Activity and Anti-Aflatoxigenic Effect of Indigenously Characterized Probiotic Lactobacilli against Aspergillus flavus—A Common Poultry Feed Contaminant
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Identification of Isolates
2.2. Antifungal Activity of Lactobacilli
2.3. Effect of Lactobacilli on Aflatoxin Production
2.4. Aflatoxin B1 Extraction
2.5. Toxin Binding Assay
2.6. High Performance Liquid Chromatography (HPLC)
2.7. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Naseem, M.N.; Saleemi, M.K.; Abbas, R.Z.; Khan, A.; Khatoon, A.; Gul, S.T.; Imran, M.; Sindhu, Z.U.D.; Sultan, A. Hematological and serum biochemical effects of aflatoxin B1 intoxication in broilers experimentally infected with fowl adenovirus-4 (FAdV-4). Pak. Vet. J. 2018, 38, 209–213. [Google Scholar] [CrossRef]
- Elsanhoty, R.M.; Salam, S.A.; Ramadan, M.F.; Badr, F.H. Detoxification of aflatoxin M1 in yoghurt using probiotics and lactic acid bacteria. Food Control 2014, 43, 129–134. [Google Scholar] [CrossRef]
- Ellis, W.O.; Smith, J.P.; Simpson, B.K.; Oldham, J.H.; Scott, P.M. Aflatoxins in food: Occurrence, biosynthesis, effects on organisms, detection, and methods of control. Crit. Rev. Food. Sci. Nutr. 1991, 30, 403–439. [Google Scholar] [CrossRef] [PubMed]
- Williams, J.H.; Phillips, T.D.; Jolly, P.E.; Stiles, J.K.; Jolly, C.M.; Aggarwal, D. Human aflatoxicosis in developing countries: A review of toxicology, exposure, potential health consequences, and interventions. Am. J. Clin. Nutr. 2004, 80, 1106–1122. [Google Scholar] [CrossRef] [PubMed]
- Diaz, D.E.; Hagler, W.M.; Hopkins, B.A.; Whitlow, L.W. Aflatoxin binders I: In vitro binding assay for aflatoxin B1 by several potential sequestering agents. Mycopathologia 2003, 156, 223–226. [Google Scholar] [CrossRef]
- Ghazvini, R.D.; Kouhsari, E.; Zibafar, E.; Hashemi, S.J.; Amini, A.; Niknejad, F. Antifungal activity and aflatoxin degradation of bifidobacterium bifidum and lactobacillus fermentum against toxigenic aspergillus parasiticus. Open. Microbiol. J. 2016, 10, 197. [Google Scholar] [CrossRef] [PubMed]
- Zoghi, A.; Khosravi-Darani, K.; Sohrabvandi, S. Surface binding of toxins and heavy metals by probiotics. Mini. Rev. Med. Chem. 2014, 14, 84–98. [Google Scholar] [CrossRef] [PubMed]
- Corthier, G. The health benefits of probiotics. Danone Nutr. 2004, 29, 1–18. [Google Scholar]
- Pizzolitto, R.P.; Bueno, D.J.; Armando, M.R.; Cavaglieri, L.; Dalcero, A.M.; Salvano, M.A. Binding of aflatoxin B1 to lactic acid bacteria and Saccharomyces cerevisiae in vitro: A useful model to determine the most efficient microorganism. In Aflatoxins-Biochemistry and Molecular Biology; IntechOpen: London, UK, 2011. [Google Scholar]
- Manubolu, M.; Goodla, L.; Pathakoti, K.; Malmlöf, K. Enzymes as direct decontaminating agents—mycotoxins. In Enzymes in Human and Animal Nutrition; Academic Press: Cambridge, MA, USA, 2018; pp. 313–330. [Google Scholar]
