Objecthood, Agency and Mutualism in Valenced Farm Animal Environments
Abstract
:Simple Summary
Abstract
1. Introduction
2. The Animal’s Relationship with Its External Environment
3. Perception of the External Environment
4. The Animal’s Relationship with Its Internal Environment
5. The Animal’s Relationship with the Immunological Environment
6. Environmental Boundaries
7. Equilibrium within the Environment/Animal Process
8. Farm Animal Environments
9. Final Remarks
Acknowledgments
Conflicts of Interest
References
- Rauw, W.M.; Kanis, E.; Noordhuizen-Stassen, E.N.; Grommers, F.J. Undesirable side effects of selection for high production efficiency in farm animals: A review. Livest. Prod. Sci. 1998, 56, 15–33. [Google Scholar] [CrossRef]
- Rauw, W.M. Resource Allocation Theory Applied to Farm Animal Production; CABI: Wallingford, UK, 2009. [Google Scholar]
- Egger-Danner, C.; Cole, J.B.; Pryce, J.E.; Gengler, N.; Heringstad, B.; Bradley, A.; Stock, K.F. Invited review: Overview of new traits and phenotyping strategies in dairy cattle with a focus on functional traits. Animal 2015, 9, 191–207. [Google Scholar] [CrossRef] [PubMed]
- Hayes, B.J.; Lewin, H.A.; Goddard, M.E. The future of livestock breeding: Genomic selection for efficiency, reduced emissions intensity, and adaptation. Trends Genet. 2013, 29, 206–214. [Google Scholar] [CrossRef] [PubMed]
- Merks, J.W.M.; Mathur, P.K.; Knol, E.F. New phenotypes for new breeding goals in pigs. Animal 2012, 6, 535–543. [Google Scholar] [CrossRef] [PubMed]
- Boissy, A.; Erhard, H.W. How studying interactions between animal emotions, cognition, and personality can contribute to improve farm animal welfare. Genet. Behav. Domest. Anim. 2014, 81–113. [Google Scholar] [CrossRef]
- Koolhaas, J.M.; van Reenen, C.G. Interaction between coping style/personality, stress, and welfare: Relevance for domestic farm animals. J. Anim. Sci. 2016, 94, 2284–2296. [Google Scholar] [CrossRef] [PubMed]
- Lopes, P.C. Why are behavioral and immune traits linked? Horm. Behav. 2017, 88, 52–59. [Google Scholar] [CrossRef] [PubMed]
- Colditz, I.G.; Hine, B.C. Resilience in farm animals: Biology, management, breeding and implications for animal welfare. Anim. Prod. Sci. 2016, 56, 1961–1983. [Google Scholar] [CrossRef]
- Von Uexküll, J.; von Uexküll, M.; O’Neil, J.D. A Foray into the Worlds of Animals and Humans: With a Theory of Meaning; University of Minnesota Press: Minneapolis, MN, USA, 2010. [Google Scholar]
- Von Uexküll, J. Umwelt und Innenwelt der Tiere; Springer: Berlin, Germany, 1909. [Google Scholar]
- Gibson, J.J. The Ecological Approach to Visual Perception; Houghton Mifflin: Boston, MA, USA, 1979; pp. 67–82. [Google Scholar]
- Gibson, J.J. The theory of affordances. In Perceiving, Acting, and Knowing: Towards an Ecological Psychology; Shaw, R.E., Bransford, J., Eds.; Lawrence Erlbaum Associates Inc.: Hillsdale, NJ, USA, 1977; pp. 67–82. [Google Scholar]
- BBC One Forces of Nature with Brian Cox. 2016. Available online: https://www.youtube.com/watch?v=RG9TMn1FJzc (accessed on 29 November 2017).
