In Vitro Fermentation and Chemical Characteristics of Mediterranean By-Products for Swine Nutrition
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Chemical Composition
2.2. In Vitro Gas Production
2.3. End Products
2.4. Statistical Analysis
3. Results
4. Discussion
4.1. Citrus Fruit By-Products
4.2. Olive Oil By-Products
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- FAO. Meat Market Review. Rome, October 2018. Available online: http://www.fao.org/economic/est/est-commodities/meat/meat-and-meat-products-update/en/ (accessed on 7 July 2019).
- European Commission. EU Market Observatories. Market Sector: Cereals. 2017. Available online: https://ec.europa.eu/agriculture/cereals_en/ (accessed on 7 July 2019).
- European Environment Agency. Environmental Indicator Report 2018. In Support to the Monitoring of the 7 Environment Action Programme, EEA Report No19/2018; European Environment Agency: Copenhagen, Denmark, 2018. [Google Scholar]
- Ferrer, A.C.; García-Rebollar, P.; Cerisuelo, A.; Ibáñez, M.A.; Rodríguez, C.A.; Calvet, S.; De Blas, C. Nutritional value of crude and partially defatted olive cake in finishing pigs and effects on nitrogen balance and gaseous emissions. Anim. Feed Sci. Technol. 2018, 236, 131–140. [Google Scholar] [CrossRef]
- Santana-Méridas, O.; González-Coloma, A.; Sánchez-Vioque, R. Agricultural residues as a source of bioactive natural products. Phytochemistry 2012, 11, 447–466. [Google Scholar] [CrossRef]
- Waldron, K. Waste minimization, management and co-product recovery in food processing: An introduction. In Handbook of Waste Management and Co-Product Recovery in Food Processing; Waldron, K., Ed.; Woodhead Publishing Limited: Cambridge, UK, 2007; Volume 1, pp. 3–20. [Google Scholar]
- Elferink, E.V.; Nonhebel, S.; Moll, H.C. Feeding livestock food residue and the consequences for the environmental impact of meat. J. Clean. Prod. 2008, 16, 1227–1233. [Google Scholar] [CrossRef]
- Afshar, M.A.; Naser, M.S. Nutritive value of some agro-industrial by-products for ruminants: A Review. World J. Zool. 2008, 2, 40–46. [Google Scholar]
- European Commission (2012c). Communication from the Commission to the European Parliament, the Council, the European Economic and Social Committee and the Committee of the Regions. Innovating for Sustainable Growth: A Bioeconomy for Europe, SWD (2012). 11 final. Brussels, 13.2.2012. COM(2012) 60 final.
- Commission Directive (EU) 2015/1127 of 10 July 2015 amending Annex II to Directive 2008/98/EC of the European Parliament and of the Council on waste and repealing certain Directives (Text with EEA relevance). Gazz. Uff. Unione Eur. 2015, 184, 11.
- Commission Regulation (EU) 2017/1017 of 15 June 2017 Amending Regulation (EU) No 68/2013 on the Catalogue of feed materials. Gazz. Uff. Unione Eur. 2017, 159, 48.
- Spranghers, T.; Ottoboni, M.; Klootwijk, C.; Ovyn, A.; Deboosere, S.; De Meulenaer, B.; Michiels, J.; Eeckhout, M.; De Clercq, P.; De Smet, S. Nutritional composition of black soldier fly (Hermetia illucens) prepupae reared on different organic waste substrates. J. Sci. Food Agric. 2016, 5, 2594–2600. [Google Scholar] [CrossRef] [PubMed]
- Woyengo, T.A.; Jha, R.; Beltranena, E.; Zijlstra, R.T. In vitro digestion and fermentation characteristics of canola coproducts simulate their digestion in the pig intestine. Animal 2016, 6, 911–918. [Google Scholar] [CrossRef]
