The Selection of Reference Genes for Quantitative Real-Time PCR in the Ashidan Yak Mammary Gland During Lactation and Dry Period
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Animals and Tissue Collection
2.2. RNA Isolation and cDNA Synthesis
2.3. Selection of Candidate Reference Genes and Primer Design
2.4. Quantitative Real-Time PCR with SYBR Green
2.5. Selection of Candidate Reference Genes and Primer Design
2.6. Validation of Reference Gene Stability
3. Results
3.1. Selection of Candidate Reference Genes and PCR Efficiency
3.2. Expression Levels of the Candidate Reference Genes
3.3. Analysis of Gene Expression Stability of the Reference Genes
3.4. Best Reference Gene Number Identification
3.5. Effects of Reference Gene Choice
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Wiener, G.; Han, J.; Long, R. The Yak, 2nd ed.; FAO Regional office for Asia and the Pacific: Bangkok, Thailand, 2003; pp. 1–7. [Google Scholar]
- Ding, L.; Wang, Y.; Kreuzer, M.; Guo, X.; Mi, J.; Gou, Y.; Shang, Z.; Zhang, Y.; Zhou, J.; Wang, H.; et al. Seasonal variations in the fatty acid profile of milk from yaks grazing on the Qinghai-Tibetan plateau. J. Dairy Res. 2013, 80, 410–417. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kandeepan, G.; Sangma, S. Optimization of the level of guar gum in low fat yak milk paneer. J. Stored. Prod. Res. 2010, 1, 9–12. [Google Scholar]
- Li, H.; Ma, Y.; Li, Q.; Wang, J.; Cheng, J.; Xue, J.; Shi, J. The chemical composition and nitrogen distribution of Chinese yak (Maiwa) milk. Int. J. Mol. Sci. 2011, 12, 4885–4895. [Google Scholar] [CrossRef] [PubMed]
- New Yak Breed Brings Herders Renewed Hope. Available online: https://www.chinadaily.com.cn /a/201907/08/WS5d229d05a3105895c2e7c2d4.html (accessed on 8 July 2019).
- McManaman, J.L.; Neville, M.C. Mammary physiology and milk secretion. Adv. Drug Deliver. Rev. 2003, 55, 629–641. [Google Scholar] [CrossRef]
- Drackley, J.K. ADSA Foundation Scholar Award. Biology of dairy cows during the transition period: The final frontier? J. Dairy Sci. 1999, 82, 2259–2271. [Google Scholar] [CrossRef]
- Capuco, A.V.; Akers, R.M. Mammary involution in dairy animals. J. Mammary Gland Biol. Neoplasia 1999, 4, 137–144. [Google Scholar] [CrossRef] [PubMed]
- Dai, W.; Zou, Y.; White, R.R.; Liu, J.; Liu, H. Transcriptomic profiles of the bovine mammary gland during lactation and the dry period. Funct. Integr. Genom. 2018, 18, 125–140. [Google Scholar] [CrossRef]
- Zheng, X.; Ning, C.; Zhao, P.; Feng, W.; Jin, Y.; Zhou, L.; Yu, Y.; Liu, J. Integrated analysis of long noncoding RNA and mRNA expression profiles reveals the potential role of long noncoding RNA in different bovine lactation stages. J. Dairy Sci. 2018, 101, 11061–11073. [Google Scholar] [CrossRef] [Green Version]