- Chemero, A. An outline of a theory of affordances. Ecol. Psychol. 2003, 15, 181–195. [Google Scholar] [CrossRef]
- Jacobs, G.H. The biology of variations in mammalian color vision. In Neurobiology of “Umwelt”; Research and Perspectives in Neurosciences; Springer: Berlin/Heidelberg, Germany, 2009; pp. 53–68. [Google Scholar]
- Reed, E.S. Encountering the World: Toward an Ecological Psychology; Oxford University Press: Oxford, UK, 1996. [Google Scholar]
- Gibson, E.J. Where is the information for affordances? Ecol. Psychol. 2000, 12, 53–56. [Google Scholar] [CrossRef]
- Patten, B.C. Environs: Relativistic elementary particles for ecology. Am. Nat. 1982, 119, 179–219. [Google Scholar] [CrossRef]
- Palmer, D.K. On the organism-environment distinction in psychology. Behav. Philos. 2004, 32, 317–347. [Google Scholar]
- Costall, A. From Darwin to Watson (and cognitivism) and back again: The principle of animal-environment mutuality. Behav. Philos. 2004, 32, 179–195. [Google Scholar]
- Bruineberg, J.; Kiverstein, J.; Rietveld, E. The anticipating brain is not a scientist: The free-energy principle from an ecological-enactive perspective. Synthese 2016, 1–28. [Google Scholar] [CrossRef]
- Sherrington, C.S. Text-Book of Physiology; Pentland Edinburgh: London, UK, 1900; Volume 2. [Google Scholar]
- Friston, K. The free-energy principle: A unified brain theory? Nat. Rev. Neurosci. 2010, 11, 127–138. [Google Scholar] [CrossRef] [PubMed]
- Pezzulo, G.; Rigoli, F.; Friston, K. Active Inference, homeostatic regulation and adaptive behavioural control. Prog. Neurobiol. 2015, 134, 17–35. [Google Scholar] [CrossRef] [PubMed]
- Peters, A.; McEwen, B.S.; Friston, K. Uncertainty and stress: Why it causes diseases and how it is mastered by the brain. Prog. Neurobiol. 2017, 156, 164–188. [Google Scholar] [CrossRef] [PubMed]
- Clark, A. Whatever next? Predictive brains, situated agents, and the future of cognitive science. Behav. Brain Sci. 2013, 36, 181–204. [Google Scholar] [PubMed]
- Wiese, W.; Metzinger, T. Vanilla PP for philosophers: A primer on predictive processing. In Philosophy and Predictive Processing; MIND Group: Frankfurt am Main, Germany, 2017. [Google Scholar]
- Runeson, S. On the possibility of “smart” perceptual mechanisms. Scand. J. Psychol. 1977, 18, 172–179. [Google Scholar] [CrossRef] [PubMed]
- Barrett, L.F.; Simmons, W.K. Interoceptive predictions in the brain. Nat. Rev. Neurosci. 2015, 16, 419–429. [Google Scholar] [CrossRef] [PubMed]
- Kleckner, I.R.; Zhang, J.; Touroutoglou, A.; Chanes, L.; Xia, C.; Simmons, W.K.; Quigley, K.S.; Dickerson, B.C.; Feldman Barrett, L. Evidence for a large-scale brain system supporting allostasis and interoception in humans. Nat. Hum. Behav. 2017, 1, 0069. [Google Scholar] [CrossRef] [PubMed]
- Pavlov, I.P. Conditioned reflexes: An investigation of the physiological activity of the cerebral cortex. Ann. Neurosci. 2010, 17, 136–141. [Google Scholar] [CrossRef] [PubMed]
- Craig, A.D. How do you feel? Interoception: The sense of the physiological condition of the body. Nat. Rev. Neurosci. 2002, 3, 655–666. [Google Scholar] [CrossRef] [PubMed]
- Dworkin, B.R. Interoception. In Handbook of Psychophysiology; Cacioppo, J.T., Tassinary, L.G., Berntson, G., Eds.; Cambridge University Press: Cambridge, UK, 2007; pp. 482–506. [Google Scholar]
- Barrett, L.F.; Quigley, K.S.; Hamilton, P. An active inference theory of allostasis and interoception in depression. Phil. Trans. R. Soc. B 2016, 371, 20160011. [Google Scholar] [CrossRef] [PubMed]
- Stephan, K.E.; Manjaly, Z.M.; Mathys, C.D.; Weber, L.A.; Paliwal, S.; Gard, T.; Tittgemeyer, M.; Fleming, S.M.; Haker, H.; Seth, A.K. Allostatic self-efficacy: A metacognitive theory of dyshomeostasis-induced fatigue and depression. Front. Hum. Neurosci. 2016, 10, 550. [Google Scholar] [CrossRef] [PubMed]
