The MS 6.9, 1980 Irpinia Earthquake from the Basement to the Surface: A Review of Tectonic Geomorphology and Geophysical Constraints, and New Data on Postseismic Deformation
Abstract
:1. Introduction
2. Tectonic Framework
3. Geological Framework of the Study Area
4. Morphotectonic Features of the Mt. Marzano Area
5. Seismicity
6. The 1980 Irpinia Earthquake
7. Postseismic Deformation
Construction of Ground Deformation Maps Based on PSs Mean Vertical Velocity
8. Discussion of Postseismic Deformation
9. Concluding Remarks
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Bernard, P.; Zollo, A. The Irpinia (Italy) 1980 earthquake: Detailed analysis of a complex normal faulting. J. Geophys. Res. 1989, 94, 1631–1647. [Google Scholar] [CrossRef]
- Frepoli, A.; Maggi, C.; Cimini, G.B.; Marchetti, A.; Chiappini, M. Seismotectonic of Southern Apennines from recent passive seismic experiments. J. Geodyn. 2011, 51, 110–124. [Google Scholar] [CrossRef]
- Westway, R.; Jackson, J. The earthquake of the 1980 November 23 in Campania-Basilicata (southern Italy). Geophys. J. Int. 1987, 90, 375–443. [Google Scholar] [CrossRef] [Green Version]
- De Matteis, R.; Matrullo, E.; Rivera, L.; Stabile, T.A.; Pasquale, G.; Zollo, A. Fault Delineation and Regional Stress Direction from the Analysis of Background Microseismicity in the southern Apennines, Italy. Bull. Seismol. Soc. Am. 2012, 102, 1899–1907. [Google Scholar] [CrossRef] [Green Version]
- Matrullo, E.; De Matteis, R.; Satriano, C.; Amoroso, O.; Zollo, A. An improved 1-D seismic velocity model for seismological studies in the Campania–Lucania region (Southern Italy). Geophys. J. Int. 2013, 195, 460–473. [Google Scholar] [CrossRef] [Green Version]
- De Landro, G.; Amoroso, O.; Stabile, T.A.; Matrullo, E.; Lomax, A.; Zollo, A. High-precision differential earthquake location in 3-D models: Evidence for a rheological barrier controlling the microseismicity at the Irpinia fault zone in southern Apennines. Geophys. J. Int. 2015, 203, 1821–1831. [Google Scholar] [CrossRef] [Green Version]
- Ascione, A.; Mazzoli, S.; Petrosino, P.; Valente, E. A decoupled kinematic model for active normal faults: Insights from the 1980, MS = 6.9 Irpinia earthquake, southern Italy. Geol. Soc. Am. Bull. 2013, 125, 1239–1259. [Google Scholar] [CrossRef]
- Amoroso, O.; Ascione, A.; Mazzoli, S.; Virieux, J.; Zollo, A. Seismic imaging of a fluid storage in the actively extending Apennine mountain belt, southern Italy. Geophys. Res. Lett. 2014, 41, 3802–3809. [Google Scholar] [CrossRef]
- Burbank, D.W.; Anderson, R.S. Tectonic Geomorphology, 2nd ed.; Wiley-Blackwell: Hoboken, NJ, USA, 2001. [Google Scholar]
- Westaway, R.; Jackson, J. Surface faulting in the southern Italian Campania-Basilicata earthquake of 23 November 1980. Nature 1984, 312, 436–438. [Google Scholar] [CrossRef]
- Porfido, S.; Esposito, E.; Luongo, G.; Maturano, A. I terremoti del XIX secolo dell’Appennino Campano-Lucano. Memorie della Società Geologica Italiana 1988, 41, 1105–1116. [Google Scholar]
- Pantosti, D.; Valensise, G. Faulting mechanism and complexity of the November 23, 1980, Campania-Lucania Earthquake, inferred from surface observations. J. Geophys. Res. 1990, 95, 15319–15341. [Google Scholar] [CrossRef]
- Pantosti, D.; Schwartz, D.P.; Valensise, G. Paleoseismology along the 1980 surface rupture of the Irpinia fault: Implications for earthquake recurrence in the Southern Apennines, Italy. J. Geophys. Res. 1993, 98, 6561–6577. [Google Scholar] [CrossRef]
- Porfido, S.; Esposito, E.; Michetti, A.M.; Blumetti, A.M.; Vittori, E.; Tranfaglia, G.; Guerrieri, L.; Ferreli, L.; Serva, L. Areal distribution of ground effects induced by strong earthquakes in the Southern Apennines (Italy). Surv. Geophys. 2002, 23, 529–562. [Google Scholar] [CrossRef]
- Serva, L.; Esposito, E.; Guerrieri, L.; Porfido, S.; Vittori, E.; Comerci, V. Environmental effects from five historical earthquakes in southern Apennines (Italy) and macroseismic intensity assessment: Contribution to INQUA EEE Scale Project. Quat. Int. 2007, 173–174, 30–44. [Google Scholar] [CrossRef]
- INGV-Database Macrosismico Italiano. 2011. Available online: https://emidius.mi.ingv.it/DBMI11/ (accessed on 29 October 2020).