- Fan, J.; Luo, Y.; Yu, S.; Cui, Y.; Xu, G.; Wang, L.; Pan, Y.; He, H. Transcriptional profiling of two different physiological states of the yak mammary gland using RNA sequencing. PLoS ONE 2018, 13, e201628. [Google Scholar]
- Zhang, Y.; Han, X.; Chen, S.; Zheng, L.; He, X.; Liu, M.; Qiao, G.; Wang, Y.; Zhuo, R. Selection of suitable reference genes for quantitative real-time PCR gene expression analysis in Salix matsudana under different abiotic stresses. Sci. Rep. 2017, 7, 40290. [Google Scholar] [CrossRef]
- Van Guilder, H.D.; Vrana, K.E.; Freeman, W.M. Twenty-Five years of quantitative PCR for gene expression analysis. Biotechniques 2008, 44, 619–626. [Google Scholar] [CrossRef] [PubMed]
- Cai, C.; Cai, P.; Chu, G. Selection of suitable reference genes for core clock gene expression analysis by real-time qPCR in rat ovary granulosa cells. Mol. Biol. Rep. 2019, 46, 2941–2946. [Google Scholar] [CrossRef] [PubMed]
- Sarker, N.; Fabijan, J.; Emes, R.D.; Hemmatzadeh, F.; Meers, J.; Moreton, J.; Owen, H.; Seddon, J.M.; Simmons, G.; Speight, N.; et al. Identification of stable reference genes for quantitative PCR in koalas. Sci. Rep. UK 2018, 8, 3364. [Google Scholar] [CrossRef] [PubMed]
- Shukla, P.; Reddy, R.A.; Ponnuvel, K.M.; Rohela, G.K.; Shabnam, A.A.; Ghosh, M.K.; Mishra, R.K. Selection of suitable reference genes for quantitative real-time PCR gene expression analysis in Mulberry (Morus alba L.) under different abiotic stresses. Mol. Biol. Rep. 2019, 46, 1809–1817. [Google Scholar] [CrossRef] [PubMed]
- Gu, Y.R.; Li, M.Z.; Zhang, K.; Chen, L.; Jiang, A.A.; Wang, J.Y.; Li, X.W. Evaluation of endogenous control genes for gene expression studies across multiple tissues and in the specific sets of fat- and muscle-type samples of the pig. J. Anim. Breed. Genet. 2011, 128, 319–325. [Google Scholar] [CrossRef]
- Bai, W.L.; Yin, R.H.; Zhao, S.J.; Jiang, W.Q.; Yin, R.L.; Ma, Z.J.; Wang, Z.Y.; Zhu, Y.B.; Luo, G.B.; Yang, R.J.; et al. Technical note: Selection of suitable reference genes for studying gene expression in milk somatic cell of yak (Bos grunniens) during the lactation cycle. J. Dairy Sci. 2014, 97, 902–910. [Google Scholar] [CrossRef]
- Uddin, M.J.; Cinar, M.U.; Tesfaye, D.; Looft, C.; Tholen, E.; Schellander, K. Age-Related changes in relative expression stability of commonly used housekeeping genes in selected porcine tissues. BMC Res. Notes 2011, 4, 441. [Google Scholar] [CrossRef]
- Erkens, T.; Van Poucke, M.; Vandesompele, J.; Goossens, K.; Van Zeveren, A.; Peelman, L.J. Development of a new set of reference genes for normalization of real-time RT-PCR data of porcine backfat and longissimus dorsi muscle, and evaluation with PPARGC1A. BMC Biotechnol. 2006, 6, 41. [Google Scholar] [CrossRef]