- Dworkin, B.R. Learning and Physiological Regulation; University of Chicago Press: Chicago, IL, USA, 1993. [Google Scholar]
- Cannon, W.B. Bodily Changes in Pain, Hunger, Fear, and Rage: An Account of Recent Researches into the Function of Emotional Excitement; D. Appleton and Company: New York, NY, USA, 1915. [Google Scholar]
- Arminjon, M. Birth of the allostatic model: From Cannon’s biocracy to critical physiology. J. Hist. Biol. 2016, 49, 397–423. [Google Scholar] [CrossRef] [PubMed]
- Sterling, P.; Eyer, J. Allostasis: A new paradigm to explain arousal pathology. In Handbook of Life Stress, Cognition and Health; Fisher, S., Reason, J., Eds.; John Wiley and Sons: New York, NY, USA, 1988; pp. 629–649. [Google Scholar]
- Sterling, P. Allostasis: A model of predictive regulation. Physiol. Behav. 2012, 106, 5–15. [Google Scholar] [CrossRef] [PubMed]
- Russell, J.A.; Barrett, L.F. Core affect, prototypical emotional episodes, and other things called emotion: Dissecting the elephant. J. Personal. Soc. Psychol. 1999, 76, 805. [Google Scholar] [CrossRef]
- Mendl, M.; Burman, O.H.; Paul, E.S. An integrative and functional framework for the study of animal emotion and mood. Proc. R. Soc. B Biol. Sci. 2010, 277, 2895–2904. [Google Scholar] [CrossRef] [PubMed]
- Barrett, L.F. How Emotions are Made: The Secret Life of the Brain; Houghton Mifflin Harcourt: Boston, MA, USA, 2017. [Google Scholar]
- Barrett, L.F. The theory of constructed emotion: An active inference account of interoception and categorization. Soc. Cogn. Affect. Neurosci. 2017, 12, 1–23. [Google Scholar] [CrossRef] [PubMed]
- Van de Cruys, S. Affective Value in the Predictive Mind; MIND Group: Melbourne, Australia, 2017. [Google Scholar]
- Cohen, I.R. Tending Adam’s Garden: Evolving the Cognitive Immune Self; Academic Press: Cambridge, MA, USA, 2000. [Google Scholar]
- Olofsson, P.S.; Rosas-Ballina, M.; Levine, Y.A.; Tracey, K.J. Rethinking inflammation: Neural circuits in the regulation of immunity. Immunol. Rev. 2012, 248, 188–204. [Google Scholar] [CrossRef] [PubMed]
- Ader, R. On the development of psychoneuroimmunology. Eur. J. Pharmacol. 2000, 405, 167–176. [Google Scholar] [CrossRef]
- Chavan, S.S.; Tracey, K.J. Essential neuroscience in immunology. J. Immunol. 2017, 198, 3389–3397. [Google Scholar] [CrossRef] [PubMed]
- Johnson, R.W. The concept of sickness behavior: A brief chronological account of four key discoveries. Vet. Immunol. Immunopathol. 2002, 87, 443–450. [Google Scholar] [CrossRef]
- Dantzer, R.; O’Connor, J.C.; Freund, G.G.; Johnson, R.W.; Kelley, K.W. From inflammation to sickness and depression: When the immune system subjugates the brain. Nat. Rev. Neurosci. 2008, 9, 46–56. [Google Scholar] [CrossRef] [PubMed]
- Harper, J.A.; South, C.; Trivedi, M.H.; Toups, M.S. Pilot investigation into the sickness response to influenza vaccination in adults: Effect of depression and anxiety. Gen. Hosp. Psychiatry 2017, 48, 56–61. [Google Scholar] [CrossRef] [PubMed]
- Colditz, I.G. Six costs of immunity to gastrointestinal nematode infections. Parasite Immunol. 2008, 30, 63–70. [Google Scholar] [CrossRef] [PubMed]
- Colditz, I.G. Effects of the immune system on metabolism: Implications for production and disease resistance in livestock. Livest. Prod. Sci. 2002, 75, 257–268. [Google Scholar] [CrossRef]
- Husband, A.J. The immune system and integrated homeostasis. Immunol. Cell Biol. 1995, 73, 377–382. [Google Scholar] [CrossRef] [PubMed]
- Pavlov, V.A.; Tracey, K.J. Neural regulation of immunity: Molecular mechanisms and clinical translation. Nat. Neurosci. 2017, 20, 156–166. [Google Scholar] [CrossRef] [PubMed]
- Rattasepp, S. The idea of extended organism in 20th century thought. Hortus Semiot. 2010, 6, 31–39. [Google Scholar]