- Giromini, C.; Ottoboni, M.; Tretola, M.; Marchis, D.; Gottardo, D.; Caprarulo, V.; Baldi, A.; Pinotti, L. Nutritional evaluation of former food products (ex-food) intended for pig nutrition. Food Addit. Contam. Part A 2017, 8, 1436–1445. [Google Scholar] [CrossRef]
- Tretola, M.; Di Rosa, A.R.; Tirloni, E.; Ottoboni, M.; Giromini, C.; Leone, F.; Bernardi, C.E.M.; Dell’Orto, V.; Chiofalo, V.; Pinotti, L. Former food products safety: Microbiological quality and computer vision evaluation of packaging remnants contaminations. Food Addit. Contam. Part A 2017, 8, 1427–1435. [Google Scholar] [CrossRef]
- Tretola, M.; Ottoboni, M.; Di Rosa, A.R.; Giromini, C.; Fusi, E.; Rebucci, R.; Leone, F.; Dell’Orto, V.; Chiofalo, V.; Pinotti, L. Former food products safety evaluation: Computer vision as an innovative approach for packaging remnants detection. J. Food Qual. 2017, 2017, 6. [Google Scholar] [CrossRef]
- Laufenberg, G.; Kunz, B.; Nystroem, M. Transformation of vegetable waste into value added products: (A) the upgrading concept; (B) practical implementations. Bioresour. Technol. 2003, 87, 167–198. [Google Scholar] [CrossRef]
- Mirabella, N.; Castellani, V.; Sala, S. Current options for the valorization of food manufacturing waste: A review. J. Clean. Prod. 2014, 65, 28–41. [Google Scholar] [CrossRef]
- Kasapidou, E.; Sossidou, E.; Mitlianga, P. Fruit and vegetable co-products as functional feed ingredients in farm animal nutrition for improved product quality. Agriculture 2015, 5, 1020–1034. [Google Scholar] [CrossRef]
- Chiofalo, B.; Liotta, L.; Zumbo, A.; Chiofalo, V. Administration of olive cake for ewe feeding: Effect on milk yield and composition. Small Rumin. Res. 2004, 1, 169–176. [Google Scholar] [CrossRef]
- Polyorach, S.; Wanapat, M. Improving the quality of rice straw by urea and calcium hydroxide on rumen ecology, microbial protein synthesis in beef cattle. J. Anim. Physiol. Anim. Nutr. 2015, 99, 449–456. [Google Scholar] [CrossRef] [PubMed]
- Volpato, R.M.; De Oliveira, V.; Gewehr, C.E.; Neto, D.P. Agro-industrial co-products in feed for piglets. Ciên. Rur. 2015, 1, 86–91. [Google Scholar]
- Liotta, L.; Randazzo, C.L.; Russo, N.; Zumbo, A.; Di Rosa, A.R.; Caggia, C.; Chiofalo, V. Effect of Molasses and Dried Orange Pulp as Sheep Dietary Supplementation on Physico-Chemical, Microbiological and Fatty Acid Profile of Comisana Ewe’s Milk and Cheese. Front. Nutr. 2019, 6, 1. [Google Scholar] [CrossRef]
- Ferrie, A.M.R. Doupled haploid production in nutraceutical species: A review. Euphytica 2007, 158, 347–357. [Google Scholar] [CrossRef]
- Bizzarri, M.; Dinicola, S. Nutraceuticals as therapeutic agents in supportive oncological care. In Proceedings of the SINut Congress, Milan, Italy, 24–26 February 2011; Elsevier: Amsterdam, The Netherlands, 2011; p. 59. [Google Scholar]
- Nieto, G.; Diaz, P.; Bañón, S.; Garrido, M.D. Dietary administration of ewediets with a distillate from rosemary leaves (Rosmarinus officinalis L.): Influence on lamb meat quality. Meat Sci. 2010, 84, 23–29. [Google Scholar] [CrossRef]
- Sedighi-Vesagh, R.; Naserian, A.A.; Ghaffari, M.H.; Petit, V.H. Effects of pistachio by-products on digestibility, milk production, milk fatty acid profile and blood metabolites in Saanen dairy goats. J. Anim. Physiol. Anim. Nutr. 2015, 99, 777–787. [Google Scholar] [CrossRef]
