitoring. Phys. Chem. Earth. 2016, 85–86, 87–97. [Google Scholar] [CrossRef]
- Petruccelli, A.; Schorlemmer, D.; Tormann, T.; Rinaldi, A.P.; Wiemer, S.; Gasperini, P.; Vannucci, G. The influence of faulting style on the size-distribution of global earthquakes. Earth Planet. Sci. Lett. 2019, 527. [Google Scholar] [CrossRef]
- Martinelli, G.; Dadomo, A. Factors constraining the geographic distribution of earthquake geochemical and fluid-related precursors. Chem. Geol. 2017, 469, 176–184. [Google Scholar] [CrossRef]
- Schorlemmer, D.; Wiemer, S.; Wiss, M. Variations in earthquake-size distribution across different stress regimes. Nature 2005, 437, 539–542. [Google Scholar] [CrossRef] [PubMed]
- Silva, V.; Crowley, H.; Pagani, M.; Monelli, D.; Pinho, R. Development of a global seismic risk model. Earthq. Spectra 2020. [Google Scholar] [CrossRef]
- Goltz, J.D. A Further Note on Operational Earthquake Forecasting: An Emergency Management Perspective. Seismol. Res. Lett. 2015, 86, 1231–1233. [Google Scholar] [CrossRef] [Green Version]
- Kossobokov, V.; Peresan, A.; Panza, G.G. On Operational Earthquake Forecast and Prediction Problems. Seismol. Res. Lett. 2015, 86, 287–290. [Google Scholar] [CrossRef] [Green Version]
- Jordan, T.H.; Jones, L.M. Operational Earthquake Forecasting: Some Thoughts on Why and How. Seismol. Res. Lett. 2010, 81, 571–574. [Google Scholar] [CrossRef]
© 2020 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Martinelli, G. Previous, Current, and Future Trends in Research into Earthquake Precursors in Geofluids. Geosciences 2020, 10, 189. https://doi.org/10.3390/geosciences10050189
Martinelli G. Previous, Current, and Future Trends in Research into Earthquake Precursors in Geofluids. Geosciences. 2020; 10(5):189. https://doi.org/10.3390/geosciences10050189
Chicago/Turabian StyleMartinelli, Giovanni. 2020. "Previous, Current, and Future Trends in Research into Earthquake Precursors in Geofluids" Geosciences 10, no. 5: 189. https://doi.org/10.3390/geosciences10050189
APA StyleMartinelli, G. (2020). Previous, Current, and Future Trends in Research into Earthquake Precursors in Geofluids. Geosciences, 10(5), 189. https://doi.org/10.3390/geosciences10050189