- Bonnet, M.; Bernard, L.; Bes, S.; Leroux, C. Selection of reference genes for quantitative real-time PCR normalisation in adipose tissue, muscle, liver and mammary gland from ruminants. Animal 2013, 7, 1344–1353. [Google Scholar] [CrossRef] [Green Version]
- Li, M.; Wu, X.; Guo, X.; Bao, P.; Ding, X.; Chu, M.; Liang, C.; Yan, P. Identification of optimal reference genes for examination of gene expression in different tissues of fetal yaks. Czech J. Anim. Sci. 2017, 62, 426–434. [Google Scholar] [CrossRef] [Green Version]
- Vandesompele, J.; de Preter, K.; Pattyn, F.; Poppe, B.; Van Roy, N.; de Paepe, A.; Speleman, F. Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol. 2002, 3, H34. [Google Scholar] [CrossRef]
- Andersen, C.L.; Jensen, J.L.; Ørntoft, T.F. Normalization of real-time quantitative reverse transcription-PCR data: A model-based variance estimation approach to identify genes suited for normalization, applied to bladder and colon cancer data sets. Cancer Res. 2004, 64, 5245–5250. [Google Scholar] [CrossRef] [PubMed]
- Pfaffl, M.W.; Tichopad, A.; Prgomet, C.; Neuvians, T.P. Determination of stable housekeeping genes, differentially regulated target genes and sample integrity: BestKeeper—Excel-based tool using pair-wise correlations. Biotechnol. Lett. 2004, 26, 509–515. [Google Scholar] [CrossRef] [PubMed]
- Silver, N.; Best, S.; Jiang, J.; Thein, S.L. Selection of housekeeping genes for gene expression studies in human reticulocytes using real-time PCR. BMC Mol. Biol. 2006, 7, 33. [Google Scholar] [CrossRef] [PubMed]
- Xie, F.; Xiao, P.; Chen, D.; Xu, L.; Zhang, B. miRDeepFinder: A miRNA analysis tool for deep sequencing of plant small RNAs. Plant Mol. Biol. 2012, 80, 75–84. [Google Scholar] [CrossRef] [PubMed]
- Watson, C.J.; Khaled, W.T. Mammary development in the embryo and adult: A journey of morphogenesis and commitment. Development 2008, 135, 995–1003. [Google Scholar] [CrossRef] [PubMed]
- Hennighausen, L.; Robinson, G.W. Information networks in the mammary gland. Nat. Rev. Mol. Cell Bio. 2005, 6, 715–725. [Google Scholar] [CrossRef]
- Wilde, C.J.; Knight, C.H.; Flint, D.J. Control of milk secretion and apoptosis during mammary involution. J. Mammary Gland Biol. 1999, 4, 129–136. [Google Scholar] [CrossRef]
- Bionaz, M.; Loor, J.J. Identification of reference genes for quantitative real-time PCR in the bovine mammary gland during the lactation cycle. Physiol. Genom. 2007, 29, 312–319. [Google Scholar] [CrossRef]
- Feng, X.; Xiong, Y.; Qian, H.; Lei, M.; Xu, D.; Ren, Z. Selection of reference genes for gene expression studies in porcine skeletal muscle using SYBR green qPCR. J. Biotechnol. 2010, 150, 288–293. [Google Scholar] [CrossRef]
