A Meta-Analysis of the Association Between Live Yeast Supplementation and Lactation Performance in Dairy Cows Under Heat Stress
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Identification of Relevant Studies
2.2. Inclusion and Exclusion Criteria
2.3. Data Collection
2.4. Statistical Analysis
3. Results
3.1. Database Summary
3.2. Dry Matter Intake and Milk Yield
3.3. Milk Composition
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Cresci, R.; Balkan, B.A.; Tedeschi, L.; Cannas, A.; Atzori, A. A system dynamics approach to model heat stress accumulation in dairy cows during a heatwave event. Animal 2023, 17, 101042. [Google Scholar] [CrossRef]
- Molina Benavides, R.A.; Sánchez Guerrero, H.; Atzori, A.S. A conceptual model to describe heat stress in dairy cows from actual to questionable loops. Acta Agron. 2018, 67, 59–64. [Google Scholar] [CrossRef]
- Herbut, P.; Angrecka, S.; Walczak, J. Environmental parameters to assessing of heat stress in dairy cattle—A review. Int. J. Biometeorol. 2018, 62, 2089–2097. [Google Scholar] [CrossRef]
- Jeelani, R.; Konwar, D.; Khan, A.; Kumar, D.; Chakraborty, D.; Brahma, B. Reassessment of temperature-humidity index for measuring heat stress in crossbred dairy cattle of a sub-tropical region. J. Therm. Biol. 2019, 82, 99–106. [Google Scholar] [CrossRef]
- Giannone, C.; Bovo, M.; Ceccarelli, M.; Torreggiani, D.; Tassinari, P. Review of the heat stress-induced responses in dairy cattle. Animals 2023, 13, 3451. [Google Scholar] [CrossRef]
- Kim, S.H.; Ramos, S.C.; Valencia, R.A.; Cho, Y.I.; Lee, S.S. Heat stress: Effects on rumen microbes and host physiology, and strategies to alleviate the negative impacts on lactating dairy cows. Front. Microbiol. 2022, 13, 804562. [Google Scholar] [CrossRef] [PubMed]
- Zhao, S.; Min, L.; Zheng, N.; Wang, J. Effect of heat stress on bacterial composition and metabolism in the rumen of lactating dairy cows. Animals 2019, 9, 925. [Google Scholar] [CrossRef] [PubMed]
- Min, L.; Li, D.; Tong, X.; Nan, X.; Ding, D.; Xu, B.; Wang, G. Nutritional strategies for alleviating the detrimental effects of heat stress in dairy cows: A review. Int. J. Biometeorol. 2019, 63, 1283–1302. [Google Scholar] [CrossRef] [PubMed]
- Baker, L.; Kraft, J.; Karnezos, T.; Greenwood, S. The effects of dietary yeast and yeast-derived extracts on rumen microbiota and their function. Anim. Feed Sci. Technol. 2022, 294, 115476. [Google Scholar] [CrossRef]
- DeVries, T.; Chevaux, E. Modification of the feeding behavior of dairy cows through live yeast supplementation. J. Dairy Sci. 2014, 97, 6499–6510. [Google Scholar] [CrossRef]
- Newbold, C.J.; Wallace, R.; McIntosh, F. Mode of action of the yeast Saccharomyces cerevisiae as a feed additive for ruminants. Br. J. Nutr. 1996, 76, 249–261. [Google Scholar] [CrossRef]
- Li, Z.; Fan, Y.; Bai, H.; Zhang, J.; Mao, S.; Jin, W. Live yeast supplementation altered the bacterial community’s composition and function in rumen and hindgut and alleviated the detrimental effects of heat stress on dairy cows. J. Anim. Sci. 2023, 101, skac410. [Google Scholar] [CrossRef]
- Perdomo, M.; Marsola, R.; Favoreto, M.; Adesogan, A.; Staples, C.; Santos, J. Effects of feeding live yeast at 2 dosages on performance and feeding behavior of dairy cows under heat stress. J. Dairy Sci. 2020, 103, 325–339. [Google Scholar] [CrossRef]
- Sutton, A.J.; Higgins, J.P. Recent developments in meta-analysis. Stat. Med. 2008, 27, 625–650. [Google Scholar] [CrossRef] [PubMed]
