Influence of Licorice Root Feeding on Chemical-Nutritional Quality of Cow Milk and Stracciata Cheese, an Italian Traditional Fresh Dairy Product
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Experimental Design
2.2. Stracciata Cheese Manufacturing
2.3. Chemical Analysis of Milk and Stracciata
2.4. Colorimetric Analysis of Stracciata
2.5. Stracciata and Milk FA Profile
2.6. Evaluation of the Oxidative State and Volatile Compounds in Stracciata
2.7. Statistical Analysis
3. Results
3.1. Nutritional Composition of Milk and Stracciata
3.2. Fatty Acid Profile of Milk and Stracciata
3.3. Analysis of Oxidative State and Volatile Compounds in Stracciata
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Park, H.Y.; Kim, N.Y.; Han, M.J.; Bae, E.A.; Kim, D.H. Purification and characterization of two novel β-D-glucuronidases converting glycyrrhizin to 18β-glycyrrhetinic acid-3-O-β-D-Glucuronide from Streptococcus LJ-22. J. Microbiol. Biotechnol. 2005, 15, 792–799. [Google Scholar] [CrossRef]
- Wei, B.; Wang, P.P.; Yan, Z.X.; Yan, R. Characteristics and molecular determinants of a highly selective and efficient glycyrrhizin-hydrolyzing β-glucuronidase from Staphylococcus pasteuri 3I10. Appl. Microbiol. Biotechnol. 2018, 102, 9193–9205. [Google Scholar] [CrossRef] [PubMed]
- Kao, T.C.; Wu, C.H.; Yen, G.C. Bioactivity and potential health benefits of licorice. J. Agric. Food Chem. 2014, 62, 542–553. [Google Scholar] [CrossRef]
- Sedghi, M.; Golian, A.; Kermanshahi, H.; Ahmadi, H. Effect of dietary supplementation of licorice extract and a prebiotic on performance and blood metabolites of broilers. S. Afr. J. Anim. Sci. 2010, 40, 371–380. [Google Scholar] [CrossRef] [Green Version]
- Jiang, J.; Zhang, X.; True, A.D.; Zhou, L.; Xiong, Y.L. Inhibition of lipid oxidation and rancidity in precooked pork patties by radical-scavenging licorice (Glycyrrhiza glabra) extract. J. Food Sci. 2013, 78, 1686–1694. [Google Scholar] [CrossRef]
- Ianni, A.; Innosa, D.; Martino, C.; Bennato, F.; Martino, G. Compositional characteristics and aromatic profile of caciotta cheese obtained from Friesian cows fed with a dietary supplementation of dried grape pomace. J. Dairy Sci. 2019, 102, 1025–1032. [Google Scholar] [CrossRef] [Green Version]
- Manso, T.; Gallardo, B.; Salva, A.; Guerra-Rivas, C.; Mantecon, A.R.; Lavin, P.; de la Fuente, M.A. Influence of dietary grape pomace combined with linseed oil on fatty acid profile and milk composition. J. Dairy Sci. 2016, 99, 1111–1120. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Luo, H.; Liu, K.; Jia, H.; Chen, Y.; Wang, Z. Antioxidant effects of liquorice (Glycyrrhiza uralensis) extract during aging of longissimus thoracis muscle in Tan sheep. Meat Sci. 2015, 105, 38–45. [Google Scholar] [CrossRef]
- Guo, X.F.; Liu, J.F.; Sun, L.B.; Gao, J.; Zhang, S.J. Effects of licorice extracts on rumen fermentation and methane yield of sheep in vitro. Chin. J. Anim. Nutr. 2012, 8, 1548–1556. [Google Scholar] [CrossRef]
- Bennato, F.; Ianni, A.; Martino, C.; Di Luca, A.; Innosa, D.; Fusco, A.M.; Pomilio, F.; Martino, G. Dietary supplementation of Saanen goats with dried licorice root modifies chemical and textural properties of dairy products. J. Dairy Sci. 2019. [Google Scholar] [CrossRef] [Green Version]
- European Economic Community. EEC Council Directive 86/609/EEC of 24 November 1986 on the approximation of laws, regulations and administrative provisions of the Member States regarding the protection of animals used for experimental and other scientific purposes. Off. J. Eur. Commun. 1986, 358, 1–28. [Google Scholar]
- European Union. Directive 2010/63/EU of the European Parliament and of the Council of 22 September 2010 on the Protection of Animals Used for Scientific Purposes. 2010. Available online: http://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri = CELEX:32010L0063&from=EN (accessed on 3 April 2015).
