New Cadanav Methodology for Rock Fall Hazard Zoning Based on 3D Trajectory Modelling
Abstract
:1. Introduction
- how to exploit the raw trajectory modelling results, for what concerns the number of trajectories to be run and possible outliers [20];
2. Cadanav Methodology for One-Dimensional Zoning
- if the whole curve is inside one single area of the diagram, corresponding to a given hazard level (e.g., moderate hazard area), the slope unit considered is assigned that hazard level (e.g., moderate);
- if more than one area of the diagram is crossed by the curve, the hazard degree is established based on the most unfavourable condition (e.g., if the curve intersects both the moderate and the high hazard areas, the hazard is high).
3. Cadanav Methodology for Two-Dimensional Zoning
3.1. Single Localised Source
3.2. Two Sources
3.3. Multiple Sources
4. Applications to an Infinite Linear Cliff Model
4.1. Single Source Problem
4.2. Diffuse Source Problem
4.3. 2D versus 1D Hazard Zoning
4.4. Increasing Number of Rock Fall Sources
4.5. Combination of Rock Fall Hazards Characterised by Different Failure Frequencies
5. Applications to a Complex Topography
5.1. Study Area: The Site of Les Crêtaux
5.2. Single Localised Source Area
5.3. Influence of a Change in the Failure Frequency Scenario on Hazard Zoning
5.4. Diffuse Source Area
6. Discussion
6.1. Further Assessment of the Results Obtained
6.2. Advantages of the Methodology
- the new procedure proved to take into account well the changes in hazard zoning due to changes in failure frequency (hazard zone boundaries moving up-slope towards the source area for increasing values of the return period of the events).
- the methodology seems to be not highly sensitive to the number of trajectories computed for hazard zoning and is not really influenced by the possible “extreme” propagation of a few blocks, obtained sometimes from the computations.
- the computational time required for hazard zoning, also for 3D topographies, depends only on the spatial discretisation of the problem and the number of rock fall trajectories processed. In particular:
- -
- for 1D zoning along 2D slope profiles, the time is proportional to the product of the number of control abscissas x2D along the slope profile, into which the profile itself is subdivided, and the number of 2D rock fall paths ntot,2D computed;
- -
- similarly, with regards to 2D zoning for 3D topographies, the computational time is a function of the number of elements constituting the mesh on the horizontal plane (x3D, y3D) and the number of 3D trajectory runs ntot,3D = nsource · ntraj,source performed.
7. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Guzzetti, F. Landslide fatalities and the evaluation of landslide risk in Italy. Eng. Geol. 2000, 58, 89–107. [Google Scholar] [CrossRef]
- Crosta, G.B.; Agliardi, F. A methodology for physically based rockfall hazard assessment. Nat. Hazards Earth Syst. Sci. 2003, 3, 407–422. [Google Scholar] [CrossRef]
- Scavia, C.; Barbero, M.; Castelli, M.; Marchelli, M.; Peila, D.; Torsello, G.; Vallero, G. Evaluating Rockfall Risk: Some Critical Aspects. Geosciences 2020, 10, 98. [Google Scholar] [CrossRef] [Green Version]
- Fell, R.; Ho, K.K.S.; Lacasse, S.; Leroi, E. A framework for landslide risk assessment and management. In Landslide Risk Management; Taylor & Francis Group: London, UK, 2005; pp. 3–25. [Google Scholar]
- Fell, R.; Corominas, J.; Bonnard, C.; Cascini, L.; Leroi, E.; Savage, W.Z. on behalf of the JTC-1 Joint Technical Committee on Landslides and Engineered Slopes. Guidelines for landslide susceptibility, hazard and risk zoning for land use planning. Eng. Geol. 2008, 102, 85–98. [Google Scholar] [CrossRef] [Green Version]
- Rouiller, J.D.; Jaboyedoff, M.; Marro, C.; Phillippossian, F.; Mamin, M. Pentes Instables Dans le Pennique Valaisan. Rapport Final PNR 31; VDF: Zürich, Switzerland, 1998. [Google Scholar]
- Mazzoccola, D.; Sciesa, E. Implementation and comparison of different methods for rockfall hazard assessment in the Italian Alps. Landslides in Theory, Research and Practice. In Proceedings of the 8th International Symposium on Landslides, Cardiff, Wales, Balkema, Rotterdam, The Netherlands, 26–30 June 2000; pp. 1035–1040. [Google Scholar]
- Jaboyedoff, M.; Dudt, J.P.; Labiouse, V. An attempt to refine rockfall hazard zoning based on the kinetic energy, frequency and fragmentation degree. Nat. Hazards Earth Syst. Sci. 2005, 5, 621–632. [Google Scholar] [CrossRef]
- Lan, H.; Derek Martin, C.; Lim, H.C. RockFall Analyst: A GIS extension for three-dimensional and spatially distributed rockfall hazard modelling. Comput. Geosci. 2007, 33, 262–279. [Google Scholar] [CrossRef]
- Desvarreux, P. Problèmes posés par le zonage. In Lecture Notes from the Course Université Européenne d’été 2007: Éboulements, Chutes de Blocs—Rôle de la Forêt; Courmayeur, Italy, 2007. [Google Scholar]
- Guzzetti, F.; Crosta, G.; Detti, R.; Agliardi, F. STONE: A computer program for the three-dimensional simulation of rock-falls. Comput. Geosci. 2002, 28, 1079–1093. [Google Scholar] [CrossRef]
- Copons, R. Avaluaciò de la Perillositat de Caigudes de Blocs rocosos al Solà d’Andorra la Vella; Andorran Research Centre Press: St. Julià de Loria, Andorra, 2007. [Google Scholar]
- Choi, Y.; Lee, J.; Lee, J.; Park, H.D. Engineering geological investigation into rockfall problem: A case study of the Seated Seokgayeorae Image carved on a rock face at the UNESCO World Heritage site in Korea. Geosci. J. 2009, 13, 69–78. [Google Scholar] [CrossRef]
- Pfeiffer, T.J.; Higgins, J.D.; Andrew, R.D.; Schultz, R.J.; Beck, R.B. Colorado Rockfall Simulation Program Version 3.0a User’s Manual; Colorado Department of Transportation: Denver, CO, USA, 1995.