- Faixovà, Z.; Faix, S. Biological effects of rosemary (Rosmarinus officinalis L.) essential oil. Folia Vet. 2008, 52, 135–139. [Google Scholar]
- Azbar, N.; Bayram, A.; Filibeli, A.; Muezzinoglu, A.; Sengul, F.; Ozer, A. A Review of waste management options in olive oil production, critical reviews in environmental. Crit. Rev. Environ. Sci. Technol. 2004, 3, 209–247. [Google Scholar] [CrossRef]
- Salomone, R.; Ioppolo, G. Environmental impacts of olive oil production: A Life Cycle Assessment case study in the province of Messina (Sicily). J. Clean. Prod. 2012, 28, 88. [Google Scholar] [CrossRef]
- Sarnari, T. Tendenze olio di oliva. Rapp. ISMEA 2018, 1, 1–7. [Google Scholar]
- Pergola, M.; D’Amico, M.; Celano, G.; Palese, A.M.; Scuderi, A.; Di Vita, G.; Pappalardo, G.; Inglese, P. Sustainability evaluation of Sicily’s lemon and orange production: An energy, economic and environmental analysis. J. Environ. Manag. 2013, 128, 674. [Google Scholar] [CrossRef]
- Villarreal, M.; Cochran, R.C.; Rojas-Bourrillon, A.; Murillo, O.; Munoz, H.; Poore, M. Effect of supplementation with pelleted citrus pulp on digestibility and intake in beef cattle fed a tropical grass-based diet (Cynodon nlemfuensis). Anim. Feed Sci. Technol. 2006, 125, 63–173. [Google Scholar] [CrossRef]
- Marin, F.R.; Martinex, M.; Uribesalgo, T.; Castillo, S.; Frutos, M.J. Changes in nutraceutical composition of lemon juices according to different industrial extraction systems. Food Chem. 2002, 78, 319–324. [Google Scholar] [CrossRef]
- Rigane, G.; Bouaziz, M.; Sayadi, S.; Salem, R.B. Identification and characterization of a new iridoid compound from two-phase Chemlali olive pomace. Eur. Food Res. Technol. 2012, 234, 1049–1054. [Google Scholar] [CrossRef]
- Varricchio, E.; Coccia, E.; Orso, G.; Lombardi, V.; Imperatore, R.; Vito, P.; Paoluccia, M. Influence of polyphenols from olive mill wastewater on the gastrointestinal tract, alveolar macrophages and blood leukocytes of pigs. Ital. J. Anim. Sci. 2019, 18, 574–586. [Google Scholar] [CrossRef] [Green Version]
- De Blas, J.C.; Ferrer, P.; Rodríguez, C.A.; Cerisuelo, A.; García Rebollar, P.; Calvet, S.; Farias, C. Nutritive value of citrus co-products in rabbit feeding. World Rabbit Sci. 2018, 26, 7–14. [Google Scholar] [CrossRef] [Green Version]
- Manthey, J.A.; Grohmann, K. Phenols in citrus peel byproducts. Concentrations of hydroxycinnamates and polymethoxylated flavones in citrus peel molasses. J. Agric. Food Chem. 2001, 7, 3268–3273. [Google Scholar] [CrossRef]
- Olivo, P.M.; dos Santos, G.T.; Vinhas Ítavo, L.C.; da Silva, R.C., Jr.; Souza Leal, E.; do Prado, R.M. Assessing the nutritional value of agroindustrial co-products and feed through chemical composition, in vitro digestibility, and gas production technique. Acta Sci. Anim. Sci. 2017, 39, 289–295. [Google Scholar] [CrossRef] [Green Version]
- Chiofalo, B.; Di Rosa, A.R.; Stilo, A.; Fiumanò, R.; Carcione, G.; Spanò, G.; Chiofalo, V. Le polpe depectinizzate di agrumi: Risorsa alimentare o sottoprodotto da eliminare? Mangimi Aliment. 2015, 7, 32–35. [Google Scholar]
- Chiofalo, B.; Cucinotta, S.; Spano’, G.; Carcione, G.; Di Rosa, A.R. Dall’ortofrutta di Sicilia nasce un alimento funzionale per il mercato del petfood; quando lo spreco alimentare diventa risorsa. Mangimi Aliment. 2016, 3, 32–37. [Google Scholar]