- Moher, D.; Liberati, A.; Tetzlaff, J.; Altman, D. Preferred reporting items for systematic reviews and meta-analyses: The PRISMA statement. BMJ 2009, 339, b2535. [Google Scholar] [CrossRef]
- Hedges, L.V.; Pigott, T.D. The power of statistical tests in meta-analysis. Psychol. Methods 2001, 6, 203. [Google Scholar] [CrossRef]
- Higgins, J.; Deeks, J. Selecting studies and collecting data. In Cochrane Handbook for Systematic Reviews of Interventions: Cochrane Book Series; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2008. [Google Scholar]
- Borenstein, M.; Hedges, L.V.; Higgins, J.; Rothstein, H.R. Introduction to Meta-Analysis; Wiley Online Library: Hoboken, NJ, USA, 2009. [Google Scholar]
- Lean, I.; Rabiee, A.; Duffield, T.F.; Dohoo, I. Invited review: Use of meta-analysis in animal health and reproduction: Methods and applications. J. Dairy Sci. 2009, 92, 3545–3565. [Google Scholar] [CrossRef]
- Higgins, J.P.; Green, S. Cochrane Handbook for Systematic Reviews of Interventions; Wiley-Blackwell: West Sussex, UK, 2008. [Google Scholar]
- Egger, M.; Smith, G.D.; Schneider, M.; Minder, C. Bias in meta-analysis detected by a simple, graphical test. BMJ 1997, 315, 629–634. [Google Scholar] [CrossRef] [PubMed]
- Duval, S.; Tweedie, R. A nonparametric “trim and fill” method of accounting for publication bias in meta-analysis. J. Am. Stat. Assoc. 2000, 95, 89–98. [Google Scholar] [CrossRef]
- Er, M.; Cengiz, Ö. The effects of ration particle size and live yeast supplementation on dairy cows performance under heat stress conditions. Trop. Anim. Health Prod. 2023, 55, 130. [Google Scholar] [CrossRef] [PubMed]
- Lees, A.; Olm, J.; Lees, J.; Gaughan, J. Influence of feeding Saccharomyces cerevisiae on the heat load responses of lactating dairy cows during summer. Int. J. Biometeorol. 2022, 66, 275–288. [Google Scholar] [CrossRef]
- Moallem, U.; Lehrer, H.; Livshitz, L.; Zachut, M.; Yakoby, S. The effects of live yeast supplementation to dairy cows during the hot season on production, feed efficiency, and digestibility. J. Dairy Sci. 2009, 92, 343–351. [Google Scholar] [CrossRef] [PubMed]
- Nasiri, A.; Towhidi, A.; Shakeri, M.; Zhandi, M.; Dehghan-Banadaky, M.; Pooyan, H.; Sehati, F.; Rostami, F.; Karamzadeh, A.; Khani, M. Effects of Saccharomyces cerevisiae supplementation on milk production, insulin sensitivity and immune response in transition dairy cows during hot season. Anim. Feed Sci. Technol. 2019, 251, 112–123. [Google Scholar] [CrossRef]
- Nasiri, K.; Sadeghi, A.A.; Nikkhah, A.; Chamani, M. Effect of hydrolyzed and live yeast supplementation during transition period on colostrum and milk composition and blood biochemical parameters in dairy cows. J. Livest. Sci. Technol. 2022, 10, 47–54. [Google Scholar] [CrossRef]
- Nasiri, K.; Sadeghi, A.A.; Nikkhah, A.; Chamani, M. Effects of live and autolyzed yeast supplementation during transition period on ruminal fermentation, blood attributes, and immune response in dairy cows under heat stress condition. Anim. Biotechnol. 2023, 34, 2963–2971. [Google Scholar] [CrossRef]
- Sehati, F.; Towhidi, A.; Zhandi, M.; Ganjkhanlou, M.; Nasiri, A.; Parnian-Khajehdizaj, F. Effects of Dietary Supplementation of Saccharomyces cerevisiae on Milk Production, Oxidative Stress, and Blood Metabolites of Holstein Dairy Cows during Summer Season. Iran. J. Appl. Anim. Sci. 2022, 12, 497–507. [Google Scholar]
- Cabrita, A.R.; Carvalheira, J.; Fonseca, A.J. Live Yeast Supplementation Attenuates the Effects of Heat Stress in Dairy Cows. Vet. Sci. 2025, 12, 791. [Google Scholar] [CrossRef]