- AOAC International. Official Methods of Analysis, 17th ed.; AOAC International: Washington, DC, USA, 2000. [Google Scholar]
- Zmeškal, O.; Čeppan, M.; Dzík, P. Color Spaces and Color Management. 2002. Available online: http://www.fch.vut.cz/lectures/imagesci/download/stud06_rozn02.pdf (accessed on 14 November 2019).
- Folch, L.; Less, M.; Stanley, S.A. Simple method for the isolation and purification of total lipids from animal tissues. J. Biol. Chem. 1957, 226, 497–509. [Google Scholar] [PubMed]
- Brogna, D.; Nasri, S.; Salem, H.; Mele, M.; Serra, A.; Bella, M.; Priolo, A.; Makkar, H.P.S.; Vasta, V. Effect of dietary saponins from Quillaja saponaria L. on fatty acid composition and cholesterol content in muscle longissimus dorsi of lambs. Animal 2011, 5, 1124–1130. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ianni, A.; Iannaccone, M.; Martino, C.; Innosa, D.; Grotta, L.; Bennato, F.; Martino, G. Zinc supplementation of dairy cows: Effects on chemical composition, nutritional quality and volatile profile of Giuncata cheese. Int. Dairy J. 2019, 94, 65–71. [Google Scholar] [CrossRef]
- Bennato, F.; Ianni, A.; Innosa, D.; Grotta, L.; D’Onofrio, A.; Martino, G. Chemical-nutritional characteristics and aromatic profile of milk and related dairy products obtained from goats fed with extruded linseed. Asian Australas J. Anim. Sci. 2019. [Google Scholar] [CrossRef] [Green Version]
- Ianni, A.; Di Maio, G.; Pittia, P.; Grotta, L.; Perpetuini, G.; Tofalo, R.; Cichelli, A.; Martino, G. Chemical-nutritional quality and oxidative stability of milk and dairy products obtained from Friesian cows fed with a dietary supplementation of dried grape pomace. J. Sci. Food Agric. 2018, 99, 3635–3643. [Google Scholar] [CrossRef]
- Lucey, J.A.; Johnson, M.E.; Horne, D.S. Perspectives on the basis of the rheology and texture properties of cheese. J. Dairy Sci. 2003, 89, 2725–2743. [Google Scholar] [CrossRef] [Green Version]
- Nozière, P.; Graulet, B.; Lucas, A.; Martin, B.; Grolier, P.; Doreau, M. Carotenoids for ruminants: From forages to dairy products. Anim. Feed Sci. Technol. 2006, 131, 418–450. [Google Scholar] [CrossRef]
- Solah, V.A.; Staines, V.; Honda, S.; Limley, H.A. Measurement of milk color and composition: Effect of dietary intervention on Western Australian Holstein-Friesian cow’s milk quality. J. Food Sci. 2007, 72, 560–566. [Google Scholar] [CrossRef]
