Next Article in Journal
Do Prenatally-Conditioned Flavor Preferences Affect Consumption of Creep Feed by Piglets?
Next Article in Special Issue
Genetic Selection for Thermotolerance in Ruminants
Previous Article in Journal
The Role of Chitosan as a Possible Agent for Enteric Methane Mitigation in Ruminants
Previous Article in Special Issue
A Study of Genomic Prediction of 12 Important Traits in the Domesticated Yak (Bos grunniens)
Open AccessArticle

The Selection of Reference Genes for Quantitative Real-Time PCR in the Ashidan Yak Mammary Gland During Lactation and Dry Period

Key Laboratory of Yak Breeding Engineering, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
*
Authors to whom correspondence should be addressed.
Theses authors contributed equally to the study.
Animals 2019, 9(11), 943; https://doi.org/10.3390/ani9110943
Received: 24 October 2019 / Revised: 2 November 2019 / Accepted: 7 November 2019 / Published: 10 November 2019
(This article belongs to the Collection Applications of Quantitative Genetics in Livestock Production)
The Ashidan yak is a new cultivated breed which has polled characteristics and a mild temperament. Improving milk yield is an important aspect of a breeding program for this breed. The mammary gland undergoes dramatic physiological and metabolic changes during the transition from lactation to dry periods, which involves the expression and regulation of a great number of genes. Quantification of gene expression levels by real-time quantitative polymerase chain reaction (RT-qPCR) is important to reveal the molecular mechanisms of mammary gland development and lactation. The accuracy of RT-qPCR is strongly influenced by the expression stability of reference genes, however, a systematic approach for selecting reference genes used for analyzing gene expression of the Ashidan yak has not been developed. In this study, we selected reference genes and analyzed their expression stability at different physiological stages (lactation and dry period). We found the hydroxymethylbilane synthase gene (HMBS) and the tyrosine 3-monooxygenase/tryptophan 5-monooxygenase activation protein, zeta polypeptide gene (YWHAZ) were the most stable genes of the mammary gland of the Ashidan yak. These results help to improve the accuracy of gene expression analysis and provide a basis for future functional studies of target gene expression in the mammary gland of the Ashidan yak.
Investigating the critical genes related to milk synthesis is essential for the improvement of the milk yield of the yak. Real-time quantitative polymerase chain reaction (RT-qPCR) is a reliable and widely used method to measure and evaluate gene expression levels. Selection of suitable reference genes is mandatory to acquire accurate normalization of gene expression results from RT-qPCR. To select the most stable reference genes for reliable normalization of mRNA expression by RT-qPCR in the mammary gland of the Ashidan yak, we selected 16 candidate reference genes and analyzed their expression stability at different physiological stages (lactation and dry period). The expression stability of the candidate reference genes was assessed using geNorm, NormFinder, BestKeeper, Delta Ct, and RefFinder methods. The results showed that the hydroxymethylbilane synthase gene (HMBS) and the tyrosine 3-monooxygenase/tryptophan 5-monooxygenase activation protein, zeta polypeptide gene (YWHAZ) were the most stable genes across all treatment samples. The reliability of selected reference genes was validated by normalizing relative expression of the lactation-related 60S ribosomal protein L35 gene (RPL35). The relative expression of RPL35 varied considerably according to the different reference genes. This work provides valuable information to further promote research in the molecular mechanisms involved in lactation and mammary gland development and provides a foundation for the improvement of the milk yield and quality of the Ashidan yak. View Full-Text
Keywords: reference gene; RT-qPCR; mammary gland reference gene; RT-qPCR; mammary gland
Show Figures

Figure 1

MDPI and ACS Style

Wu, X.; Zhou, X.; Ding, X.; Chu, M.; Liang, C.; Pei, J.; Xiong, L.; Bao, P.; Guo, X.; Yan, P. The Selection of Reference Genes for Quantitative Real-Time PCR in the Ashidan Yak Mammary Gland During Lactation and Dry Period. Animals 2019, 9, 943.

Show more citation formats Show less citations formats
Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Article Access Map by Country/Region

1
Back to TopTop