- Dehghan-Banadaky, M.; Ebrahimi, M.; Motameny, R.; Heidari, S. Effects of live yeast supplementation on mid-lactation dairy cows performances, milk composition, rumen digestion and plasma metabolites during hot season. J. Appl. Anim. Res. 2013, 41, 137–142. [Google Scholar] [CrossRef]
- Mirzad, A.N.; Goto, A.; Endo, T.; Ano, H.; Kobayashi, I.; Yamauchi, T.; Katamoto, H. Effects of live yeast supplementation on serum oxidative stress biomarkers and lactation performance in dairy cows during summer. J. Vet. Med. Sci. 2019, 81, 1705–1712. [Google Scholar] [CrossRef]
- Muruz, H.; Gül, M. Effects of live yeast on the rumen fermentation parameters and milk performance of Simmental dairy cows during the hot season. Turk. J. Vet. Anim. Sci. 2020, 44, 249–257. [Google Scholar] [CrossRef]
- Salvati, G.; Júnior, N.M.; Melo, A.; Vilela, R.; Cardoso, F.; Aronovich, M.; Pereira, R.; Pereira, M. Response of lactating cows to live yeast supplementation during summer. J. Dairy Sci. 2015, 98, 4062–4073. [Google Scholar] [CrossRef]
- Armstrong, D.V. Heat Stress Interaction with Shade and Cooling. J. Dairy Sci. 1994, 77, 2044–2050. [Google Scholar] [CrossRef]
- Verwoerd, W.; Wellby, M.; Barrell, G. Absence of a causal relationship between environmental and body temperature in dairy cows (Bos taurus) under moderate climatic conditions. J. Therm. Biol. 2006, 31, 533–540. [Google Scholar] [CrossRef][Green Version]
- Conte, G.; Ciampolini, R.; Cassandro, M.; Lasagna, E.; Calamari, L.; Bernabucci, U.; Abeni, F. Feeding and nutrition management of heat-stressed dairy ruminants. Ital. J. Anim. Sci. 2018, 17, 604–620. [Google Scholar] [CrossRef]
- Țogoe, D.; Mincă, N.A. The impact of heat stress on the physiological, productive, and reproductive status of dairy cows. Agriculture 2024, 14, 1241. [Google Scholar] [CrossRef]
- Chen, L.; Thorup, V.M.; Kudahl, A.B.; Østergaard, S. Effects of heat stress on feed intake, milk yield, milk composition, and feed efficiency in dairy cows: A meta-analysis. J. Dairy Sci. 2024, 107, 3207–3218. [Google Scholar] [CrossRef]
- Abdelli, A.; Besbaci, M.; Hansali, S.; Rahmani, B.; Belabdi, I.; Enjalbert, F.; Raboisson, D. Association between yeast product feeding and milk production of lactating dairy cows: Multilevel meta-analysis and meta-regression. Anim. Feed Sci. Technol. 2022, 285, 115240. [Google Scholar] [CrossRef]
- McAllister, T.; Beauchemin, K.; Alazzeh, A.; Baah, J.; Teather, R.; Stanford, K. The use of direct fed microbials to mitigate pathogens and enhance production in cattle. Can. J. Anim. Sci. 2011, 91, 193–211. [Google Scholar] [CrossRef]
- Garnsworthy, P.; Saunders, N.; Goodman, J.; Algherair, I.; Ambrose, J. Effects of live yeast on milk yield, feed efficiency, methane emissions and fertility of high-yielding dairy cows. Animal 2025, 19, 101379. [Google Scholar] [CrossRef] [PubMed]



| References | NC a | Country | Breed | Lactation Stage b | Body Weight | Forage Type | Start and Finish Exposed to Heat Stress |
|---|---|---|---|---|---|---|---|
| Cabrita et al., 2025 [30] | 1 | Portugal | Holstein | mid | 600 | Maize silage and Ryegrass hay | climatic chambers |
| Dehghan-Banadaky et al., 2013 [31] | 1 | Iran | Holstein | mid | NR c | Corn silage and Alfalfa hay | July to August |
| Er and Cengiz, 2023 [23] | 1 | Turkey | Holstein-Friesian | mid | 609 | Corn silage and Alfalfa hay | June to September |
| Lees et al., 2022 [24] | 1 | Australia | Holstein-Friesian | mid | NR | Barley silage, Corn silage and Barley hay | December to January |
| Li et al., 2023 [12] | 2 | China | Holstein | mid | NR | Barley silage, Leymus chinensis hay and Alfalfa hay | July to August |