- Morelli, L.; Capurso, L. FAO/WHO guidelines on probiotics: 10 years later. J. Clin. Gastroenterol. 2012, 46, S1–S2. [Google Scholar] [CrossRef]
- Peltonen, K.D.; El-Nezami, H.S.; Salminen, S.J.; Ahokas, J.T. Binding of aflatoxin B1 by probiotic bacteria. J. Sci. Food Agric. 2000, 80, 1942–1945. [Google Scholar] [CrossRef]
- Arif, A.; Nawaz, M.; Rabbani, M.; Iqbal, S.; Mustafa, A.; Yousuf, M.R.; Muhammad, K. Screening, characterization and physicochemical optimization of phosphorus solubilization activity of potential probiotic Lactobacillus spp. Pak. Vet. J. 2018, 38, 316–320. [Google Scholar] [CrossRef]
- Saleem, N.; Nawaz, M.; Ghafoor, A.; Javeed, A.; Mustafa, A.; Yousuf, M.R.; Khan, I. Phenotypic and molecular analysis of antibiotic resistance in Lactobacilli of poultry origin from Lahore, Pakistan. Pak. Vet. J. 2018, 38, 341–346. [Google Scholar] [CrossRef]
- AL-Ruwaili, M.; Alkhalaileh, N.I.; Herzallah, S.M.; Rawashdeh, A.; Fataftah, A.; Holley, R. Reduction of aflatoxin B1 residues in meat and organs of broiler chickens by lactic acid bacteria. Pak. Vet. J. 2018, 38, 325–328. [Google Scholar] [CrossRef]
- Hernández, D.; Cardell, E.; Zárate, V. Antimicrobial activity of lactic acid bacteria isolated from Tenerife cheese: Initial characterization of plantaricin TF711, a bacteriocin-like substance produced by Lactobacillus plantarum TF711. J. Appl. Microbiol. 2005, 99, 77–84. [Google Scholar] [CrossRef]
- Alberts, J.F.; Engelbrecht, Y.; Steyn, P.S.; Holzapfel, W.H.; van Zyl, W.H. Biological degradation of aflatoxin B1 by Rhodococcus erythropolis cultures. Int. J. Food Microbiol. 2006, 109, 121–126. [Google Scholar] [CrossRef]
- Zinedine, A.; Faid, M.; Benlemlih, M. In vitro reduction of aflatoxin B1 by strains of lactic acid bacteria isolated from Moroccan sourdough bread. Int. J. Agric. Biol. 2005, 7, 67–70. [Google Scholar]
- Yalcin, N.F.; Avci, T.; Isik, M.K.; Oguz, H. In vitro activity of toxin binders on aflatoxin B1 in poultry gastrointestinal medium. Pak. Vet. J. 2018, 38, 61–65. [Google Scholar] [CrossRef]
- Huang, L.; Duan, C.; Zhao, Y.; Gao, L.; Niu, C.; Xu, J.; Li, S. Reduction of aflatoxin B1 toxicity by Lactobacillus plantarum C88: A potential probiotic strain isolated from Chinese traditional fermented food “Tofu”. PLoS ONE 2017, 12, 1. [Google Scholar] [CrossRef]
- Smiley, R.; Draughon, F. Preliminary evidence that degradation of aflatoxin B1 by Flavobacterium aurantiacum is enzymatic. J. Food. Prot. 2000, 63, 415–418. [Google Scholar] [CrossRef]
- Hamidi, A.; Mirnejad, R.; Yahaghi, E.; Behnod, V.; Mirhosseini, A.; Amani, S.; Sattari, S.; Darian, E.K. The aflatoxin B1 isolating potential of two lactic acid bacteria. Asian Pac. J. Trop. Biomed. 2013, 3, 732–736. [Google Scholar] [CrossRef] [Green Version]