- Hayashi, H.; Hiraoka, N.; Ikeshiro, Y.; Yamamoto, H.; Yoshikawa, T. Seasonal variation of glycyrrhizin and isoliquiritigenin glycosides in the root of Glycyrrhiza glabra. Biol. Pharm. Bull. 1998, 21, 987–989. [Google Scholar] [CrossRef] [Green Version]
- Ianni, A.; Bennato, F.; Martino, C.; Innosa, D.; Grotta, L.; Martino, G. Effects of selenium supplementation on chemical composition and aromatic profiles of cow milk and its derived cheese. J. Dairy Sci. 2019, 102, 6853–6862. [Google Scholar] [CrossRef] [PubMed]
- Ianni, A.; Martino, C.; Pomilio, F.; Di Luca, A.; Martino, G. Dietary selenium intake in lactating dairy cows modifies fatty acid composition and volatile profile of milk and 30-day-ripened caciotta cheese. Eur. Food Res. Technol. 2019, 245, 2113–2121. [Google Scholar] [CrossRef]
- Ianni, A.; Innosa, D.; Martino, C.; Grotta, L.; Bennato, F.; Martino, G. Zinc supplementation of Friesian cows: Effect on chemical-nutritional composition and aromatic profile of dairy products. J. Dairy Sci. 2019, 102, 2918–2927. [Google Scholar] [CrossRef] [Green Version]
- Yunusova, S.G.; Danilov, V.T.; Yunusov, M.S.; Murinov, Y.I.; Tsyrlina, E.M.; Straek, R. Lipids of Glycyrrhiza glabra roots. Rus. Chem. Bull. 1995, 44, 359–362. [Google Scholar] [CrossRef]
- Jenkins, T.C.; Wallace, R.J.; Moate, P.J.; Mosley, E.E. Board-invited review: Recent advances in biohydrogenation of unsaturated fatty acids within the rumen microbial ecosystem. J. Anim. Sci. 2008, 86, 397–412. [Google Scholar] [CrossRef]
- Vasta, V.; Makkar, H.P.S.; Mele, M.; Priolo, A. Ruminal biohydrogenation as affected by tannins in vitro. Br. J. Nut. 2009, 102, 82–92. [Google Scholar] [CrossRef] [Green Version]
- Vasta, V.; Yanez-Ruiz, D.R.; Mele, M.; Serra, A.; Luciano, G.; Lanza, M.; Biondi, L.; Priolo, A. Bacterial and protozoal communities and fatty acid profile in the rumen of sheep fed a diet containing added tannins. J. Appl. Environ. Microbiol. 2010, 76, 2549–2555. [Google Scholar] [CrossRef] [Green Version]
- Buccioni, A.; Decandia, M.; Minieri, S.; Molle, G.; Cabiddu, A. Lipid Metabolism in the rumen: New insights on lipolysis and biohydrogenation with an emphasis on the role of endogenous plant factors. Anim. Feed Sci. Technol. 2012, 174, 1–25. [Google Scholar] [CrossRef]
- Lourenço, M.; Cardozo, P.W.; Calsamiglia, S.; Fievez, V. Effects of saponins, quercetin, eugenol, and cinnamaldehyde on fatty acid biohydrogenation of forage polyunsaturated fatty acids in dual-flow continuous culture fermenters. J. Anim. Sci. 2008, 86, 3045–3053. [Google Scholar] [CrossRef]