- Istituto Nazionale di Geofisica e Vulcanologia Catalogo Parametrico dei Terremoti Italiani. Available online: https://emidius.mi.ingv.it/CPTI/ (accessed on 29 October 2020).
- Cinque, A.; Lambiase, S.; Sgrosso, I. Su due faglie nell’alta valle del Sele legate al terremoto del 23.11.1980. Rend. Della Soc. Geol. Ital. 1981, 4, 127–129. [Google Scholar]
- Bollettinari, G.; Panizza, M. Una ‘faglia di superficie’ presso San Gregorio Magno in occasione del sisma del 23-XI-1980. Rend. Della Soc. Geol. Ital. 1981, 4, 135–136. [Google Scholar]
- Papanikolaou, I.D.; Roberts, G.P. Geometry, kinematics and deformation rates along the active normal fault system in the southern Apennines: Implications for fault growth. J. Struct. Geol. 2007, 29, 166–188. [Google Scholar] [CrossRef]
- Cowie, P.A.; Roberts, G.P.; Bull, J.M.; Visini, F. Relationships between fault geometry, slip rate variability and earthquake recurrence in extensional settings. Geophys. J. Int. 2012, 189, 143–160. [Google Scholar] [CrossRef] [Green Version]
- Galli, P.; Peronace, E. New paleoseismic data from the Irpinia Fault. A different seismogenic perspective for southern Apennines (Italy). Earth-Sci. Rev. 2014, 136, 175–201. [Google Scholar] [CrossRef]
- Ciotoli, G.; Bigi, S.; Tartarello, C.; Sacco, P.; Lombardi, S.; Ascione, A.; Mazzoli, S. Soil gas distribution in the main coseismic surface rupture zone of the 1980, Ms = 6.9, Irpinia Earthquake (southern Italy). J. Geophys. Res. Solid Earth 2014, 119, 2440–2461. [Google Scholar] [CrossRef]
- Eremeev, A.E. Use of radial compression of thick-walled tube for measuring high pressures. Meas. Tech. 1973, 16, 860–862. [Google Scholar] [CrossRef]
- Durrance, E.M.; Gregory, R.G. Fracture Mapping in Clays: Soil Gas Surveys at Down Ampney, Gloucestershire; DOE Report: DOE/RW/88081; Department of Energy: Washington, DC, USA, 1988. [Google Scholar]
- Duddridge, G.A.; Grainger, P.; Durrance, E.M. Fault detection using soil gas geochemistry. Q. J. Eng. Geol. Hydrogeol. 1991, 24, 427–435. [Google Scholar] [CrossRef]
- Hickman, S.R.; Sibson, R. and Bruhn, Introduction to special section: Mechanical involvement of fluids in faulting. J. Geophys. Res. 1995, 100, 12831–12840. [Google Scholar] [CrossRef] [Green Version]
- Lombardi, S.; Etiope, G. The Refinement of Soil Gas Analysis as a Geological Investigative Technique; Nuclear Science and Technology Series Report EUR 16929: 200; European Commission: Luxembourg, 1996. [Google Scholar]
- Ciotoli, G.; Guerra, M.; Lombardi, S.; Vittori, E. Soil gas survey for tracing seismogenic faults: A case study in the Fucino basin, Central Italy. J. Geophys. Res. 1998, 103, 23781–23794. [Google Scholar] [CrossRef]
- Ciotoli, G.; Etiope, G.; Guerra, M.; Lombardi, S. The detection of concealed faults in the Ofanto Basin using the correlation between soil-gas fracture surveys. Tectonophysics 1999, 301, 321–332. [Google Scholar] [CrossRef]
- De Gregorio, S.; Diliberto, I.S.; Giammanco, S.; Gurrieri, S.; Valenza, M. Tectonic control over large-scale diffuse degassing in eastern Sicily (Italy). Geofluids 2002, 2, 273–284. [Google Scholar] [CrossRef]
- Braubon, J.C.; Rigo, A.; Toutain, J.P. Soil gas profiles as a tool to characterise active tectonic areas: The Jaut Pass example (Pyrenees, France). Earth Planet. Sci. Lett. 2002, 196, 69–81. [Google Scholar] [CrossRef]
- Annunziatellis, A.; Ciotoli, G.; Lombardi, S.; Nolasco, F. Short- and long-term gas hazard: The release of toxic gases in the Alban Hills volcanic area (central Italy). J. Geochem. Explor. 2003, 77, 93–108. [Google Scholar] [CrossRef]