- Gourama, H.; Bullerman, L.B. Anti-aflatoxigenic activity of Lactobacillus casei pseudoplantarum. Int. J. Food. Microbiol. 1997, 34, 131–143. [Google Scholar] [CrossRef]
- Gourama, H.; Bullerman, L. Aspergillus flavus and Aspergillus parasiticus: Aflatoxigenic fungi of concern in foods and feeds: A Review. J. Food Prot. 1995, 58, 1395–1404. [Google Scholar] [CrossRef]
- Onilude, A.; Fagade, O.; Bello, M.; Fadahunsi, I. Inhibition of aflatoxin-producing aspergilli by lactic acid bacteria isolates from indigenously fermented cereal gruels. Afr. J. Biotechnol. 2005, 4, 1404–1408. [Google Scholar]
- Ghonaimy, G.; Yonis, A.; Abolela, M. Inhibition of Aspergillus flavus and A. Parasiticus fungal growth and its aflatoxins [B1, B2, G1 and G2] production by Lactobacillus acidophillus. J. Egypt. Soc. Toxicol. 2007, 37, 53–60. [Google Scholar]
- Gourama, H.; Bullerman, L.B. Antimycotic and antiaflatoxigenic effect of lactic acid bacteria: A review. J. Food. Prot. 1995, 58, 1275–1280. [Google Scholar] [CrossRef]
- Hosono, A. Desmutagenic property of cell walls of Streptococcus faecalis on the mutagenicities induced by amino acid pyrolyzates. Milchwissenschaft 1988, 43, 168–170. [Google Scholar]
- Chang, I.; Kim, J.-D. Inhibition of aflatoxin production of Aspergillus flavus by Lactobacillus casei. Mycobiology. 2007, 35, 76–81. [Google Scholar] [CrossRef]
- Gourama, H.; Bullerman, L.B. Inhibition of growth and aflatoxin production of Aspergillus flavus by Lactobacillus species. J. Food. Prot. 1995, 58, 1249–1256. [Google Scholar] [CrossRef]
- Gomah, N.H.; Ragab, W.; Bullerman, L. Inhibition of fungal growth and aflatoxin b1 production by some Lactobacillus strains. Assiut. J. Agric. Sci. 2009, 40, 27–36. [Google Scholar]
- Da Silva, J.F.; Peluzio, J.M.; Prado, G.; Madeira, J.E.; Silva, M.O.; de Morais, P.B.; Rosa, C.A.; Pimenta, R.S.; Nicoli, J.R. Use of probiotics to control aflatoxin production in peanut grains. Sci. World J. 2015, 2015, 959138. [Google Scholar] [CrossRef] [PubMed]
- Fazeli, M.R.; Hajimohammadali, M.; Moshkani, A.; Samadi, N.; Jamalifar, H.; Khoshayand, M.R.; Vaghari, E.; Pouragahi, S. Aflatoxin B1 binding capacity of autochthonous strains of lactic acid bacteria. J. Food. Prot. 2009, 72, 189–192. [Google Scholar] [CrossRef] [PubMed]
- Hernandez-Mendoza, A.; Garcia, H.; Steele, J. Screening of Lactobacillus casei strains for their ability to bind aflatoxin B 1. Food. Chem. Toxicol. 2009, 47, 1064–1068. [Google Scholar] [CrossRef] [PubMed]
- Prathivadi Bayankaram, P.; Sellamuthu, P.S. Antifungal and anti-aflatoxigenic effect of probiotics against Aspergillus flavus and Aspergillus parasiticus. Toxin. Rev. 2016, 35, 10–15. [Google Scholar] [CrossRef]
- Roger, T.; Léopold, T.N. Effect of selected lactic acid bacteria on growth of Aspergillus flavus and aflatoxin B1 production in kutukutu. J. Microbiol. Res. 2015, 5, 84–94. [Google Scholar] [CrossRef]