- Bergsma, R.; Kanis, E.; Knol, E.F.; Bijma, P. The contribution of social effects to heritable variation in finishing traits of domestic pigs (Sus scrofa). Genetics 2008, 178, 1559–1570. [Google Scholar] [CrossRef] [PubMed]
- Goodnow, C.C.; Ohashi, P.S. Immunological tolerance. In Fundamental Immunology; Paul, W.E., Ed.; Wolters Kluwer Health/Lippincott Williams and Wilkins: Philadelphia, PA, USA, 2013; pp. 765–794. [Google Scholar]
- Tauber, A.I. Immunity: The Evolution of an Idea; Oxford University Press: Oxford, UK, 2017. [Google Scholar]
- Zilber-Rosenberg, I.; Rosenberg, E. Role of microorganisms in the evolution of animals and plants: The hologenome theory of evolution. FEMS Microbiol. Rev. 2008, 32, 723–735. [Google Scholar] [CrossRef] [PubMed]
- Zempleni, J.; Aguilar-Lozano, A.; Sadri, M.; Sukreet, S.; Manca, S.; Wu, D.; Zhou, F.; Mutai, E. Biological activities of extracellular vesicles and their cargos from bovine and human milk in humans and implications for infants. J. Nutr. 2017, 147, 3–10. [Google Scholar] [CrossRef] [PubMed]
- Demas, G.E.; Carlton, E.D. Ecoimmunology for psychoneuroimmunologists: Considering context in neuroendocrine-immune-behavior interactions. Brain Behav. Immun. 2015, 44, 9–16. [Google Scholar] [CrossRef] [PubMed]
- Greiveldinger, L.; Veissier, I.; Boissy, A. Behavioural and physiological responses of lambs to controllable vs. uncontrollable aversive events. Psychoneuroendocrinology 2009, 34, 805–814. [Google Scholar] [CrossRef] [PubMed]
- Greiveldinger, L.; Veissier, I.; Boissy, A. Emotional experience in sheep: Predictability of a sudden event lowers subsequent emotional responses. Physiol. Behav. 2007, 92, 675–683. [Google Scholar] [CrossRef] [PubMed]
- Walsh, D.M. Organisms, Agency, and Evolution; Cambridge University Press: Cambridge, UK, 2015. [Google Scholar]
- Colombetti, G.; Krueger, J. Scaffoldings of the affective mind. Philos. Psychol. 2015, 28, 1157–1176. [Google Scholar] [CrossRef] [Green Version]
- Pezzulo, G.; Cisek, P. Navigating the affordance landscape: Feedback control as a process model of behavior and cognition. Trends Cogn. Sci. 2016, 20, 414–424. [Google Scholar] [CrossRef] [PubMed]
- Botreau, R.; Veissier, I.; Perny, P. Overall assessment of animal welfare: Strategy adopted in Welfare Quality®. Anim. Welf. 2009, 18, 363–370. [Google Scholar]
- Spinka, M.A.R.E.; Wemelsfelder, F. Environmental challenge and animal agency. In Animal Welfare; CABI International: Wallingford, UK, 2011; pp. 27–43. [Google Scholar]
- Clark, F.E. Cognitive enrichment and welfare: Current approaches and future directions. Anim. Behav. Cogn. 2017, 4, 52–71. [Google Scholar] [CrossRef]
- Boissy, A.; Manteuffel, G.; Jensen, M.B.; Moe, R.O.; Spruijt, B.; Keeling, L.J.; Winckler, C.; Forkman, B.; Dimitrov, I.; Langbein, J. Assessment of positive emotions in animals to improve their welfare. Physiol. Behav. 2007, 92, 375–397. [Google Scholar] [CrossRef] [PubMed]
- Roelofs, S.; Boleij, H.; Nordquist, R.E.; van der Staay, F.J. Making decisions under ambiguity: Judgment bias tasks for assessing emotional state in animals. Front. Behav. Neurosci. 2016, 10, 119. [Google Scholar] [CrossRef] [PubMed]
- Monk, J.E.; Doyle, R.E.; Colditz, I.G.; Belson, S.; Cronin, G.M.; Lee, C. Towards a more practical attention bias test to assess affective state in sheep. PLoS ONE 2018, 13, e0190404. [Google Scholar] [CrossRef] [PubMed]
- Doyle, R.E. Sheep cognition and its implications for welfare. In Advances in Sheep Welfare; Elsevier: New York, NY, USA, 2017; pp. 55–71. [Google Scholar]
- Leliveld, L.M.; Düpjan, S.; Tuchscherer, A.; Puppe, B. Behavioural and physiological measures indicate subtle variations in the emotional valence of young pigs. Physiol. Behav. 2016, 157, 116–124. [Google Scholar] [CrossRef] [PubMed]