- Lanza, M.; Priolo, A.; Biondi, L.; Bella, M.; Ben Salem, H. Replacement of cereal grains by orange pulp and carob pulp in faba bean-based diets fed to lambs: Effects on growth performance and meat quality. Anim. Res. 2001, 50, 21–30. [Google Scholar] [CrossRef]
- Lashkari, S.; Taghizadeh, A.; Paya, H.; Jensen, S.K. Growth performance, nutrient digestibility and blood parameters of fattening lambs fed diet replacing corn with orange pulp. Span. J. Agric. Res. 2017, 15, 1–7. [Google Scholar] [CrossRef]
- Watanabe, P.H.; Thomaz, M.C.; Ruiz, U.; Maia dos Santos, V.; Fraga, A.L.; Fonseca Pascoal, L.A.; Zaneti da Silva, S.; Gonzáles de Faria, H. Effect of inclusion of citrus pulp in the diet of finishing swines. Braz. Arch. Biol. Technol. 2010, 53, 709–718. [Google Scholar] [CrossRef] [Green Version]
- AOAC. Official Methods of Analysis, 20th ed.; Association of Official Analytical Chemists: Gaithersburg, MD, USA, 2015. [Google Scholar]
- Van Soest, P.J.; Robertson, J.B.; Lewis, B.A. Methods for dietary fiber, neutral detergent fiber, and non-starch polysaccharides in relation to animal nutrition. J. Dairy Sci. 1991, 74, 3583–3597. [Google Scholar] [CrossRef]
- Theodorou, M.K.; Williams, B.A.; Dhanoa, M.S.; McAllan, A.B.; France, J.A. Simple gas production method using a pressure transducer to determine the fermentation kinetics of ruminant feeds. Anim. Feed Sci. Technol. 1994, 48, 185–197. [Google Scholar] [CrossRef]
- Bauer, E.; Williams, B.A.; Voigt, C.; Mosenthin, R.; Verstegen, M.W.A. Impact of mammalian enzyme pre-treatment on the fermentability of carbohydrate-rich feedstuffs. J. Sci. Food Agric. 2003, 83, 207–214. [Google Scholar] [CrossRef]
- Cutrignelli, M.I. In vitro assessments of pre- and probiotics. Compendium 2007, 29, 38. [Google Scholar]
- Calabrò, S.; Carciofi, A.C.; Musco, N.; Tudisco, R.; Gomes, O.S.M.; Cutrignelli, M.I. Fermentation characteristics of several carbohydrate sources or dog diets using the in vitro gas production technique. Ital. J. Anim. Sci. 2012, 12, 21–27. [Google Scholar]
- Musco, N.; Calabrò, S.; Infascelli, F.; Tudisco, R.; Lombardi, P.; Grossi, M.; Addi, L.; Ponciano Neto, B.; Cutrignelli, M.I. In vitro fermentation of structural carbohydrate-rich feeds using faecal inoculum from pigs. Ital. J. Anim. Sci. 2015, 14, 557–562. [Google Scholar] [CrossRef]
- Groot, J.C.J.; Cone, J.W.; Williams, B.A.; Debersaques, F.M.A.; Lantinga, E.A. Multiphasic analysis of gas production kinetics for in vitro fermentation of ruminant feeds. Anim. Feed Sci. Technol. 1996, 64, 77–89. [Google Scholar] [CrossRef]
- Bauer, E.; Williams, B.A.; Voigt, C.; Mosenthin, R.; Verstegen, M.W.A. Microbial activities of faeces from un-weaned and adult pigs, in relation to selected fermentable carbohydrates. J. Anim. Sci. 2001, 73, 313–322. [Google Scholar] [CrossRef]
- Cutrignelli, M.I.; Bovera, F.; Tudisco, R.; D’Urso, S.; Marono, S.; Piccolo, G.; Calabrò, S. In vitro fermentation characteristics of different carbohydrate sources in two dog breeds (German shepherd and Neapolitan mastiff). J. Anim. Physiol. Anim. Nutr. 2009, 93, 305–312. [Google Scholar] [CrossRef]
- Baker, R.A. Potential dietary benefits of citrus pectin and fiber. Food Technol. 1994, 48, 133–138. [Google Scholar]