- Stevens, W.D. RocFall: A Tool for probabilistic analysis, design of remedial measures and prediction of rockfalls. Master’s Thesis, University of Toronto, Toronto, ON, Canada, 1998. [Google Scholar]
- Scioldo, G. Rotomap: Analisi statistica del rotolamento dei massi. In Guida Informatica Ambientale; Patron: Milano, Italy, 1991. [Google Scholar]
- Interreg IIc. Prévention des Mouvements de Versants et des Instabilités de Falaises: Confrontation des Méthodes d’étude d’éboulements Rocheux dans l’arc Alpin; Interreg Communauté Européenne: Aosta, Italy, 2001. [Google Scholar]
- Dorren, L.K.A. Rockyfor3D Revealed—Description of the Complete 3D Rockfall Model, ecorisq Paper. Available online: https://www.ecorisq.org/publications/tools-manuals/rockyfor3d-user-manual (accessed on 26 June 2020).
- Hantz, D. Quantitative assessment of diffuse rock fall hazard along a cliff foot. Nat. Hazards Earth Syst. Sci. 2011, 11, 1303–1309. [Google Scholar] [CrossRef] [Green Version]
- Abbruzzese, J.M.; Sauthier, C.; Labiouse, V. Considerations on Swiss methodologies for rock fall hazard mapping based on trajectory modelling. Nat. Hazards Earth Syst. Sci. 2009, 9, 1095–1109. [Google Scholar] [CrossRef] [Green Version]
- Raetzo, H.; Lateltin, O.; Bollinger, D.; Tripet, J.P. Hazard assessment in Switzerland—Codes of Practice for mass movements. Bull. Eng. Geol. Environ. 2002, 61, 263–268. [Google Scholar]
- Labiouse, V.; Abbruzzese, J.M. Rockfall hazard zoning for land use planning. In Rockfall Engineering; Lambert, S., Nicot, F., Eds.; John Wiley & Sons: New York, NY, USA; London, UK, 2011; pp. 211–253. [Google Scholar]
- Spang, R.M.; Krauter, E. Rockfall simulation—A state of the art tool for risk assessment and dimensioning of rockfall barriers. In Proceedings of the International Conference on Landslides—Causes, Impacts and Countermeasures, Davos, Switzerland, 17–21 June 2001; pp. 607–613. [Google Scholar]
- Descoeudres, F.; Zimmermann, T. Three-dimensional dynamic calculation of rockfalls. In Proceedings of the 6th International Congress of Rock Mechanics, Montreal, QC, Canada, 30 August–3 September 1987; pp. 337–342. [Google Scholar]
- Abbruzzese, J.M.; Labiouse, V. New Cadanav methodology for quantitative rock fall hazard assessment and zoning at the local scale. Landslides 2013, 11, 551–564. [Google Scholar] [CrossRef]
- Abbruzzese, J.M. Improved Methodology for Rock Fall Hazard Zoning at the Local Scale. Ph.D. Thesis, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland, 2011. [Google Scholar]
- Hungr, O.; Evans, S.G.; Hazzard, J. Magnitude and frequency of rock falls along the main transportation corridors of southwestern British Columbia. Can. Geotech. J. 1999, 36, 224–238. [Google Scholar] [CrossRef]
- OFEV (Office Fédéral de L’Environnement). Protection Contre Les Dangers Dus Aux Mouvements de Terrain. Aide à l’exécution Concernant la Gestion des Dangers dus Aux Glissements de Terrain, Aux Chutes de Pierres et aux Coulées de Boue; Office Fédéral de L’environnement: Berne, IN, USA, 2016.
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abbruzzese, J.M.; Labiouse, V. New Cadanav Methodology for Rock Fall Hazard Zoning Based on 3D Trajectory Modelling. Geosciences 2020, 10, 434. https://doi.org/10.3390/geosciences10110434
Abbruzzese JM, Labiouse V. New Cadanav Methodology for Rock Fall Hazard Zoning Based on 3D Trajectory Modelling. Geosciences. 2020; 10(11):434. https://doi.org/10.3390/geosciences10110434
Chicago/Turabian StyleAbbruzzese, Jacopo M., and Vincent Labiouse. 2020. "New Cadanav Methodology for Rock Fall Hazard Zoning Based on 3D Trajectory Modelling" Geosciences 10, no. 11: 434. https://doi.org/10.3390/geosciences10110434
APA StyleAbbruzzese, J. M., & Labiouse, V. (2020). New Cadanav Methodology for Rock Fall Hazard Zoning Based on 3D Trajectory Modelling. Geosciences, 10(11), 434. https://doi.org/10.3390/geosciences10110434