- Ramos-Morales, E.; McKain, N.; Gawad, R.M.A.; Hugo, A.; Wallace, R.J. Vernonia galamensis and vernolic acid inhibit fatty acid biohydrogenation in vitro. Anim. Feed Sci. Technol. 2016, 222, 54–63. [Google Scholar] [CrossRef] [Green Version]
- Campidonico, L.; Toral, P.G.; Priolo, A.; Luciano, G.; Valenti, B.; Hervás, G.; Frutos, P.; Copani, G.; Ginane, C.; Niderkorn, V. Fatty acid composition of ruminal digesta and longissimus muscle from lambs fed silage mixtures including red clover, sainfoin, and timothy. J. Anim. Sci. 2016, 94, 1550–1560. [Google Scholar] [CrossRef] [PubMed]
- Alves, S.P.; Francisco, A.; Costa, M.; Santos-Silva, J.; Bessa, R.J.B. Biohydrogenation patterns in digestive contents and plasma of lambs fed increasing levels of a tanniferous bush (Cistus ladanifer L.) and vegetable oils. Anim. Feed Sci. Technol. 2017, 225, 157–172. [Google Scholar] [CrossRef]
- Guo, X.F.; Cheng, L.; Liu, J.; Zhang, S.; Sun, X.; Al-Marashdeh, O. Effects of Licorice Extract Supplementation on Feed Intake, Digestion, Rumen Function, Blood Indices and Live Weight Gain of Karakul Sheep. Animals 2019, 97, 279. [Google Scholar] [CrossRef] [Green Version]
- Lock, A.L.; Bauman, D.E. Modifying milk fat composition of dairy cows to enhance fatty acids beneficial to human health. Lipids 2004, 39, 1197–1206. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fu, Y.; Chen, J.; Li, Y.J.; Zheng, Y.F.; Li, P. Antioxidant and anti-inflammatory activities of six flavonoids separated from licorice. Food Chem. 2013, 141, 1063–1071. [Google Scholar] [CrossRef] [PubMed]
- Collin, S.; Osman, M.; Delcambre, S.; El-Zayat, A.I.; Dufour, J.P. Investigation of volatile flavor compounds in fresh and ripened Domiati cheeses. J. Agric. Food Chem. 1993, 41, 1659–1663. [Google Scholar] [CrossRef]
- Collins, Y.F.; McSweeney, P.L.H.; Wilkinson, M.G. Lipolysis and free fatty acid catabolism in cheese: A review of current knowledge. Int. Dairy J. 2003, 13, 841–866. [Google Scholar] [CrossRef]
- Niimi, J.; Eddy, A.I.; Overington, A.R.; Silcock, P.; Bremer, P.J.; Delahunty, C.M. Sensory interactions between cheese aroma and taste. J. Sens. Stud. 2015, 30, 247–257. [Google Scholar] [CrossRef]
Diet | p | ||
---|---|---|---|
CG | EG | ||
Casein 1 | 3.12 ± 0.21 | 3.17 ± 0.27 | ns |
Lactose 1 | 4.95 ± 0.10 | 4.86 ± 0.13 | ns |
Fat 1 | 4.38 ± 0.62 | 4.64 ± 0.54 | ns |
Protein 1 | 3.87 ± 0.27 | 3.98 ± 0.30 | ns |
Urea, mg 100 mL−1 | 44.01 ± 2.51 | 49.20 ± 4.57 | ns |
Diet | p | ||
---|---|---|---|
CG | EG | ||