- Lewicki, J.L.; Connor, C.; St-Amand, K.; Stix, J.; Spinner, W. Self-potential, soil CO2 flux, and temperature on Masaya volcano, Nicaragua. Geophys. Res. Lett. 2003, 30, 15. [Google Scholar] [CrossRef] [Green Version]
- Chiodini, G.; Cardellini, C.; Caliro, S.; Avino, R.; Donnini, M.; Granieri, D.; Morgantini, N.; Sorrenti, D.; Frondini, F. The hydrothermal system of Bagni San Filippo (Italy): Fluids circulation and CO2 degassing. Ital. J. Geosci. 2020, 139, 383–397. [Google Scholar] [CrossRef]
- Fu, C.C.; Yang, T.F.; Walia, V.; Cheng, C.-H. Reconnaissance of soil gas composition over the buried fault and fracture zone in southern Taiwan. Geochem. J. 2005, 39, 427–439. [Google Scholar] [CrossRef] [Green Version]
- Walia, V.; Yang, T.F.; Lin, S.J.; Kumar, A.; Fu, C.C.; Chiu, J.M.; Chang, H.H.; Wen, K.L.; Chen, C.H. Temporal variation of soil gas compositions for earthquake surveillance in Taiwan. Radiat. Meas. 2013, 50, 154–159. [Google Scholar] [CrossRef]
- Ciotoli, G.; Lombardi, S.; Annunziatellis, A. Geostatistical analysis of soil gas data in a high seismic intermontane basin: Fucino Plain, central Italy. J. Geophys. Res. Solid Earth 2007, 112, B5. [Google Scholar] [CrossRef]
- Toutain, J.-P.; Baubron, J.C. Gas geochemistry and seismotectonics: A review. Tectonophysics 1999, 304, 1–27. [Google Scholar] [CrossRef]
- Annunziatellis, A.; Beaubien, S.E.; Bigi, S.; Ciotoli, G.; Coltella, M.; Lombardi, S. Gas migration along fault systems and through the vadose zone in the Latera caldera (central Italy): Implications for CO2 geological storage. Int. J. Greenh. Gas Control 2008, 2, 353–372. [Google Scholar] [CrossRef]
- Miller, R.L.; Tegen, I.; Perlwitz, J.P. Surface radiative forcing by soil dust aerosols and the hydrologic cycle. J. Geophys. Res. 2004, 109, D04203. [Google Scholar] [CrossRef]
- Chiodini, G.; Cardellini, C.; Amato, A.; Boschi, E.; Caliro, S.; Frondini, F.; Ventura, G. Carbon dioxide Earth degassing and seismogenesis in central and southern Italy. Geophys. Res. Lett. 2004, 31. [Google Scholar] [CrossRef]
- Inversi, B.; Scrocca, D.; Montegrossi, G.; Livani, M.; Petracchini, L.; Brandano, M.; Brilli, M.; Giustini, F.; Recanati, R.; Gola, G.; et al. 3D geological modelling of a fractured carbonate reservoir for the study of medium enthalpy geothermal resource in the Southern Apennines (Campania Region, Italy). In Proceedings of the European Geothermal Congress 2013, Pisa, Italy, 3–7 June 2013. [Google Scholar]
- Zollo, A.; Orefice, A.; Convertito, V. Source parameter scaling and radiation efficiency of microearthquakes along the Irpinia fault zone in southern Apennines, Italy. J. Geophys. Res. Solid Earth 2014, 119, 3256–3275. [Google Scholar] [CrossRef]
- Dvorkin, J.; Mavko, G.; Nur, A. Overpressure detection from compressional and shear wave data. Geophys. Res. Lett. 1999, 26, 3417–3420. [Google Scholar] [CrossRef] [Green Version]
- Vanorio, T.; Virieux, J.; Capuano, P.; Russo, G. Three-dimensional seismic tomography from P wave and S wave microearthquake travel times and rock physics characterization of the Campi Flegrei Caldera. J. Geophys. Res. Solid Earth 2005, 110. [Google Scholar] [CrossRef] [Green Version]
- Hantschel, T.; Kauerauf, A.I. Foundamentals of Basin and Petroleum Systems Modeling; Springer: Berlin, Germany, 2009. [Google Scholar]
- Amoroso, A.; Russo, G.; De Landro, G.; Zollo, A.; Garambois, S.; Mazzoli, S.; Parente, M.; Virieux, J. From Velocity and Attenuation Tomographies to Rock Physical Modeling: Inferences on fluid-driven earthquake processes at the Irpinia fault system in Southern Italy. Geophys. Res. Lett. 2017, 44, 6752–6760. [Google Scholar] [CrossRef]