- Aggarwal, J.; Sharma, A.; Kishore, A.; Mishra, B.P.; Yadav, A.; Mohanty, A.; Sodhi, M.; Kataria, R.S.; Malakar, D.; Mukesh, M. Identification of suitable housekeeping genes for normalization of quantitative real-time PCR data during different physiological stages of mammary gland in riverine buffaloes (Bubalus bubalis). J. Anim. Physiol. An. N. 2013, 97, 1132–1141. [Google Scholar] [CrossRef] [PubMed]
- Jiang, M.; Lee, J.N.; Bionaz, M.; Deng, X.Y.; Wang, Y. Evaluation of suitable internal control genes for RT-qPCR in yak mammary tissue during the lactation cycle. PLoS ONE 2016, 11, e147705. [Google Scholar] [CrossRef] [PubMed]
- Vargas, P.D.; Furuyama, K.; Sassa, S.; Shibahara, S. Hypoxia decreases the expression of the two enzymes responsible for producing linear and cyclic tetrapyrroles in the heme biosynthetic pathway. FEBS J. 2008, 275, 5947–5959. [Google Scholar] [CrossRef] [PubMed]
- Pérez, R.; Tupac-Yupanqui, I.; Dunner, S. Evaluation of suitable reference genes for gene expression studies in bovine muscular tissue. BMC Mol. Biol. 2008, 9, 79. [Google Scholar] [CrossRef]
- Zhu, W.; Lin, Y.; Liao, H.; Wang, Y. Selection of reference genes for gene expression studies related to intramuscular fat deposition in Capra hircus skeletal muscle. PLoS ONE 2015, 10, e121280. [Google Scholar] [CrossRef]
- Nascimento, C.S.; Barbosa, L.T.; Brito, C.; Fernandes, R.P.M.; Mann, R.S.; Pinto, A.P.G.; Oliveira, H.C.; Dodson, M.V.; Guimarães, S.E.F.; Duarte, M.S. Identification of suitable reference genes for real time quantitative polymerase chain reaction assays on pectoralis major muscle in chicken (Gallus gallus). PLoS ONE 2015, 10, e127935. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, X.; Liu, X.; Li, Y.; Ding, J.; Zhang, X.; Zhang, Y. Reference gene screening for analyzing gene expression across goat tissue. Asian Austral. J. Anim. 2013, 26, 1665–1671. [Google Scholar] [CrossRef]
- Darling, D.L.; Yingling, J.; Wynshaw-Boris, A. Role of 14-3-3 proteins in eukaryotic signaling and development. Curr. Top. Dev. Biol. 2005, 68, 281–315. [Google Scholar]
- Nishimura, Y.; Komatsu, S.; Ichikawa, D.; Nagata, H.; Hirajima, S.; Takeshita, H.; Kawaguchi, T.; Arita, T.; Konishi, H.; Kashimoto, K.; et al. Overexpression of YWHAZ relates to tumor cell proliferation and malignant outcome of gastric carcinoma. Br. J. Cancer 2013, 108, 1324–1331. [Google Scholar] [CrossRef]
- De Ketelaere, A.; Goossens, K.; Peelman, L.; Burvenich, C. Technical note: Validation of internal control genes for gene expression analysis in bovine polymorphonuclear leukocytes. J. Dairy Sci. 2006, 89, 4066–4069. [Google Scholar] [CrossRef]
- Macabelli, C.H.; Ferreira, R.M.; Gimenes, L.U.; de Carvalho, N.A.T.; Soares, J.G.; Ayres, H.; Ferraz, M.L.; Watanabe, Y.F.; Watanabe, O.Y.; Sangalli, J.R.; et al. Reference gene selection for gene expression analysis of oocytes collected from dairy cattle and buffaloes during winter and summer. PLoS ONE 2014, 9, e93287. [Google Scholar] [CrossRef] [PubMed]