Chemical composition | |||
Moisture | 69.44 ± 0.73 | 64.51 ± 0.91 | <0.01 |
Fat 1 | 29.68 ± 4.40 | 36.90 ± 3.25 | ns |
Colour | |||
L* | 40.38 ± 2.93 | 44.48 ± 1.83 | <0.01 |
a* | −0.79 ± 0.09 | −0.65 ± 0.16 | <0.05 |
b* | 1.79 ± 0.32 | 3.39 ± 0.34 | <0.001 |
YI 2 | 6.42 ± 1.70 | 10.86 ± 0.68 | <0.001 |
ΔE*ab 3 | 4.40 |
Bulk milk | Stracciata | |||||
---|---|---|---|---|---|---|
Diet | p | Diet | p | |||
CG | EG | CG | EG | |||
C4:0 | 2.85 ± 0.41 | 2.75 ± 0.73 | ns | 3.27 ± 0.46 | 2.88 ± 0.87 | ns |
C6:0 | 2.17 ± 0.30 | 2.24 ± 0.50 | ns | 2.83 ± 0.51 | 2.39 ± 0.69 | ns |
C8:0 | 1.43 ± 0.16 | 1.48 ± 0.28 | ns | 2.06 ± 0.42 | 1.59 ± 0.39 | ns |
C10:0 | 3.48 ± 0.30 | 3.50 ± 0.57 | ns | 5.15 ± 1.08 | 3.79 ± 0.66 | ns |
C12:0 | 3.88 ± 0.22 | 3.83 ± 0.45 | ns | 5.04 ± 0.79 | 4.00 ± 0.33 | ns |
C14:0 | 13.41 ± 0.18 | 13.43 ± 0.58 | ns | 14.86 ± 1.02 | 13.30 ± 0.42 | ns |
C15:0 | 1.89 ± 0.01 | 2.12 ± 0.35 | ns | 1.79 ± 0.02 | 2.02 ± 0.06 | <0.01 |
C16:0 | 36.75 ± 0.61 | 34.31 ± 0.94 | <0.01 | 35.48 ± 1.62 | 32.49 ± 1.32 | ns |
C17:0 | 0.84 ± 0.02 | 1.10 ± 0.07 | <0.001 | 0.68 ± 0.07 | 0.94 ± 0.06 | <0.01 |
C18:0 | 7.65 ± 0.30 | 6.95 ± 0.63 | ns | 5.78 ± 0.83 | 8.26 ± 0.54 | <0.05 |
C20:0 | 0.19 ± 0.01 | 0.18 ± 0.04 | ns | 0.11 ± 0.04 | 0.22 ± 0.04 | <0.05 |
C22:0 | 0.13 ± 0.01 | 0.18 ± 0.07 | ns | 0.13 ± 0.05 | 0.15 ± 0.01 | ns |
SFA | 74.66 ± 0.61 | 72.06 ± 1.51 | <0.05 | 77.04 ± 1.73 | 71.87 ± 1.03 | <0.05 |
C14:1 | 0.90 ± 0.01 | 1.19 ± 0.01 | <0.001 | 0.85 ± 0.07 | 1.04 ± 0.04 | <0.05 |
C16:1 | 1.09 ± 0.02 | 1.25 ± 0.02 | <0.001 | 1.26 ± 0.02 | 1.04 ± 0.03 | <0.001 |
C18:1 t11 | 1.09 ± 0.05 | 0.89 ± 0.04 | <0.01 | 0.67 ± 0.09 | 1.22 ± 0.04 | <0.01 |
C18:1 c9 | 15.40 ± 0.50 | 16.29 ± 1.31 | ns | 13.37 ± 1.86 | 16.89 ± 1.14 | <0.05 |
C18:1 c11 | 0.22 ± 0.01 | 0.33 ± 0.02 | <0.001 | 0.22 ± 0.04 | 0.29 ± 0.02 | <0.05 |
MUFA | 18.69 ± 0.54 | 19.94 ± 1.34 | ns | 16.37 ± 1.92 | 20.48 ± 1.16 | <0.05 |
CLA | 0.63 ± 0.03 | 0.46 ± 0.03 | <0.001 | 0.54 ± 0.11 | 0.53 ± 0.04 | ns |
C18:2 | 0.97 ± 0.05 | 1.18 ± 0.06 | <0.01 | 0.98 ± 0.07 | 1.30 ± 0.10 | <0.01 |
C18:3 | 0.54 ± 0.02 | 0.67 ± 0.04 | <0.01 | 0.34 ± 0.25 | 0.66 ± 0.03 | ns |
PUFA | 2.14 ± 0.08 | 2.31 ± 0.13 | ns | 1.86 ± 0.14 | 2.50 ± 0.16 | <0.01 |
Others | 4.53 ± 0.03 | 5.68 ± 0.06 | <0.001 | 4.59 ± 0.05 | 5.00 ± 0.55 | ns |
DI (C14:1) | 0.06 ± 0.01 | 0.08 ± 0.01 | <0.001 | 0.05 ± 0.01 | 0.07 ± 0.01 | <0.001 |
DI (C16:1) | 0.03 ± 0.01 | 0.04 ± 0.01 | <0.001 | 0.03 ± 0.01 | 0.03 ± 0.01 | <0.01 |