- Stabile, T.A.; Amoroso, O.; De Matteis, R.; Maercklin, N.; Matrullo, E.; Orefice, A.; Pasquale, G.; Satriano, C.; Zollo, A. Anatomy of a microearthquake sequence on an active normal fault. Sci. Rep. 2012, 2, 1–7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mazzoli, S.; Helman, M. Neogene Patterns of Relative Plate Motion for Africa-Europe: Some Implications for Recent Central Mediterranean Tectonics. In Active Continental Margins—Present and Past; Springer: Berlin/Heidelberg, Germany, 1994. [Google Scholar]
- Turco, E.; Macchiavelli, C.; Mazzoli, S.; Schettino, A.; Pierantoni, P.P. Kinematic evolution of Alpine Corsica in the framework of Mediterranean mountain belts. Tectonophysics 2012, 579, 193–206. [Google Scholar] [CrossRef]
- Ciarcia, S.; Mazzoli, S.; Vitale, S.; Zattin, M. On the tectonic evolution of the Ligurian accretionary complex in southern Italy. Geol. Soc. Am. Bull. 2012, 124, 463–483. [Google Scholar] [CrossRef]
- Vitale, S.; Ciarcia, S. Tectono-stratigraphic and kinematic evolution of the southern Apennines/Calabria–Peloritani Terrane system (Italy). Tectonophysics 2013, 583, 164–182. [Google Scholar] [CrossRef]
- Mazzoli, S.; Szaniawski, R.; Mittiga, F.; Ascione, A.; Capalbo, A. Tectonic evolution of Pliocene–Pleistocene wedge-top basins of the southern Apennines: New constraints from magnetic fabric analysis. Can. J. Earth Sci. 2012, 49, 492–509. [Google Scholar] [CrossRef]
- Mazzoli, S.; D’Errico, M.; Aldega, L.; Corrado, S.; Invernizzi, C.; Shiner, P.; Zattin, M. Tectonic burial and ‘young’ (<10 Ma) exhumation in the southern Apennines fold-and-thrust belt (Italy). Geology 2008, 36, 243–246. [Google Scholar] [CrossRef]
- Mazzoli, S.; Ascione, A.; Buscher, J.T.; Pignolasa, A.; Valente, E.; Zattin, M. Low-angle normal faulting and focused exhumation associated with late Pliocene change in tectonic style in the southern Apennines (Italy). Tectonics 2014, 33, 1802–1818. [Google Scholar] [CrossRef]
- Shiner, P.; Beccacini, A.; Mazzoli, S. Thin-skinned versus thick- skinned structural models for Apulian carbonate reservoirs: Constraints from the Val d’Agri Fields, S Apennines, Italy. Mar. Pet. Geol. 2004, 21, 805–827. [Google Scholar] [CrossRef]
- Mazzoli, S.; Barkham, S.; Cello, G.; Gambini, R.; Mattioni, L.; Shiner, P.; Tondi, E. Reconstruction of continental margin architecture deformed by the contraction of the Lagonegro Basin, southern Apennines, Italy. J. Geol. Soc. Lond. 2001, 158, 309–319. [Google Scholar] [CrossRef]
- Improta, L.; Corciulo, M. Controlled source non-linear tomography: A powerful tool to constrain tectonic models of the southern Apennines orogenic wedge, Italy. Geology 2006, 34, 941–944. [Google Scholar] [CrossRef]
- Speranza, F.; Chiappini, M. Thick-skinned tectonics in the external Apennines, Italy: New evidence from magnetic anomaly analysis. J. Geophys. Res. Solid Earth 2002, 107, B11. [Google Scholar] [CrossRef]
- Steckler, M.S.; Akhter, H.; Seeber, L. Collision of the Ganges–Brahmaputra Delta with the Burma Arc: Implications for earthquake hazard. Earth Planet. Sci. Lett. 2008, 273, 367–378. [Google Scholar] [CrossRef]
- Patacca, E.; Scandone, P. Late thrust propagation and sedimentary response in the thrust-belt—foredeep system of the Southern Apennines (Pliocene-Pleistocene). In Anatomy of an Orogen: The Apennines and Adjacent Mediterranean Basins; Vai, G.B., Martini, I.P., Eds.; Springer: Dordrecht, The Netherlands, 2001. [Google Scholar] [CrossRef]