- Bai, W.L.; Yin, R.H.; Yin, R.L.; Jiang, W.Q.; Wang, J.J.; Wang, Z.Y.; Zhu, Y.B.; Zhao, Z.H.; Yang, R.J.; Luo, G.B.; et al. Selection and validation of suitable reference genes in skin tissue of Liaoning cashmere goat during hair follicle cycle. Livest. Sci. 2014, 161, 28–35. [Google Scholar] [CrossRef]
- Xin, J.; Chai, Z.; Zhang, C.; Zhang, Q.; Zhu, Y.; Cao, H.; Ji, Q.; Zhong, J. Transcriptome profiles revealed the mechanisms underlying the adaptation of yak to high-altitude environments. Sci. Rep. UK 2019, 9, 7558. [Google Scholar] [CrossRef] [PubMed]
- Ding, Y.; Zhang, N.; Li, J.; Jin, Y.; Shao, B. Molecular cloning and expression of ghrelin in the hypothalamus-pituitary-gastrointestinal tract axis of the Yak (Bos grunniens) in the Qinghai-Tibetan Plateau. Anat. Histol. Embryol. 2018, 47, 583–590. [Google Scholar] [CrossRef]
- Jiang, N.; Hu, L.; Liu, C.; Gao, X.; Zheng, S. 60S ribosomal protein L35 regulates beta-casein translational elongation and secretion in bovine mammary epithelial cells. Arch. Biochem. Biophys. 2015, 583, 130–139. [Google Scholar] [CrossRef]
- Bionaz, M.; Loor, J.J. Gene networks driving bovine mammary protein synthesis during the lactation cycle. Bioinform. Biol. Insights 2011, 5, 83–98. [Google Scholar] [CrossRef]
Gene | NCBI Accession No. | Primer Sequence (5’–3’) | Size (bp) | Amplification Efficiency (%) | R2 |
---|---|---|---|---|---|
ACTB | XM_005887322.2 | F: ATTGCCGATGGTGATGAC R: ACGGAGCGTGGCTACAG | 177 | 90.0 | 0.99 |
GAPDH | XM_014482068.1 | F: TCACCAGGGCTGCTTTTA R: CTGTGCCGTTGAACTTGC | 126 | 105.0 | 1.00 |
UXT | XM_005899362.2 | F: AGGTGGATTTGGGCTGTAAC R: CTTGGTGAGGTTGTCGCTGA | 170 | 105.0 | 1.00 |
TBP | XM_005908677.2 | F: GTCCAATGATGCCTTACGG R: TGCTGCTCCTCCAGAATAGA | 82 | 94.0 | 0.99 |
YWHAZ | XM_005887010.2 | F: AATGTTGTAGGAGCCCGTAG R: CTGCTTGTGAAGCGTTGG | 190 | 91.0 | 1.00 |
RPL13A | XM_014481217.1 | F: CAAGCGGATGAACACCAA R: GCAGCAGGAACCACCATT | 192 | 91.0 | 1.00 |
SDHA | XM_005894659.2 | F: GGGAACATGGAGGAGGACA R: CCAAAGGCACGCTGGTAGA | 188 | 106.0 | 0.99 |
RPS15 | XM_005890466.2 | F: GACCTTCCGCAAGTTCACCT R: ACCACCTCGGGCTTCTCCAT | 198 | 101.0 | 1.00 |
HPRT1 | XM_005911180.2 | F: GTGATGAAGGAGATGGG R: ACAGGTCGGCAAAGAAC | 79 | 108.0 | 0.99 |
PPIA | XM_005891872.2 | F: TTTTGAAGCATACAGGTCC R: CCACTCAGTCTTGGCAGT | 98 | 93.0 | 0.99 |
HMBS | XM_005897126.2 | F: GAACAAAGGAGCCAAGAAC R: CAGAGGGCTGGGATGTAG | 121 | 101.0 | 1.00 |
MRPL39 | XM_005898618.2 | F: AAACCTTTGACCAAGTCCTGT R: TTCCTCTTTGAATGCCCTCTC | 135 | 94.0 | 0.99 |
PPP1R11 | XM_005911410.2 | F: CAGAAAAGACAGAAGGGTGC R: TTCCGAAGTTTGATGGTTAG | 164 | 100.0 | 0.99 |
B2M | XM_005911364.2 | F: CTGAGGAATGGGGAGAAG R: TGGGACAGCAGGTAGAAA | 80 | 93.0 | 0.99 |
RPS9 | XM_014483477.1 | F: ACATCCCGTCCTTCATCGTGC R: GCCACTGCACCTTGTAACACT | 123 | 1.06 | 0.99 |