DI (C18:1) | 0.67 ± 0.01 | 0.64 ± 0.12 | ns | 0.70 ± 0.01 | 0.67 ± 0.01 | <0.001 |
DI (CLA) | 0.37 ± 0.01 | 0.34 ± 0.01 | <0.01 | 0.45 ± 0.02 | 0.30 ± 0.01 | <0.001 |
VOC | Stracciata | ||
---|---|---|---|
Diet | p | ||
CG | EG | ||
Esters | |||
2-butanoic acid, ethyl ester | 3.24 ± 0.24 | 0.24 ± 0.06 | ns |
2-hexanoic acid, methyl ester | nd | 5.13 ± 0.65 | |
ciclopentaundecanoic acid, methyl ester | nd | 1.71 ± 0.14 | |
hexanoic acid, methyl ester | nd | 37.39 ± 1.11 | |
hexanoic acid, ethyl ester | 30.59 ± 5.53 | 11.00 ± 1.03 | ns |
2-hexanoic acid, ethyl ester | nd | 1.91 ± 0.33 | |
octanoic acid, methyl ester | nd | 12.33 ± 1.43 | |
octanoic acid, ethyl ester | 12.29 ± 1.19 | 3.33 ± 0.30 | <0.05 |
nonanoic acid, 5-methyl, ethyl ester | nd | 1.33 ± 0.30 | |
Total | 46.12 ± 3.32 | 74.37 ± 1.07 | <0.001 |
Aldehydes | |||
hexanal | 9.23 ± 1.12 | 4.02 ± 0.51 | ns |
nonanal | 4.43 ± 0.33 | 1.45 ± 0.06 | ns |
1-hexanal, 2 ethyl | 17.69 ± 1.33 | 8.35 ± 1.59 | ns |
Total | 31.35 ± 2.93 | 13.82 ± 1.60 | <0.001 |
Ketones | |||
2-heptanone | 9.66 ± 0.52 | 8.02 ± 0.48 | ns |
2-nonanone | 12.88 ± 1.22 | 3.80 ± 0.43 | ns |
Total | 22.54 ± 4.37 | 11.82 ± 0.46 | <0.001 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bennato, F.; Ianni, A.; Innosa, D.; Martino, C.; Grotta, L.; Pomilio, F.; Verna, M.; Martino, G. Influence of Licorice Root Feeding on Chemical-Nutritional Quality of Cow Milk and Stracciata Cheese, an Italian Traditional Fresh Dairy Product. Animals 2019, 9, 1153. https://doi.org/10.3390/ani9121153
Bennato F, Ianni A, Innosa D, Martino C, Grotta L, Pomilio F, Verna M, Martino G. Influence of Licorice Root Feeding on Chemical-Nutritional Quality of Cow Milk and Stracciata Cheese, an Italian Traditional Fresh Dairy Product. Animals. 2019; 9(12):1153. https://doi.org/10.3390/ani9121153
Chicago/Turabian StyleBennato, Francesca, Andrea Ianni, Denise Innosa, Camillo Martino, Lisa Grotta, Francesco Pomilio, Micaela Verna, and Giuseppe Martino. 2019. "Influence of Licorice Root Feeding on Chemical-Nutritional Quality of Cow Milk and Stracciata Cheese, an Italian Traditional Fresh Dairy Product" Animals 9, no. 12: 1153. https://doi.org/10.3390/ani9121153
APA StyleBennato, F., Ianni, A., Innosa, D., Martino, C., Grotta, L., Pomilio, F., Verna, M., & Martino, G. (2019). Influence of Licorice Root Feeding on Chemical-Nutritional Quality of Cow Milk and Stracciata Cheese, an Italian Traditional Fresh Dairy Product. Animals, 9(12), 1153. https://doi.org/10.3390/ani9121153