- Musco, N.; Calabrò, S.; Tudisco, R.; Grossi, M.; Addi, L.; Moniello, G.; Lombardi, P.; Cutrignelli, M.I. Diet effect on short-and long-term glycaemic response in adult healthy cats (Review) [Effetto della dieta sulla risposta glicemica post-prandiale nei gatti adulti]. Vet. Ital. 2017, 2, 141–145. [Google Scholar]
- Younes, H.; Coudray, C.; Bellanger, J.; Demignè, C.; Rayssiguier, Y.; Rèmèsy, C. Effects of two fermentable carbohydrates (inulin and resistant starch) and their combination on calcium and magnesium balance in rats. Br. J. Nutr. 2001, 86, 479–485. [Google Scholar] [CrossRef]
- Musco, N.; Calabrò, S.; Roberti, F.; Grazioli, R.; Tudisco, R.; Lombardi, P.; Cutrignelli, M.I. In vitro evaluation of Saccharomyces cerevisiae cell wall fermentability using a dog model. J. Anim. Physiol. Anim. Nutr. 2018, 102, 24–30. [Google Scholar] [CrossRef]
- Chiofalo, B.; Lo Presti, V.; Piccolo, D.; Arena, G. Nero Siciliano pig: Effect of the diet on meat quality. Ital. J. Anim. Sci. 2007, 6, 679. [Google Scholar] [CrossRef]
- Chiofalo, V.; Liotta, L.; Spanò, G.; D’Alessandro, E.; Chiofalo, B. Dietary Neutral Detergent Fiber level on performance traits and meat quality in Nero Siciliano pigs. J. Nutr. Ecol. Food Res. 2013, 1, 207–212. [Google Scholar]
- Muriel, E.; Antequera, T.; Petron, M.J.; Andrés, A.I.; Ruiz, J. Volatile compounds in Iberian dry-cured loin. Meat Sci. 2004, 68, 391–400. [Google Scholar] [CrossRef]
- Paduch, R.; Kandefer-Szerszén, M.; Trytek, M.; Fiedurek, J. Terpenes, substances useful in human healthcare. Arch. Immunol. Ther. Exp. 2007, 5, 315–327. [Google Scholar] [CrossRef]
- Marcos, C.N.; García-Rebollar, P.; de Blas, C.; Carro, M.D. Variability in the Chemical Composition and In Vitro Ruminal Fermentation of Olive Cake By-Products. Animals 2019, 9, 109. [Google Scholar] [CrossRef]
- Molina-Alcaide, E.; Yàñez-Ruiz, D.R. Potential use of olive by-products in ruminant feeding: A review. Anim. Feed Sci. Technol. 2008, 147, 247–264. [Google Scholar] [CrossRef]
- Aarnink, A.J.; Verstegen, M.W. Nutrition, key factor to reduce environmental load from pig production. Livest. Sci. 2007, 109, 194–203. [Google Scholar] [CrossRef]
- Courboulay, V.; Dubois, A.; Meunier-Salaün, M.C. La distribution d’aliments riches en fibers affecte l’activité alimentaire des truies gestantes logées en groupe. In Proceedings of the 33es Journées Recherche Porcine, Paris, France, 30 January–1 February 2001; pp. 307–312. [Google Scholar]
- Awati, A.; Konstantinov, S.R.; Williams, B.A.; Akkermans, A.D.L.; Bosch, M.W.; Martin, H.S.; Verstegen, W.A. Effect of substrate adaptation on the microbial fermentation and microbial composition of faecal microbiota of weaning piglets studied in vitro. J. Sci. Food Agric. 2005, 85, 1765. [Google Scholar] [CrossRef]
- Mas, G.; Llavall, M.; Coll, D.; Roca, R.; Diaz, I.; Gispert, M.; Oliver, M.A.; Realini, C.E. Carcass and meat quality characteristics and fatty acid composition of tissues from Pietrain-crossed barrows and gilts fed an elevated monounsaturated fat diet. Meat Sci. 2010, 8, 707–714. [Google Scholar] [CrossRef]
- Joven, M.; Pintos, E.; Latorre, M.A.; Suárez-Belloch, J.; Guada, J.A.; Fondevila, M. Effect of replacing barley by increasing levels of olive cake in the diet of finishing pigs: Growth performances, digestibility, carcass, meat and fat quality. Anim. Feed Sci Technol. 2014, 197, 185–193. [Google Scholar] [CrossRef]