MTG1 | XM_005891439.2 | F: GTGATGTCCAGGATTCAGGTGT R: AAGGAAGTCAGCCAGGGTCT | 165 | 90.0 | 0.99 |
RPL35 | XM_005893076.2 | F: ATCCGAGTGGTTCGTAAATC R: GCTGCTGCTTCTTGGTCTTC | 126 | 104.0 | 0.99 |
Rank | GeNorm | NormFinder | BestKeeper | Delta Ct | ReFinedr | |||||
---|---|---|---|---|---|---|---|---|---|---|
1 | HMBS | 0.13 | YWHAZ | 0.22 | HMBS | 0.40 | YWHAZ | 0.61 | HMBS | 2.51 |
2 | UXT | 0.13 | TBP | 0.24 | RPS15 | 0.41 | TBP | 0.65 | YWHAZ | 2.63 |
3 | PPIA | 0.15 | PPP1R11 | 0.41 | UXT | 0.47 | PPIA | 0.68 | TBP | 3.74 |
4 | RPL13A | 0.18 | RPS15 | 0.42 | RPS9 | 0.48 | RPS15 | 0.70 | UXT | 3.81 |
5 | HPRT1 | 0.20 | ACTB | 0.46 | RPL13A | 0.52 | HMBS | 0.71 | RPS15 | 4.00 |
6 | YWHAZ | 0.25 | PPIA | 0.48 | PPIA | 0.52 | PPP1R11 | 0.72 | PPIA | 4.24 |
7 | TBP | 0.35 | RPS9 | 0.48 | TBP | 0.52 | UXT | 0.72 | PPP1R11 | 6.50 |
8 | RPS15 | 0.43 | HMBS | 0.53 | YWHAZ | 0.57 | RPS9 | 0.74 | RPS9 | 6.70 |
9 | RPS9 | 0.49 | MTG1 | 0.56 | PPP1R11 | 0.59 | HPRT1 | 0.74 | RPL13A | 7.17 |
10 | B2M | 0.53 | UXT | 0.58 | HPRT1 | 0.62 | ACTB | 0.74 | HPRT1 | 8.39 |
11 | PPP1R11 | 0.57 | HPRT1 | 0.59 | MRPL39 | 0.72 | RPL13A | 0.75 | ACTB | 9.40 |
12 | ACTB | 0.61 | RPL13A | 0.62 | B2M | 0.77 | MTG1 | 0.80 | MTG1 | 12.06 |
13 | MRPL39 | 0.64 | MRPL39 | 0.64 | ACTB | 0.80 | MRPL39 | 0.85 | B2M | 12.38 |
14 | MTG1 | 0.66 | B2M | 0.77 | MTG1 | 0.88 | B2M | 0.92 | MRPL39 | 12.47 |
15 | SDHA | 0.74 | SDHA | 1.05 | SDHA | 1.04 | SDHA | 1.15 | SDHA | 15.00 |
16 | GAPDH | 0.79 | GAPDH | 1.10 | GAPDH | 1.21 | GAPDH | 1.18 | GAPDH | 16.00 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, X.; Zhou, X.; Ding, X.; Chu, M.; Liang, C.; Pei, J.; Xiong, L.; Bao, P.; Guo, X.; Yan, P. The Selection of Reference Genes for Quantitative Real-Time PCR in the Ashidan Yak Mammary Gland During Lactation and Dry Period. Animals 2019, 9, 943. https://doi.org/10.3390/ani9110943
Wu X, Zhou X, Ding X, Chu M, Liang C, Pei J, Xiong L, Bao P, Guo X, Yan P. The Selection of Reference Genes for Quantitative Real-Time PCR in the Ashidan Yak Mammary Gland During Lactation and Dry Period. Animals. 2019; 9(11):943. https://doi.org/10.3390/ani9110943
Chicago/Turabian StyleWu, Xiaoyun, Xuelan Zhou, Xuezhi Ding, Min Chu, Chunnian Liang, Jie Pei, Lin Xiong, Pengjia Bao, Xian Guo, and Ping Yan. 2019. "The Selection of Reference Genes for Quantitative Real-Time PCR in the Ashidan Yak Mammary Gland During Lactation and Dry Period" Animals 9, no. 11: 943. https://doi.org/10.3390/ani9110943
APA StyleWu, X., Zhou, X., Ding, X., Chu, M., Liang, C., Pei, J., Xiong, L., Bao, P., Guo, X., & Yan, P. (2019). The Selection of Reference Genes for Quantitative Real-Time PCR in the Ashidan Yak Mammary Gland During Lactation and Dry Period. Animals, 9(11), 943. https://doi.org/10.3390/ani9110943