- Butler, R.W.H.; Mazzoli, S.; Corrado, S.; De Donatis, M.; Di Bucci, D.; Gambini, R.; Naso, G.; Nicolai, C.; Scrocca, D.; Shiner, P.; et al. Applying thick-skinned tectonic models to the Apennine thrust belt of Italy—Limitations and implications. AAPG Mem. 2004, 82, 647–667. [Google Scholar]
- Cello, G.; Guerra, I.; Tortorici, L.; Turco, E.; Scarpa, R. Geometry of the neotectonic stress field in southern Italy: Geological and seismological evidence. J. Struct. Geol. 1982, 4, 385–393. [Google Scholar] [CrossRef]
- Caiazzo, C.; Ascione, A.; Cinque, A. Late Tertiary–Quaternary tectonics of the Southern Apennines (Italy): New evidences from the Tyrrhenian slope. Tectonophysics 2006, 421, 23–51. [Google Scholar] [CrossRef]
- Ascione, A.; Caiazzo, C.; Cinque, A. Recent faulting in Southern Apennines (Italy): Geomorphic evidence, spatial distribution and implications for rates of activity. Boll. Della Soc. Geol. Ital. 2007, 126, 293–305. [Google Scholar]
- ISPRA. Foglio 468—Eboli della Carta Geologica d’Italia alla scala 1:50.000; ISPRA: Roma, Italy, 2014. Available online: https//www.ispraambiente.gov.it/Media/carg/448_ERCOLANO/Foglio.html (accessed on 30 October 2020).
- Patacca, E.; Scandone, P. Geology of the southern Apennines. Boll. Della Soc. Geol. Ital. 2007, 7, 75–119. [Google Scholar]
- ViDEPI Project. Ministero dello Sviluppo Economico 2010. Available online: https://unmig.mise.gov.it/index.php/it/ (accessed on 29 October 2020).
- Ciarcia, S.; Vitale, S.; Di Stasio, A.; Iannace, A.; Mazzoli, S.; Torre, M. Stratigraphy and tectonics of an Internal Unit of the southern Apennines: Implications for the geodynamic evolution of the peri-Tyrrhenian mountain belt. Terra Nova 2009, 21, 88–96. [Google Scholar] [CrossRef]
- Matano, F.; Nocera, S.D.; Criniti, S.; Critelli, S. Geology of the Epicentral Area of the November 23, 1980 Earthquake (Irpinia, Italy): New Stratigraphical, Structural and Petrological Constrains. Geosciences 2020, 10, 247. [Google Scholar] [CrossRef]
- Amato, A.; Cinque, A.; Santangelo, N.; Santo, A. Il bordo meridionale del massiccio del Monte Marzano e la valle del Fiume Bianco: Geologia e geomorfologia. Studi Geol. Camerti 1992, 1992, 191–200. [Google Scholar]
- Ascione, A.; Ciarcia, S.; Di Donato, V.; Mazzoli, S.; Vitale, S. The Pliocene-Quaternary wedge-top basins of southern Italy: An expression of propagating lateral slab tear beneath the Apennines. Basin Res. 2012, 24, 456–474. [Google Scholar] [CrossRef]
- Improta, L.; Bonagura, M.; Capuano, P.; Iannaccone, G. An integrated geophysical investigation of the upper crust in the epicentral area of the 1980, Ms= 6.9, Irpinia earthquake (Southern Italy). Tectonophysics 2003, 361, 139–169. [Google Scholar] [CrossRef]
- Cippitelli, G. The CROP-04 seismic profile: Interpretation and structural setting of the Agropoli-Barletta Geotraverse, in Results of the CROP Project, Sub-Project CROP-04 Southern Apennines (Italy). Ital. J. Geosci. 2007, 7, 267–281. [Google Scholar]
- Mazzotti, A.; Stucchi, E.; Fradelizio, G.L.; Zanzi, L.; Scandone, P. Re-processing of the CROP-04 seismic data. Ital. J. Geosci. 2007, 7, 141–153. [Google Scholar]
- Ascione, A.; Cinque, A.; Tozzi, M. La valle del Tanagro (Campania): Una depressione strutturale ad evoluzione complessa. Studi Geol. Camerti 1992, 1992, 209–219. [Google Scholar]
- Ascione, A.; Cinque, A.; Improta, L.; Villani, F. Late Quaternary faulting within the Southern Apennines seismic belt: New data from Mt. Marzano area (Southern Italy). Quat. Int. 2003, 101–102, 27–41. [Google Scholar] [CrossRef]