- Von Borell, E.; Langbein, J.; Despres, G.; Hansen, S.; Leterrier, C.; Marchant-Forde, J.; Marchant-Forde, R.; Minero, M.; Mohr, E.; Prunier, A. Heart rate variability as a measure of autonomic regulation of cardiac activity for assessing stress and welfare in farm animals—A review. Physiol. Behav. 2007, 92, 293–316. [Google Scholar] [CrossRef] [PubMed]
- Manteuffel, C. The Technical Manipulation of the Behaviour of Sows Exemplified by Call Feeding and Active Crushing Prevention. Ph.D. Thesis, University of Kiel, Kiel, Germany, 2015. [Google Scholar]
- Zebunke, M.; Langbein, J.; Manteuffel, G.; Puppe, B. Autonomic reactions indicating positive affect during acoustic reward learning in domestic pigs. Anim. Behav. 2011, 81, 481–489. [Google Scholar] [CrossRef]
- Ernst, K.; Puppe, B.; Schoen, P.C.; Manteuffel, G. A complex automatic feeding system for pigs aimed to induce successful behavioural coping by cognitive adaptation. Appl. Anim. Behav. Sci. 2005, 91, 205–218. [Google Scholar] [CrossRef]
- Rauw, W.M.; Johnson, A.K.; Gomez-Raya, L.; Dekkers, J. A Hypothesis and Review of the Relationship between Selection for Improved Production Efficiency, Coping Behavior, and Domestication. Front. Genet. 2017, 8, 134. [Google Scholar] [CrossRef] [PubMed]
- MacKay, J.R.; Haskell, M.J. Consistent Individual Behavioral Variation: The Difference between Temperament, Personality and Behavioral Syndromes. Animals 2015, 5, 455–478. [Google Scholar] [CrossRef] [PubMed]
- Haskell, M.J.; Simm, G.; Turner, S.P. Genetic selection for temperament traits in dairy and beef cattle. Front. Genet. 2014, 5, 368. [Google Scholar] [CrossRef] [PubMed]
- Fell, L.R.; Colditz, I.G.; Walker, K.H.; Watson, D.L. Associations between temperament, performance and immune function in cattle entering a commercial feedlot. Aust. J. Exp. Agric. 1999, 39, 795–802. [Google Scholar] [CrossRef]
- Cafe, L.M.; Robinson, D.L.; Ferguson, D.M.; Geesink, G.H.; Greenwood, P.L. Temperament and hypothalamic-pituitary-adrenal axis function are related and combine to affect growth, efficiency, carcass, and meat quality traits in Brahman steers. Domest. Anim. Endocrinol. 2011, 40, 230–240. [Google Scholar] [CrossRef] [PubMed]
- Cafe, L.M.; Robinson, D.L.; Ferguson, D.M.; McIntyre, B.L.; Geesink, G.H.; Greenwood, P.L. Cattle temperament: Persistence of assessments and associations with productivity, efficiency, carcass and meat quality traits. J. Anim. Sci. 2011, 89, 1452–1465. [Google Scholar] [CrossRef] [PubMed]
- King, D.A.; Pfeiffer, C.S.; Randel, R.D.; Welsh, T.H., Jr.; Oliphint, R.A.; Baird, B.E.; Curley, K.O., Jr.; Vann, R.C.; Hale, D.S.; Savell, J.W. Influence of animal temperament and stress responsiveness on the carcass quality and beef tenderness of feedlot cattle. Meat Sci. 2006, 74, 546–556. [Google Scholar] [CrossRef] [PubMed]
- Dawkins, M.S. Through animal eyes: What behaviour tells us. Appl. Anim. Behav. Sci. 2006, 100, 4–10. [Google Scholar] [CrossRef]
- Boissy, A.; Terlouw, C.; Le Neindre, P. Presence of cues from stressed conspecifics increases reactivity to aversive events in cattle: Evidence for the existence of alarm substances in urine. Physiol. Behav. 1998, 63, 489–495. [Google Scholar] [CrossRef]
- De Waal, F. Are We Smart Enough to Know How Smart Animals are? W. W. Norton & Company: New York, NY, USA, 2016. [Google Scholar]
© 2018 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Colditz, I.G. Objecthood, Agency and Mutualism in Valenced Farm Animal Environments. Animals 2018, 8, 50. https://doi.org/10.3390/ani8040050
Colditz IG. Objecthood, Agency and Mutualism in Valenced Farm Animal Environments. Animals. 2018; 8(4):50. https://doi.org/10.3390/ani8040050
Chicago/Turabian StyleColditz, Ian G. 2018. "Objecthood, Agency and Mutualism in Valenced Farm Animal Environments" Animals 8, no. 4: 50. https://doi.org/10.3390/ani8040050
APA StyleColditz, I. G. (2018). Objecthood, Agency and Mutualism in Valenced Farm Animal Environments. Animals, 8(4), 50. https://doi.org/10.3390/ani8040050