- Siri-Tarino, P.W.; Sun, Q.; Hu, F.B.; Krauss, R.M. Meta-analysis of prospective color studies evaluating the association of saturated fat with cardiovascular disease. Am. J. Clin. Nutr. 2010, 91, 535–546. [Google Scholar] [CrossRef]
Samples | DM | CP | EE | NDF | ADF | ADL | Ash | Starch |
---|---|---|---|---|---|---|---|---|
% | % DM | |||||||
GOP | 95.75 | 5.82 | 1.10 | 31.80 | 23.35 | 3.74 | 18.07 | 2.11 |
ROP | 96.58 | 6.02 | 0.91 | 33.05 | 25.72 | 3.69 | 17.08 | 2.91 |
LP | 96.90 | 7.42 | 4.89 | 37.42 | 28.37 | 4.23 | 18.16 | 1.91 |
LM | 44.49 | 6.74 | 0.43 | 1.37 | 0.36 | 0.20 | 15.01 | - |
OM | 52.43 | 5.36 | 0.40 | 0.92 | 0.27 | 0.11 | 7.15 | - |
DPN | 95.63 | 9.14 | 29.51 | 50.19 | 38.83 | 27.19 | 4.43 | 1.76 |
DPB | 95.66 | 8.67 | 30.04 | 53.88 | 39.69 | 21.49 | 3.67 | 1.11 |
DPC | 95.55 | 8.07 | 31.46 | 44.05 | 39.65 | 20.50 | 4.17 | 1.57 |
Samples | OMD % | OMCV mL/g | Tmax H | Rmax mL/h |
---|---|---|---|---|
GOP | 81.23B | 222.2A | 16.9A | 6.27C |
ROP | 83.91B | 218.9A | 17.3A | 5.91C |
LP | 72.67C | 212.6A | 18.1A | 5.30C |
LM | 91.82A | 211.8A | 4.08C | 13.0A |
OM | 93.63A | 167.3B | 4.06C | 10.7B |
DPN | 23.47E | 77.66C | 8.90B | 2.21D |
DPB | 24.17E | 78.78C | 9.30B | 2.20D |
DPC | 31.74D | 89.11C | 11.1B | 2.44D |
RMSE | 1.52 | 9.67 | 0.73 | 0.61 |
Samples | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|
GOP | ROP | LP | LM | OM | DPN | DPB | DPC | RMSE | ||
pH | 6.71ab | 6.61b | 6.65ab | 6.70ab | 6.68ab | 6.75a | 6.76a | 6.74a | 0.018 | |
Ace | mmol/L | 68.95C | 80.53BCbc | 56.73Cd | 117.0Aa | 95.87ABb | 27.49D | 23.35D | 27.20D | 7.34 |
Prop | “ | 17.37A | 17.70A | 15.84A | 19.77A | 18.59A | 7.96B | 7.32B | 7.92B | 1.51 |
Iso-But | “ | 1.50BCDab | 1.70B | 1.57BCa | 2.70A | 2.53A | 1.06Dc | 1.09CDc | 1.12CDbc | 0.13 |
But | “ | 12.60DCa | 13.22C | 9.48Db | 23.51B | 27.95A | 4.65E | 4.57E | 5.26E | 1.06 |
Iso-vale | “ | 2.65C | 2.47C | 2.53C | 4.93A | 3.85B | 2.12C | 2.20C | 2.33C | 0.27 |
Vale | “ | 1.71BC | 1.75BC | 2.18BCa | 3.78A | 3.42A | 1.27Cb | 1.18Cb | 1.25Cb | 0.32 |
SCFA | “ | 104.8BC | 117.4BCa | 88.35Cb | 171.7A | 152.2A | 44.55D | 39.71D | 45.08D | 8.28 |
BCFA | “ | 0.030B | 0.030B | 0.040B | 0.030B | 0.037B | 0.063A | 0.070A | 0.063A | 0.006 |
NH3 | “ | 19.44BC | 21.87BC | 22.68BCa | 43.64A | 42.92A | 14.96Cb | 22.87BCa | 25.68B | 2.47 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vastolo, A.; Calabró, S.; Liotta, L.; Musco, N.; Di Rosa, A.R.; Cutrignelli, M.I.; Chiofalo, B. In Vitro Fermentation and Chemical Characteristics of Mediterranean By-Products for Swine Nutrition. Animals 2019, 9, 556. https://doi.org/10.3390/ani9080556
Vastolo A, Calabró S, Liotta L, Musco N, Di Rosa AR, Cutrignelli MI, Chiofalo B. In Vitro Fermentation and Chemical Characteristics of Mediterranean By-Products for Swine Nutrition. Animals. 2019; 9(8):556. https://doi.org/10.3390/ani9080556
Chicago/Turabian StyleVastolo, Alessandro, Serena Calabró, Luigi Liotta, Nadia Musco, Ambra Rita Di Rosa, Monica Isabella Cutrignelli, and Biagina Chiofalo. 2019. "In Vitro Fermentation and Chemical Characteristics of Mediterranean By-Products for Swine Nutrition" Animals 9, no. 8: 556. https://doi.org/10.3390/ani9080556
APA StyleVastolo, A., Calabró, S., Liotta, L., Musco, N., Di Rosa, A. R., Cutrignelli, M. I., & Chiofalo, B. (2019). In Vitro Fermentation and Chemical Characteristics of Mediterranean By-Products for Swine Nutrition. Animals, 9(8), 556. https://doi.org/10.3390/ani9080556