- Aiello, G.; Ascione, A.; Barra, D.; Munno, R.; Petrosino, P.; Russo Ermolli, E.; Villani, F. Evolution of the late Quaternary San Gregorio Magno tectono-karstic basin (southern Italy) inferred from geomorphological, tephrostratigraphical and palaeoecological analyses: Tectonic implications. J. Quat. Sci. 2007, 22, 233–245. [Google Scholar] [CrossRef]
- Amicucci, L.; Barchi, M.R.; Montone, P.; Rubiliani, N. The Vallo di Diano and Auletta extensional basins in the southern Apennines (Italy): A simple model for a complex setting. Terra Nova 2008, 20, 475–482. [Google Scholar] [CrossRef]
- Galli, P.; Bosi, V.; Piscitelli, S.; Giocoli, A.; Scionti, V. Late Holocene earthquakes in southern Apennine: Paleoseismology of the Caggiano fault. Int. J. Earth Sci. 2006, 95, 855–870. [Google Scholar] [CrossRef]
- Troiano, A.; Di Giuseppe, M.G.; Petrillo, Z.; Patella, D. Imaging 2D structures by the CSAMT method: Application to the Pantano di S. Gregorio Magno faulted basin (Southern Italy). J. Geophys. Eng. 2009, 6, 120–130. [Google Scholar] [CrossRef]
- Galli, P.A.C.; Giocoli, A.; Peronace, E.; Piscitelli, S.; Quadrio, B.; Bellanova, J. Integrated near surface geophysics across the active Mount Marzano Fault System (Southern Italy): Seismogenic hints. Int. J. Earth Sci. 2014. [Google Scholar] [CrossRef]
- Pondrelli, S.; Salimbeni, S.; Ekström, G.; Morelli, A.; Gasperini, P.; Vannucci, G. The Italian CMT dataset from 1977 to the present. Phys. Earth Planet. Inter. 2006, 159, 286–303. [Google Scholar] [CrossRef] [Green Version]
- Cocco, M.; Chiarabba, C.; Di Bona, M.; Selvaggi, G.; Margheriti, L.; Frepoli, A.; Lucente, F.P.; Basili, A.; Jongmans, D.; Campillo, M. The April 1996 Irpinia seismic sequence: Evidence for fault interaction. J. Seismol. 1999, 3, 105–117. [Google Scholar] [CrossRef]
- De Matteis, R.; Romeo, A.; Pasquale, G.; Iannaccone, G.; Zollo, A. 3D Tomographic imaging of the southern Apennines (Italy): A statistical approach to estimate the model uncertainty and resolution. Stud. Geophys. Geod. 2010, 54, 367–387. [Google Scholar] [CrossRef]
- Irpinia Seismic Network. Seismic Sequence Rocca San Felice, South Apennines, Italy 04-06/07/2020. Available online: http://isnet.unina.it/wp-content/uploads/2020/07/Sequence_July20_fullReport.pdf (accessed on 29 October 2020).
- DISS Working Group. Database of Individual Seismogenic Sources (DISS), Version 3.2.1: A Compilation of 450 Potential Sources for Earthquakes Larger than M 5.5 in Italy and Surrounding Areas; Istituto Nazionale di 451 Geofisica e Vulcanologia: Roma, Italy, 2018. [Google Scholar] [CrossRef]
- Chiodini, G.; Granieri, D.; Avino, R.; Caliro, S.; Costa, A.; Minopoli, C.; Vilardo, G. Non-volcanic CO2 Earth degassing: Case of Mefite d’Ansanto (southern Apennines), Italy. Geophys. Res. Lett. 2010, 37. [Google Scholar] [CrossRef]
- Amoruso, A.; Crescentini, L.; Scarpa, R. Faulting geometry for the complex 1980 Campania-Lucania earthquake from levelling data. Geophys. J. Int. 2005, 162, 156–168. [Google Scholar] [CrossRef] [Green Version]
- Pingue, F.; De Natale, G. Fault mechanism of the 40 s subevent of the 1980 Irpinia (Southern Italy) earthquake from leveling data. Geophys. Res. Lett. 1993, 20, 911–914. [Google Scholar] [CrossRef]
- Amato, A.; Selvaggi, G. Aftershock location and P-wave velocity structure in the epicentral region of the 1980 Irpinia earthquake. Ann. Geofis. 1993, 36, 3–15. [Google Scholar]
- Giardini, D. Teleseismic observation of the November 23 1980, Irpinia earthquake. Ann. Geofis. 1993, XXXVI, 1. [Google Scholar]