| Mirzad et al., 2019 [32] | 1 | Japan | Holstein | mid | 715 | Alfalfa hay, Oat hay and Wrapped bale silage of Italian ryegrass | July to September |
| Moallem et al., 2009 [25] | 1 | Israel | Israeli-Holstein | mid | 587.15 | Wheat silage, Vetch hay and Oat hay | July to October |
| Muruz et al., 2020 [33] | 1 | Turkey | Holstein | mid | 634 | Corn silage and Alfalfa hay | June to August |
| Nasiri et al., 2019 [26] | 1 | Iran | Holstein | early | 743 | Corn silage and Alfalfa hay | July to October |
| Nasiri et al., 2022 [27] | 1 | Iran | Holstein | early | 670 | Corn silage and Alfalfa hay | July to September |
| Nasiri et al., 2023 [28] | 2 | Iran | Holstein | early | 650 | Corn silage and Alfalfa hay | July to September |
| Perdomo et al., 2020 [13] | 2 | USA | Holstein | early | 610 | Corn silage and Alfalfa hay | May to September |
| Salvati et al., 2015 [34] | 1 | Brazil | Holstein | late | NR | Corn silage and Tifton silage | January to April |
| Sehati et al., 2022 [29] | 1 | Iran | Holstein | early | NR | Corn silage and Alfalfa hay | June to August |
| Outcome a | NC b | SMD c (95% CI d) | 95% PIs e | Heterogeneity | Publication Bias | RMD f (95% CI) | |||
|---|---|---|---|---|---|---|---|---|---|
| Random Effect | p-Value | Q | p-Value | I2 | |||||
| DMI | 15 | 0.526 (0.184, 0.867) | 0.003 | −0.570, 1.621 | 30.667 | 0.006 | 54.349 | 0.008 | 0.304 (0.063, 0.545) |
| MY | 17 | 0.473 (0.248, 0.697) | <0.001 | 0.045, 0.900 | 18.263 | 0.309 | 12.393 | 0.425 | 0.749 (0.295, 1.204) |
| Outcome a | NC b | SMD c (95% CI d) | 95% PIs e | Heterogeneity | Publication Bias | RMD f (95% CI) | |||
|---|---|---|---|---|---|---|---|---|---|
| Random Effect | p-Value | Q | p-Value | I2 | |||||
| MFP | 16 | 0.220 (−0.045, 0.485) | 0.104 | −0.473, 0.912 | 21.841 | 0.112 | 31.321 | 0.429 | 0.050 (−0.003, 0.103) |
| MFY | 16 | 0.548 (0.336, 0.759) | <0.001 | - | 11.703 | 0.701 | 0 | 0.965 | 0.033 (0.018, 0.047) |
| MPP | 14 | 0.208 (−0.203, 0.439) | 0.078 | −0.196, 0.611 | 14.531 | 0.338 | 10.534 | 0.336 | 0.020 (0.002, 0.038) |
| MPY | 14 | 0.713 (0.397, 1.029) | <0.001 | −0.215, 1.641 | 23.979 | 0.031 | 45.785 | 0.209 | 0.037 (0.020, 0.053) |
| MLP | 13 | 0.086 (−0.184, 0.357) | 0.530 | −0.557, 0.730 | 16.728 | 0.160 | 28.265 | 0.120 | 0.004 (−0.024, 0.032) |
| MLY | 13 | 0.634 (0.253, 1.015) | 0.001 | −0.597, 1.865 | 30.484 | 0.002 | 60.635 | 0.101 | 0.059 (0.022, 0.096) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Darabighane, B.; Podda, M.G.; Fancello, F.; Atzori, A.S. A Meta-Analysis of the Association Between Live Yeast Supplementation and Lactation Performance in Dairy Cows Under Heat Stress. Animals 2026, 16, 428. https://doi.org/10.3390/ani16030428
Darabighane B, Podda MG, Fancello F, Atzori AS. A Meta-Analysis of the Association Between Live Yeast Supplementation and Lactation Performance in Dairy Cows Under Heat Stress. Animals. 2026; 16(3):428. https://doi.org/10.3390/ani16030428
Chicago/Turabian StyleDarabighane, Babak, Maria Giovanna Podda, Francesco Fancello, and Alberto Stanislao Atzori. 2026. "A Meta-Analysis of the Association Between Live Yeast Supplementation and Lactation Performance in Dairy Cows Under Heat Stress" Animals 16, no. 3: 428. https://doi.org/10.3390/ani16030428
APA StyleDarabighane, B., Podda, M. G., Fancello, F., & Atzori, A. S. (2026). A Meta-Analysis of the Association Between Live Yeast Supplementation and Lactation Performance in Dairy Cows Under Heat Stress. Animals, 16(3), 428. https://doi.org/10.3390/ani16030428