- El-Nezami, H.; Kankaanpaa, P.; Salminen, S.; Ahokas, J. Ability of dairy strains of lactic acid bacteria to bind a common food carcinogen, aflatoxin B1. Food Chem. Toxicol. 1998, 36, 321–326. [Google Scholar] [CrossRef]
- Liew, W.-P.-P.; Nurul-Adilah, Z.; Than, L.T.L.; Mohd-Redzwan, S. The binding efficiency and interaction of Lactobacillus casei Shirota toward aflatoxin B1. Front. Microbiol. 2018, 9, 1503. [Google Scholar] [CrossRef]
Isolates | GenBank Accession # | Zones of Inhibition (mm) | |
---|---|---|---|
pH 4 | pH 7 | ||
L. gallinarum PDP 10 | MF980924 | NZ | NZ |
L. reuteri PDP 24 | MF980925 | NZ | NZ |
L. fermentum FYP 38 | MF980923 | NZ | NZ |
L. gallinarum PL 53 | MK182967 | 13 | 12 |
L. paracasei PL 120 | MK182968 | 16 | 14 |
L. gallinarum PL 149 | MK182969 | 17 | 15 |
Isolates | Peak Areas | Quantity of AFB1 (ng/mL) | % Age Reduction |
---|---|---|---|
Standard | 120.205 | 100 | - |
Control | 0.58439 | 0.4 | - |
L. gallinarum PDP 10 | ND | ND | 100% |
L. fermentum FYP 38 | 0.815847 | 0.6 | −39.6% |
L. reuteri PDP 24 | ND | ND | 100% |
L. gallinarum PL 53 | 0.26124 | 0.2 | 55.2% |
L. paracasei PL 120 | ND | ND | 100% |
L. gallinarum PL 149 | ND | ND | 100% |
Isolates | Peak Areas | Quantity of AFB1 Bound (ng/mL) | % Age Reduction (Binding Capacity) |
---|---|---|---|
Standard | 108.246 | 100 | - |
Control | 927.763 | 857 | - |
L. gallinarum PDP 10 | 451.63 | 417.2 | 51.3% |
L. fermentum FYP 38 | 407.553 | 376.5 | 56% |
L. reuteri PDP 24 | 909.624 | 840 | 2% |
L. gallinarum PL 53 | 546.523 | 504.8 | 42% |
L. paracasei PL 120 | 676.472 | 624.9 | 28% |
L. gallinarum PL 149 | 326.775 | 301.8 | 65% |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Azeem, N.; Nawaz, M.; Anjum, A.A.; Saeed, S.; Sana, S.; Mustafa, A.; Yousuf, M.R. Activity and Anti-Aflatoxigenic Effect of Indigenously Characterized Probiotic Lactobacilli against Aspergillus flavus—A Common Poultry Feed Contaminant. Animals 2019, 9, 166. https://doi.org/10.3390/ani9040166
Azeem N, Nawaz M, Anjum AA, Saeed S, Sana S, Mustafa A, Yousuf MR. Activity and Anti-Aflatoxigenic Effect of Indigenously Characterized Probiotic Lactobacilli against Aspergillus flavus—A Common Poultry Feed Contaminant. Animals. 2019; 9(4):166. https://doi.org/10.3390/ani9040166
Chicago/Turabian StyleAzeem, Nimra, Muhammad Nawaz, Aftab Ahmad Anjum, Shagufta Saeed, Saba Sana, Amina Mustafa, and Muhammad Rizwan Yousuf. 2019. "Activity and Anti-Aflatoxigenic Effect of Indigenously Characterized Probiotic Lactobacilli against Aspergillus flavus—A Common Poultry Feed Contaminant" Animals 9, no. 4: 166. https://doi.org/10.3390/ani9040166
APA StyleAzeem, N., Nawaz, M., Anjum, A. A., Saeed, S., Sana, S., Mustafa, A., & Yousuf, M. R. (2019). Activity and Anti-Aflatoxigenic Effect of Indigenously Characterized Probiotic Lactobacilli against Aspergillus flavus—A Common Poultry Feed Contaminant. Animals, 9(4), 166. https://doi.org/10.3390/ani9040166