- Nostro, C.; Cocco, M.; Belardinelli, M.E. Static stress change in extensional regimes: An application to southern Apennines (Italy). J. Geophys. Res. 1997, 87, 234–248. [Google Scholar]
- Serva, L. The earthquake of September 8, 1694 in Campania–Lucania. Atlas Isoseismal Maps Ital. Earthq. 1985, 2A, CNR-PFG. [Google Scholar]
- Pierdominici, S.; Mariucci, M.T.; Montone, P. A study to constrain the geometry of an active fault in southern Italy through borehole breakouts and downhole logs. J. Geodyn. 2011, 52, 279–289. [Google Scholar] [CrossRef] [Green Version]
- Cocco, M.; Pacor, F. The rupture process of the 1980, Irpinia, Italy earthquake from the inversion of strong motion waveforms. Tectonophysics 1993, 218, 157–177. [Google Scholar] [CrossRef]
- Pantosti, D.; D’Addezio, G.; Cinti, F.R. Paleoseismological evidence of repeated large earthquakes along the 1980 Irpinia earthquake fault. Ann. Geofis. 1993, 36, 321–330. [Google Scholar]
- Chiarabba, C.; Amato, A. From tomographic images to fault heterogeneities. Ann. Geofis. 1994, 37, 1481–1494. [Google Scholar]
- Carmignani, L.; Cello, G.; Cerrina Feroni, A.; Funiciello, R.; Kälin, O.; Meccheri, M.; Patacca, E.; Pertusati, P.; Plesi, G.; Salvini, F.; et al. Analisi del campo di fratturazione superficiale indotta dal terremoto Campano-Lucano del 23/11/1980. Rend. Della Soc. Geol. Ital. 1981, 4, 451–465. [Google Scholar]
- Blumetti, A.M.; Esposito, E.; Ferreli, L.; Michetti, A.M.; Porfido, S.; Serva, L.; Vittori, E. New data and reinterpretation of the November 23, 1980, M 6.9, Irpinia-Lucania earthquake (Southern Apennine) coseismic surface effects. Studi Geol. Camerti 2002, 19–27. [Google Scholar]
- Esposito, E.; Luongo, G.; Maturano, A.; Porfido, S. I terremoti recenti dal 1980 al 1986 nell’Appennino meridionale. Mem. Della Soc. Geol. Ital. 1988, 41, 1117–1128. [Google Scholar]
- D’Addezio, G.; Pantosti, D.; Valensise, G. Paleoearthquakes along the Irpinia fault at Pantano di San Gregorio Magno (Southern Italy). IL Quat. 1991, 4, 121–136. [Google Scholar]
- Copley, A.; Hollingsworth, J.; Bergman, E. Constraints on fault and lithosphere rheology from the coseismic slip and postseismic afterslip of the 2006 Mw 7.0 Mozambique earthquake. J. Geophys. Res. 2012, 117, B03404. [Google Scholar] [CrossRef] [Green Version]
- Gourmelen, N.; Amelung, F. Postseismic Mantle relaxation in the Central Nevada Seismic Belt. Science 2005, 310, 1473–1476. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nishimura, T.; Thatcher, W. Rheology of the lithosphere inferred from postseismic uplift following the 1959 Hebgen Lake earthquake. J. Geophys. Res. Solid Earth 2003, 108, B8. [Google Scholar] [CrossRef]
- Rousset, B.; Barbot, S.; Avouac, J.P.; Hsu, Y.J. Postseismic deformation following the 1999 Chi-Chi earthquake, Taiwan: Implication for lower-crust rheology. J. Geophys. Res. 2012, 117, B12405. [Google Scholar] [CrossRef] [Green Version]
- Costantini, M.; Minati, F.; Ciminelli, M.G.; Ferretti, A.; Costabile, S. Nationwide ground deformation monitoring by Persistent Scatterer Interferometry. In Proceedings of the 2015 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Milan, Italy, 26–31 July 2015; pp. 1472–1475. [Google Scholar]
- Costantini, M.; Ferretti, A.; Minati, F.; Falco, S.; Trillo, F.; Colombo, D.; Novali, F.; Malvarosa, F.; Mammone, F.; Vecchioli, F.; et al. Analysis of surface deformations over the whole Italian territory by interferometric processing of ERS, Envisat and COSMO-SkyMed radar data. Remote Sens. Environ. 2017, 202, 250–275. [Google Scholar] [CrossRef]
- Ferretti, A.; Prati, C.; Rocca, F. Permanent Scatters in SAR interferometry. IEEE Trans. Geosci. Remote Sens. 2001, 39, 8–20. [Google Scholar] [CrossRef]
- Lündgren, P.; Casu, F.; Manzo, M.; Pepe, A.; Berardino, P.; Sansosti, E.; Lanari, R. Gravity and magma induced spreading of Mount Etna volcano revealed by satellite radar interferometry. Geophys. Res. Lett. 2004, 31, L04602. [Google Scholar] [CrossRef] [Green Version]
- Manzo, M.; Ricciardi, G.P.; Casua, F.; Ventura, G.; Zeni, G.; Borgström, S.; Berardino, P.; Del Gaudio, C.; Lanari, R. Surface deformation analysis in the Ischia Island (Italy) based on spaceborne radar interferometry. J. Volcanol. Geotherm. Res. 2006, 151, 399–416. [Google Scholar] [CrossRef]
- Lanari, R.; Casu, F.; Manzo, M.; Zeni, G.; Berardino, P.; Manunta, M.; Pepe, A. An Overview of the Small BAseline Subset Algorithm: A DInSAR Technique for Surface Deformation Analysis. In Deformation and Gravity Change: Indicators of Isostasy, Tectonics, Volcanism, and Climate Change; Wolf, D., Fernández, J., Eds.; Birkhäuser Verlag: Basel, Switzerland, 2007; pp. 637–661. [Google Scholar]
- Perrone, G.; Morelli, M.; Piana, F.; Fioraso, G.; Nicolò, G.; Mallen, L.; Cadoppi, P.; Baestro, G.; Tallone, S. Current tectonic activity and differential uplift along the Cottian Alps/Po Plain boundary (NW Italy) as derived by PS-InSAR data. J. Geodyn. 2013, 66, 65–78. [Google Scholar] [CrossRef] [Green Version]
- Peltzer, G.; Rosen, P.; Rogez, F.; Hudnut, K. Poroelastic rebound along the Landers 1992 earthquake surface rupture. J. Geophys. Res. Solid Earth 1998, 103, 30131–30145. [Google Scholar] [CrossRef]
- Picozzi, M.; Bindi, D.; Zollo, A.; Festa, G.; Spallarossa, D. Detecting long-lasting transients of earthquake activity on a fault system by monitoring apparent stress, ground motion and clustering. Sci. Rep. 2019, 9, 16268. [Google Scholar] [CrossRef] [PubMed] [Green Version]
PS ERS Original Dataset | Number of Pss |
---|---|
ERS_T358_F819_CL003_CAPOSELE_A | 38,864 |
ERS_T358_F819_CL002_BENEVENTO_A | 45,672 |
ERS_T494_F2781_CL001_POTENZA_D | 75,178 |
PS ENVISAT Original Datasets | Number of PSs |
---|---|
ENVISAT_T86_F816_CL001_FOGGIA_A | 391,518 |
ENVISAT_T358_F801_CL001_SALERNO_A | 248,986 |
PST2009_ENVISAT_T358_F819_CL001_BENEVENTO_A | 532,482 |
ENVISAT_T265_F2781_CL001_AVELLINO_D | 463,801 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ascione, A.; Nardò, S.; Mazzoli, S. The MS 6.9, 1980 Irpinia Earthquake from the Basement to the Surface: A Review of Tectonic Geomorphology and Geophysical Constraints, and New Data on Postseismic Deformation. Geosciences 2020, 10, 493. https://doi.org/10.3390/geosciences10120493
Ascione A, Nardò S, Mazzoli S. The MS 6.9, 1980 Irpinia Earthquake from the Basement to the Surface: A Review of Tectonic Geomorphology and Geophysical Constraints, and New Data on Postseismic Deformation. Geosciences. 2020; 10(12):493. https://doi.org/10.3390/geosciences10120493
Chicago/Turabian StyleAscione, Alessandra, Sergio Nardò, and Stefano Mazzoli. 2020. "The MS 6.9, 1980 Irpinia Earthquake from the Basement to the Surface: A Review of Tectonic Geomorphology and Geophysical Constraints, and New Data on Postseismic Deformation" Geosciences 10, no. 12: 493. https://doi.org/10.3390/geosciences10120493
APA StyleAscione, A., Nardò, S., & Mazzoli, S. (2020). The MS 6.9, 1980 Irpinia Earthquake from the Basement to the Surface: A Review of Tectonic Geomorphology and Geophysical Constraints, and New Data on Postseismic Deformation. Geosciences, 10(12), 493. https://doi.org/10.3390/geosciences10120493